自动控制技术知识
自动控制原理知识点总结

自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。
控制系统由传感器、控制器和执行器组成。
2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。
反馈控制系统具有稳定性好、抗干扰能力强的特点。
3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。
传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。
4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。
比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。
5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。
常用的稳定性分析方法有判据法、频域法和根轨迹法等。
6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。
常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。
7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。
根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。
8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。
灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。
9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。
鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。
10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。
自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。
自动控制的基本知识

七、调节过程的品质指标 调节过度过程: 1)等幅振荡 2)扩散振荡 3)衰减振荡 4)非周期过程
1。稳定性:衰减率
Ψ愈大,越稳定。 Ψ=0.75~0.98
2.准确性:准确性是指被控量的偏差大小,它包括动态偏差yM和 静态(稳态)偏差yK 动态偏差:在控制过程中,被控量与给定值之间的最大偏差称为动态偏差. 静态偏差:在控制过程结束后,被控量的稳态值y∞与给定值yg之间的残余
只包含一个容积
单容对象是最简单的热工调节对象,电厂热工生产过程中 许多储水容器,如除氧器、加热器、凝汽器等。
2)多容对象
包含两个或以上容积
(1)有自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和个时间常数为Tc的惯性环节 近似。
(2)无自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和一个积分环节近似。
3。阶跃响应特性:比较直观 在阶跃输入信号的作用下,系统的输出特性。 突然的扰动。 在电厂生产过程中,有许多输入信号近似于阶跃信号, 如负荷突然变化,阀门、挡板的开与关等。只要生产 过程允许,一般也比较容易通过控制机构(如控制阀 门)或扰动机构造成一个阶跃输入扰动。所以常在现 场用阶跃响应试验来检验控制系统的工作性能。
3。比例带δ对调节过程的影响
比例带: 3。比例带δ对调节过程的影响
比例带δ 小:调节作用强;
比例带δ太小:调节阀动作过频繁,不稳定。
二、积分调节规律调节器(P)
1。积分规律调节器的动态特性
U (S ) 1 WI ( S ) KP E (S ) Ti s 式中 Si——称为积分规律调节器的积分速度; Ti,——积分时间,习惯上多用积分时间来表示被调量偏差 积累的快慢。 Ti 越小表示偏差积累越快,积分作用越强。Ti是积分规律调节 器的整定参数。
