北师大版(2020秋)六年级数学上册奥数题(附答案)

合集下载

北师大版最新小学六年级上册数学奥数题带答案

北师大版最新小学六年级上册数学奥数题带答案

北师大版最新小学六年级上册数学奥数题带答案一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.3.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.4.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.5.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.6.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.7.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若一个十位数是99的倍数,则a+b=.10.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.11.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.12.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.13.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.14.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.15.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.3.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.4.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.5.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.6.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.7.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.10.解:==,答:这三个分数中最大的一个是.故答案为:.11.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.12.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.13.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.14.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.15.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:300。

最新北师大版数学六年级奥数25套

最新北师大版数学六年级奥数25套

模拟试卷.1一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.模拟试卷.2一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷、(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?模拟试卷.3 姓名得分一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.上右面算式中A代表_____,B代表_____,C代表_____,D代表_____(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 4546 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ………………………………………3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.模拟试卷.4 姓名得分一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?模拟试卷.5 姓名得分一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字2003分别按下列方式变动其次序:A B C D E 2 0 0 3B C D E A 0 0 3 2(第一次变动)C D E A B 0 3 2 0(第二次变动)D E A B C 3 2 0 0(第三次变动)……问最少经过几次变动后A B C D E 2 0 0 3将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?模拟试卷.6 姓名得分一、填空题:1.如果A=11111102222221,B=33333326666665,那么A与B中较大的数是。

小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。

答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。

北师大版六年级上册数学同步奥数培优

北师大版六年级上册数学同步奥数培优

第一讲圆的周长与面积〔一〕【知识概述】圆是由曲线围成的平面图形。

在日常生活和学习中我们经常会遇到与圆的周长和面积有关的问题。

圆的周长除以它的直径的商是一个固定不变的数,这个结果被称为“圆周率〞。

圆周率是一个无限不循环的小数,用字母“π〞表示,圆的周长=圆周率x直径,即C=πd或C=2πr。

圆的面积等于圆周率与半径平方的乘积,即S=2r下列图圆的阴影局部是一个扇形,它的面积是一个圆的面积的四分之一,它的周长是圆周长的四分之一再加上两条半径的长。

【例题精学】例1:把4个啤酒瓶扎在一起〔如下图〕捆4圈至少用绳子多少厘米?(接头局部用去15厘米〕思路点拨:用绳子捆4圈的长度就是指周长的4倍。

这个图形的周长可分为两类:线段的长度和弧的长度。

而这四条弧正好可以拼成一个圆,每条线段的长正好是圆的直径的长。

所以绳子捆1圈的长度就是图中一个圆的周长加上4条直径的长度之和。

1、计算下列图中阴影局部的周长。

〔单位:厘米〕2、一个街心花园如下列图的形状,中间正方形的边长是 20 米,四周为半圆形,这个街心花园的周长是多少米?3、在学校200米的跑道中,每条跑道宽1.2米.由于有弯道,为了公平,外道和内道选手的起跑线不在同一地点.如:A点处是小明的起跑线,B是小强的起跑线,AB两点的距离是? 例2:如下列图,从点A到点B沿着大圆走和沿着中,小圆周走的路程相同吗?思路点拨:从点A到点B有两种走法:第一种是大圆的周长的一半;第二种是由A到C的中圆周长的一半与C到B的小圆周长的一半的和。

设小圆的直径为a,中原的直径为b,那么大圆的直径为a+b。

那么第一种走法的路程为C1=πa÷2+πb÷2;第二种走法的路程为C2=πa÷2+πb÷2,所以C1=C2.1、下列图中,从A点到B点沿着大圆周走和沿着小圆周走,路程相同吗?2、AB=50cm,求圆中各圆的周长总和。