(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制知识

(三)、大系统理论和智能控制论(第三阶段)
1970年以后
1.大系统理论 是指规模庞大、结构复杂、变量众多的 信息与控制系统,交通运输、生物工程、社会经 济和空间技术等复杂系统。
2.智能控制论 是具有某些仿人智能的工程控制与信
息处理系统, 如智能机器人、无人驾驶飞机。
vcd
返回
返回
§1-2 基本控制方式
返回
§1-4 自动控制系统的分类
一、按给定信号分类: 1、恒值控制系统: 输入为常数,系统能排除扰动影响,使输
出保持恒定不变。 2、随动控制系统: 输入是时间的未知函数,要求输出跟随输
入信号变化。 3、程序控制系统: 输入量是时间的已知函数,要求输出以一
定精度跟随输入信号变化。
返回
二、按数学描述分类:
返回
四、自动控制系统举例 恒温箱自动控制系统
§1-3 自动控制系统的组成及术语
一、自动控制系统的组成 二、控制系统中的常用术语
返回
一、自动控制系统的组成
由控制器与被控对象组成,控制器是系统 中对被控对象起控制作用的各部分的总称。
被 控 对 象
自
控
系
统件 比调较节元元件件校 放 执 行 元 件
1、线性系统:用线性方程描述的系统。 性质:1)组成系统的所有元件都是线性元件; 2)具有齐次性和叠加性。
2、非线性系统:用非线性方程描述的系统。 性质:1)系统中只要有一个非线性元件就是
非线性系统。 2)不满足叠加原理。
三、按时间信号的性质分类
1.连续时间系统: 系统中所有信号都是连续函数形成的模拟量。
• 误差的稳态分量称为稳态误差;
• 稳态误差表示到达平衡状态(过渡过程 结束)的精度。
自动控制原理知识点

第一节自动控制的基本方式一、两个定义:(1) 自动控制:在没有人直接参与的情况卞,利用控制装置使某种设备、装置或生产过程 中的某些物理屋或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。
(2) 自动控制系统:由控制器(含测量元件)和被控对彖组成的有机整体。
或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。
称为自动控制系统。
在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。
系统的输入屋,通常指两种:给定输入量和扰动输入量。
给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。
扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电 源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输 入量。
扰动输入量影响给定输入量对系统输出量的控制。
自动控制的基本方式二、基本控制方式(3种)1、开环控制方式⑴定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。
具有这种控制方式的有机整体,称为开坏控制系统。
如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。
⑵职能方框图任何开坏控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。
2、闭坏控制方式(1)定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭坏控制方式。
如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。
自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为 电压。
反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放人器放大后去控制 电动机的转速。
当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速 运行。
当系统受到某种干扰时(例如负载变人),电动机的转速会发生变化(下降),测速反馈扰动输入量输出量电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变人),经放人后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。
自动控制基本知识

四、典型环节的动态特性
1.比例环节
1、定义:输出能够按一定比例,无迟延、无惯性的复现输入 信号。
2、微分方程: y(t) K p x(t)
Kp—环节的传递系数或比例系数。
3、传递函数为:W
(s)
Y (s) X (s)
KP
4、阶跃响应曲线:
2、积分环节
1、定义:输出与输入的积分成比例关系。 输出的变化速度与输入成比例关系。
Y s W1 s X1 s X 2 s
X2 s W2 sY s
W总 s
Y s X1 s
W1 s 1W1 sW2
s
第三节 调节器的调节规律
一、概念: 调节器的输出信号与输入信号之间的关系。 PID调节的优点:
(1)原理简单,使用方便。 (2)适应性强。广泛应用于化工、热工、冶金、冶炼、造纸等。 (3)鲁棒性强。即控制品质对被控对象特性的变化不太敏感。
(三)术语 测量变送器: 调节器: 执行器: 执行机构 调节机构 被控对象:指被控制的生产设备或生产过程。 被调量:表征生产过程是否正常而需要控制的物理量。 给定值:根据生产工艺要求,被控量应该达到的数值。 调节量:由控制作用来改变,以控制被控量的变化, 使被控量恢复为给定值的物理量。 扰动:引起被控量偏离其给定值的各种原因。 基本扰动:调节量 干扰:
b1
dx(t) dt
b0 x(t)
(n≥m)
2、传递函数 -微分运算转为代数运算,分析综合方便
定义:线性定常系统在零初始条件下,系统(或环节)输出信号的拉普拉 斯变换与输入信号的拉普拉斯变换之比。
W
(s)
Ly(t) Lx(t)
Y (s) X (s)
设线性定常系统(或环节)的微分方程如上式,在初始条件为零的情况 下,对上式进行拉普拉斯变换,得:
自动控制知识

自动控制知识一、自动控制原理的基本概念1、什么是自动控制。
自动控制就是在没有人直接参与的情况下,利用控制装置控制被控对象,对生产过程、工艺参数、目标要求等进行自动的调节与控制,使之按照预定的方案达到要求的指标。
2、自动控制系统的分类按控制方式分:开环控制、闭环控制(反馈控制)和复合控制。
3、什么是开环控制系统?有何特点?定义:在控制系统中,系统的输出量不被引回到输入端来对系统的控制部分产生影响。
(即开环系统无反馈)特性:在保证系统动态特性的前提条件下,放大倍数越大越好;不能自动补偿控制过程中受到的各种扰动因素的影响(即结构简单,调试方便,但精度低、无抗扰能力。
)4、什么是闭环控制系统?有何特点?定义:在控制系统中,系统的输出量通过反馈环节返回到输入端来对系统的控制部分产生影响。
(即闭环系统有反馈)特性:能自动补偿控制过程中受到的各种扰动因素的影响,但系统稳定性变差。
(即偏差控制,可以抑制内、外扰动对被控制量产生的影响。
精度高、结构复杂,设计、分析麻烦。
)5、对自动控制系统的基本要求对自动控制系统的基本要求:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。
(一)、稳定性:1)对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值。
2)对随动系统,被控制量始终跟踪参据量的变化。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性,通常由系统的结构决定与外界因素无关。
(二)、快速性:对过渡过程的形式和快慢提出要求,一般称为动态性能。
稳定高射炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓,仍然抓不住目标。
(三)、准确性:用稳态误差来表示。
在参考输入信号作用下,当系统达到稳态后,其稳态输出与参考输入所要求的期望输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的输出跟随参考输入的精度越高。