3、一个大圆中紧紧的排列着三个半径不同的小圆〔如图〕,并且这四个圆的圆心恰好在同一条直线上。

六年级上册奥数题大全及答案

六年级上册奥数题大全及答案

六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。

后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。

问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。

那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。

把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。

把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。

由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。

问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。

另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。

只要分析清楚这些,就可以解出本题了。

详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。

A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。

第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。

此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。

题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。

两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。

完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。

题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。

分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。

题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。

2021年北师大版六年级数学上册奥数题(附答案).doc

2021年北师大版六年级数学上册奥数题(附答案).doc

北师大版六年级数学上册奥数题1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。

小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。

那么,小明这辆山地车的原价是________元。

【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。

已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。

【分析】方法一:方程。

设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。

方法二:比例。

1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。

两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。

倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。

3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。

4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。

2020年北师大版六年级数学上册奥数题(附答案)

2020年北师大版六年级数学上册奥数题(附答案)

北师大版六年级数学上册奥数题1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。

小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。

那么,小明这辆山地车的原价是________元。

【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。

已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。

【分析】方法一:方程。

设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。

方法二:比例。

1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。

两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。

倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。

3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。

4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。

北师大版最新小学数学六年级上册奥数测试题图文百度文库

北师大版最新小学数学六年级上册奥数测试题图文百度文库

北师大版最新小学数学六年级上册奥数测试题图文百度文库一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.3.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.4.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.5.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)6.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)7.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.8.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.9.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)10.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.11.被11除余7,被7除余5,并且不大于200的所有自然数的和是.12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.13.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.14.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.3.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.4.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.5.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.6.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.7.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.8.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.9.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.10.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:911.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.13.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.14.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.15.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.。

小学六年级上册奥数题及答案

小学六年级上册奥数题及答案

小学六年级上册奥数题及答案【篇一:六年级上册奥数题】b地要植1250棵。

已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。

两块地同时开始同时结束,乙应在开始后第几天从a地转到b 地?2. 有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。

4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。

现打开水龙头往容器中灌水。

3分钟时水面恰好没过长方体的顶面。

再过18分钟水已灌满容器。

已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。

两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。

经过2+1/3小时,a,b两池中注入的水之和恰好是一池。

这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。

小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。

北师大版六年级上册数学同步奥数培优

北师大版六年级上册数学同步奥数培优

第一讲圆的周长与面积(一)【知识概述】圆是由曲线围成的平面图形。

在日常生活和学习中我们经常会遇到与圆的周长和面积有关的问题。

圆的周长除以它的直径的商是一个固定不变的数,这个结果被称为“圆周率”。

圆周率是一个无限不循环的小数,用字母“π”表示,圆的周长=圆周率x直径,即C=πd或C=2πr。

圆的面积等于圆周率与半径平方的乘积,即S=2r 。

下图圆的阴影部分是一个扇形,它的面积是一个圆的面积的四分之一,它的周长是圆周长的四分之一再加上两条半径的长。

【例题精学】例1:把4个啤酒瓶扎在一起(如图所示)捆4圈至少用绳子多少厘米?(接头部分用去15厘米)思路点拨:用绳子捆4圈的长度就是指周长的4倍。

这个图形的周长可分为两类:线段的长度和弧的长度。

而这四条弧正好可以拼成一个圆,每条线段的长正好是圆的直径的长。

所以绳子捆1圈的长度就是图中一个圆的周长加上4条直径的长度之和。

1、计算下图中阴影部分的周长。

(单位:厘米)2、一个街心花园如下图的形状,中间正方形的边长是 20 米,四周为半圆形,这个街心花园的周长是多少米?3、在学校200米的跑道中,每条跑道宽1.2米.由于有弯道,为了公平,外道和内道选手的起跑线不在同一地点.如:A点处是小明的起跑线,B是小强的起跑线,AB两点的距离是?例2:如下图,从点A到点B沿着大圆走和沿着中,小圆周走的路程相同吗?思路点拨:从点A到点B有两种走法:第一种是大圆的周长的一半;第二种是由A到C的中圆周长的一半与C到B的小圆周长的一半的和。

设小圆的直径为a,中原的直径为b,则大圆的直径为a+b。

那么第一种走法的路程为C1=πa÷2+πb÷2;第二种走法的路程为C2=πa÷2+πb÷2,所以C1=C2.1、下图中,从A点到B点沿着大圆周走和沿着小圆周走,路程相同吗?2、已知AB=50cm,求圆中各圆的周长总和。