二、直流调速系统1、调速范围与静差率调速范围:是指在额定负载(及一定的静差率要求)下,电动机所能达到的最高转速与最低转速之比。
(六)自动控制技术知识

(六)自动控制技术知识1.单相全控桥式整流电路是能实现有源逆变的功能。
(√)2.单相半控桥式整流电路是能实现有源逆变的功能。
(×)3.三相半波可控整流电路是不能实现有源逆变的功能。
(×)4.带续流二极管的三相半波可控整流电路是不能实现有源逆变的电路。
(√)5.三相桥式全控整流电路是能实现有源逆变的电路。
(√)6.在有源逆变电路中.,当某一晶闸管发生故障,失去开通能力,则会导致逆变失败。
(√)7.晶闸管逆变电路在工作过程中,某一晶闸管发生断路,就会造成逆变倾覆。
(√)8.绕线转子异步电动机串级调速电路中,定子绕组与转子绕组要串联在一起使用。
(×)9.串级调速就是利用一个或n个辅助电动机或者电子设备串联在绕线转子异步电动机转子回路里,把原来损失在外串电阻的那部分能量加以利用,或者反馈到电网里,既能达到调速目的,又能提高电动机运行效率,这种调速方法叫作串级调速。
(√)10.晶闸管装置的使用会引起电网波形畸变和供电电压降低的后果。
(√)11.过零触发就是改变晶闸管每周期导通的起始点以达到改变输出电功率的目的。
(×)12.双向晶闸管是一个NPNPN五层三端元件。
(√)13.双向晶闸管的额定电流与普通晶闸管一样是平均值而不是有效值。
(×)14.交流开关可用两只普通晶闸管或者两只自关断电力电子器件反并联组成。
(√)15.常用双向晶闸管组成交流开关电路。
(√)16.单相交流调压电路带电感性负载时,可以用窄脉冲触发。
(×)17.单相交流调压电路带电阻性负载时移相范围为0°~180°。
(√)18.带中性线的三相交流调压电路,其实就是三个单相交流调压电路的组合。
(√)19.定宽调频斩波器输出电压脉冲的宽度是固定的,欲改变输出电压平均值U d,只需改变主晶闸管的触发脉冲频率。
(√)20.定频调宽斩波器向负载输出的电压脉冲频率是可调的。
(×)21.采用定宽调制方法的斩波器,是指保持斩波器通断频率不变,通过改变电压脉冲宽度来使输出电压平均值改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝电解智能模糊控制技术1、前言近几十年,在铝电解生产过程中越来越多地使用计算机控制技术,计算机控制系统已经成为现代大型铝电解槽生成过程控制和管理必不可少的自动化装备,并成为当代铝冶金技术发展水平的重要标志。
在铝的电解过程中,氧化铝浓度的控制是相当重要的。
在这个过程中都强调要“四低一高”的作业特点,如果氧化铝的浓度过高的话,会造成槽底沉淀、降低电流效率、增加电阻和阴极压降、可能危及铝液层的稳定;而当氧化铝浓度过低的时候,又容易发生阳极效应,使槽电压急剧升高,破坏槽子的能量平衡。
因此为了获取高的电流效率,必须维持槽内氧化铝浓度处于较低浓度且又要避免阳极效应发生这样一个较窄的范围。
众所周知,铝电解过程是一个十分复杂的生产过程,由于系统的非线性和各种不可预测因素太多,因此关于铝电解槽的数学模型至今未取得满意的结果,并且由于在槽内部发生的一些复杂的电化学和物理化学反应,电解槽电解质熔体中的氧化铝物料平衡受到氧化铝加料速度、扩散速度、融解速度和消耗速度以及其他槽况干扰因素的影响,使得槽内氧化铝浓度的变化表现出非线性、时变、时滞等特征。
到目前为止,还没有一种很准确的在线测量电解槽内的氧化铝浓度和温度的仪器和设备,因而对于氧化铝浓度的控制就没有一个统一的方法。
现在在控制模型方面,比较成熟和常用的方法是采用以槽电阻辨识氧化铝浓度为控制基础的连续或准连续按需下料控制技术,取代传统的定时下料技术。
总的来说,目前在电解铝厂中采用的氧化铝浓度控制技术包括如下几种:模糊控制专家系统、自适应浓度控制方法、槽电阻斜率计算方法以及跟踪控制法等。
2、240KA电解控制系统的主要功能:目前我公司240KA电解槽控制系统长沙业翔开发的“B/S、C/S 型智能模糊控制系统”,模糊控制技术的特色主要有:1).在对控制对象行为的仿真与解析上,着眼于电、磁、热、流与电化学过程的藕合作用,具有模型化的整体性。
2).在控制算法上,以模糊控制为主体的多种智能控制方法的集成运用,提高了系统的控制质量和工作可靠性。
3).在系统结构上,采用过程优化控制(DDc级【直接数字控制】)与状态仿真和诊断(SCC级【过程监控】)相结合的两级分布式配置,以实现双向支持、功能互补,提高了系统的控制功能。
4).在控制策略上,采用了多模式控制,多档级的下料速率调节,以及设定值在线自修正等,加强了系统的鲁棒性,改进了智能控制效果。
5).在信息获取与加工技术上,采用在线采集(有限信息)与动态仿真相结合,提高了加工深度,扩大了信息资源并提高了信息的可靠性。
该系统分上下位机两部分:一、下位机槽控箱的主要功能(1).信号采集:在线同步采集槽电压、系列电流;接受并处理与人工作业工序相关的各种手动信号。
(2).槽况解析:实时地解析槽况的变化趋势;对不稳定及异常槽况(如电阻针振、电阻摆动、阳极效应趋势、阳极效应发生、下料过程的电阻变化异常、极距调节过程的电阻变化异常等)的预报、报警和自处理。
3).下料与电阻控制:由模糊控制器实现对下料速率的调节(即对氧化铝浓度的控制),和对正常槽电阻的控制(即对极距与热平衡的控制)。
(4).人工操作工序监控:对换阳极、出铝、抬母线及边加工等人工操作工序进行监控。
(5).设定参数的自修正功能:能自动地根据槽况实时解析的结果修正目标控制电阻、控制非调节区宽度、基准下料速率、阳升/阳降电阻率等设定参数。
(6).提供多种可供选择的控制模式:操作人员可根据需要选用一种合适的电压控制模式和下料控制模式。
(7).数据处理与存储:为上位机监控程序进行数据统计和记录,并制作和储存报表数据。
(8).与上位机的数据交换:在联机状态下能通过通讯接口与上位机交换数据。
(9).故障报警与事故保护:诊断、记录和显示自身的运行状态和故障部位,并采取相应的保护措施。
二、上位机软件基本组成:(1)上位机软件系统主要由接口机、客户端、服务管网程序和后台数据库组成。
(2)接口机为主要组成部分,由主程序、语音、报表、历史曲线、系统分析等几个部分组成。
(3)主程序部分是上位机系统的核心,主要完成实时监控报警,动态数据采集存储,控制参数输入及一些增强服务模块。
(4)语音部分完成语音报警的功能。
(5)报表部分完成各类报表的格式编辑,报表生成及报表打印。
(6)历史曲线保存各种历史曲线,以作为分析槽况的曲线表。
3、氧化铝浓度控制的优化选择氧化铝浓度控制的好坏是电解槽能否稳定运行的决定性因素。
理论研究表明,在1.5%氧化铝浓度以内,容易发生阳极效应,氧化铝浓度超过5%时,容易形成沉淀,增大槽电阻影响电流分布,从而降低电流效率增加电耗。
目前,国外电解槽趋势向于在低Al2O3浓度(1.5~3%)下进行电解,其主要优点是Al2O3很快地溶解,熔体中无悬浮的Al2O3固体颗粒,对熔体的粘度,导电度以及防止在槽底产生氧化铝沉淀都有良好的作用,有利于稳定生产,提高电流效率。
氧化铝浓度范围的选择与电解质组成、下料方式以及下料控制策略密切相关。
随着中间点式下料和氧化铝智能模糊控制技术的发展,才使得低氧化铝浓度而又均衡成为可能。
真正做到“勤加工,少下料”,促进氧化铝物料在槽内的扩散溶解与分布合理性,改善物料平衡状态提高电流效率创造条件。
由下图氧化铝浓度和电阻的关系曲线可看出,槽电压与氧化铝浓度的关系表明在氧化铝浓度 3.5%~4.0%左右存在槽电压最低值,但氧化铝浓度与电流效率的关系却存在很大的争议。
氧化铝浓度和电阻的关系曲线为了适应低分子比和低电解温度时氧化铝饱和溶解度低(分子比2.35,温度945℃时为7%)以及各种按需下料控制策略对电阻斜率的要求(低氧化铝浓度时,槽电阻对氧化铝浓度的变化反映敏感),氧化铝浓度工作区不得不设置在较低的范围以利于氧化铝浓度控制和减少生成沉淀的可能性。
但过低的氧化铝浓度显然升高了槽电压或降低了极距,这对能耗或电流效率指标不利。
因此新近的观点认为,对于氧化铝浓度的控制,只要能稳定地控制在既不容易产生效应,又不会导致沉淀产生的区域,便达到了控制目的。
4、模糊控制随着社会的发展,要求数学研究与解决的问题日益复杂,并且具有模糊性(客观事物间的差异的中间过渡中的不分明性和人类语言对之的描述,如“大”与“小”,“快”与“慢”),很难以精确化。
不兼容原理指出:当一个系统的复杂性增大时,则使其精确化的能力就将减少,在达到一定限度后,复杂性与精确性将相互排斥。
模糊控制以模糊集合理论(采用隶属函数描述那些介于“属于”和“不属于”的中间过渡过程,使得每个元素不仅以“0”或“1"属于某一集合,而且还以一定的介于“0”或“1”之间的程度属于某一集合。
)为出发点,建立了大脑和计算机间的桥梁,它将人类专家的模糊信息形式存储的经验和知识转化成计算机可以接受的“if-then”规则形式,使得计算机可以模拟大脑处理模糊信息,进行推理和判断以控制被控对象。
5、铝电解控制过程分析铝电解槽内除了本身的电、磁、热、流场的复杂地交互作用以及复杂的物理化学与电化学反应使其状态变化十分复杂外,还因其受到周期进行的人工作业工序(如出铝、更换阳极、边部加工等)的干扰,以及难以检测的控制误差的积累而使其呈现出复杂的时变特性。
直到目前,控制系统能够直接连续自动采集的电解槽信号只有两个,即槽电压(U)和系列电流(I):能够直接利用机械装置对过程实施的控制也只有两种,即极距调节和打壳下料,分别控制槽电压(或槽电阻)和电解质熔体中的氧化铝浓度。
氧化铝浓度目前尚不能在线检测,但它和槽电阻有不对称的U型关系,周期地改变下料速率,即将下料方式安排为“欠量下料’,与“过量下料”周期交替地进行,使氧化铝浓度在一定的范围内变化(即dR/dt不等于0),并假设在未移动阳极的期间内槽电阻的变化仅由氧化铝浓度的变化所引起,那么式中 d R/d t 是槽电阻随时间的变化速率,它的大小反映了槽电阻的变化率,槽电阻R在一定时间内的累积斜率则反映了氧化铝浓度的变化率。
氧化铝浓度C应设置不易发生阳极效应、不易产生沉淀的区间。
为了利用dR/dt来判断氧化铝浓度C,在C工作区槽电阻R对氧化铝浓度的导数应足够大,能满足浓度工作区1.5%-3.5%为最佳浓度控制。
上述分析表明,铝电解槽是一个多变量、非线性、大滞后、时变的惯性系统,具有模型的不确定性;铝电解过程的控制就是利用上述槽电阻与极距和氧化铝浓度的关系,并兼顾过程中其它各种因素影响,确定具体的极距和下料的控制策略,缺乏精确的数学模型。
因此,把智能控制技术应用于铝电解生产,比常规的控制方法更有优越性,为探索更先进的铝电解过程控制策略奠定了重要的基础,并在生产实际中取得了很好的控制效果和经济技术指标。
6、模糊控制系统的核心随着铝电解工艺条件的不断深入研究,其核心归结到以下两个方面:氧化铝浓度控制和电解温度控制。
因此现代铝电解工艺对控制系统提出如下要求:(1).控制铝电解槽的物料平衡。
氧化铝的添加情况是引起物料平衡变化的主要因素,因此最重要的是控制好氧化铝的添加速率(即下料间隔NB),使氧化铝浓度的变化能维持在预定的一个很窄的范围内。
(2).控制好铝电解槽的热平衡和极距。
主要目的是以移动阳极作为调整极距来增减热收入的,如果能使阳极动作控制在理想的条件下这样就即能保持合适的极距又能保持最佳的热平衡。
由于铝电解槽是一个复杂的非线性、时变、大滞后的被控对象,其中,出铝、换极、槽况维护等间隙性工序必须由人工操作,而且这些间隙性工序对电解生产的平稳进行有很大影响。
描绘铝电解槽状态的参数可分为下列两类:(1).第一类为“快时变”参数:变化速率相对较快,且对输入和外界干扰的变化较敏感。
主要参数是描绘电解槽物料平衡状态的参数—氧化铝浓度,反映热平衡状态的参数—电解质温度,以及引起能量输入变化的参数—极距。
(2).第二类为“慢时变”参数:变化速率相对较慢,对输入和外界干扰的变化不太敏感,其较大范围的变化往往由“快时变”参数的快速和持续的变化所引起。
重要参数有:电解质成分、电解质水平、铝液水平、炉底压降,以及描绘槽膛内形的参数等。
第一类参数是描绘或改变物料平衡或改变物料平衡的主要参数,因此必须由控制系统实时和准确地进行控制。
由于这类参数是直接或间接引起的槽电阻变化的主要原因,因此对特定输入序列下槽电阻的响应特征进行推理分析,可“辨识”出这些参数的取值及变化情况,从而达到控制这些输入的目的。
第二类参数的变化情况在很大程度上取决于第一类参数的控制好坏。
由于过程的复杂性,若只有控制第一类参数的实时控制子系统,则系统便不能掌握和控制过程的整体变化趋势。
因此,了解该类参数的取值与变化情况对于槽况综合分析十分重要。
该类参数中,有些是长期以来是由人工定期测定或取样分析的,有些则不便人工检测。
而一些不便检测的参数(如槽膛内型)对反映其变化十重要。