3、已知一个大圆中紧紧的排列着三个半径不同的小圆(如图),并且这四个圆的圆心恰好在同一条直线上。

2020年小学六年级数学上学期奥数考试试题 含答案

2020年小学六年级数学上学期奥数考试试题 含答案

乡镇(街道)学校 班级 姓名 学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…绝密★启用前2020年小学六年级数学上学期奥数考试试题 含答案题 号 填空题 选择题 判断题 计算题 综合题 应用题 总分得 分考试须知:1、考试时间:100分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

3、请在试卷指定位置作答,在试卷密封线外作答无效,不予评分。

一、填空题(共10小题,每题2分,共计20分)1、在直角三角形中,如果一个锐角是35º,另一个锐角是( )。

2、甲数的2/5是乙数的5/6,乙数是12,甲数是( )。

3、( )÷36=20:( )= 1/4 =( )(填小数) =( )% =( )折4、下图是甲、乙、丙三个人单独完成某项工程所需天数统计图。

请看图填空。

①甲、乙合作这项工程,( )天可以完成。

②先由甲做3天,剩下的工程由丙做还需要( )天完成。

5、按规律填数:315,330,( ),360,375.6、小红把2000元存入银行,存期一年,年利率为2.68%,利息税是5%,那么到期时可得利息( )元。

7、要挖一个长60米,宽40米,深3米的游泳池,共需挖出( )立方米的土。

8、陈老师出版了《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。

陈老师应交税( )元。

9、瓶内装满一瓶水,倒出全部水的1/2,然后再灌入同样多的酒精,又倒出全部溶液的1/3,又用酒精灌满,然后再倒出全部溶液的1/4,再用酒精灌满,那么这时的酒精占全部溶液的______ %。

10、小明和爸爸从家走到学校,小明用了10分钟,爸爸用了8分钟,小明和爸爸的速度比是( )。

二、选择题(共10小题,每题1.5分,共计15分)1、把浓度为20%、30%、40%的三种盐水按2:3:5的比例混合在一起,得到的盐水浓度为( )。

北师大版(2020秋)六年级数学上册奥数题(附答案)

北师大版(2020秋)六年级数学上册奥数题(附答案)

北师大版六年级数学上册奥数题1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。

小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。

那么,小明这辆山地车的原价是________元。

【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。

已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。

【分析】方法一:方程。

设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。

方法二:比例。

1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。

两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。

倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。

3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。

4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。

北师大版2020-2021学年六年级上册经典数学试卷含解析

北师大版2020-2021学年六年级上册经典数学试卷含解析

北师大版2020-2021学年六年级上册经典数学试卷一、填空题1.如图,圆的周长25.12厘米,圆的面积正好和长方形的面积相等,阴影部分的面积是______平方厘米.【答案】37.1【解析】明确阴影部分的面积即圆面积的,是解答此题的关键.根据:r=C÷π÷2,可先求出圆的半径,进而求出圆的面积即是长方形的面积,圆的面积×就是阴影部分的面积.【详解】半径:25.12÷3.14÷2=4(厘米),3.14×42×=37.1(平方厘米).答:阴影部分的面积是37.1平方厘米.故答案为:37.1.2.在一个长10cm,宽6cm的长方形里面画一个最大的圆,它的周长是(______)厘米,面积是(______)平方厘米。

【答案】18.84 28.26【分析】在长方形中画一个最大的圆,圆的直径等于长方形的宽,据此根据圆的周长和面积公式进行计算。

【详解】3.14×6=18.84(厘米)3.14×(6÷2)2=3.14×9=28.26(平方厘米)【点睛】关键是确定圆的直径,圆的周长=πd,圆的面积=πr2。

3.已知A=2×2×5,B=2×3×5,那么A和B两个数的最大公约数是______,最小公倍数是______.【答案】10 1【解析】求最大公约数也就是几个数的公有质因数的连乘积,对于这两个数来说:两个数的公有质因数连乘积就是它们的最大公约数,两个数的公有质因数和它们独有的质因数的连乘积就是它们的最小公倍数,由此解决问题即可.【详解】A=2×2×5,B=2×3×5,所以A和B的最大公约数为2×5=10;A和B的最小公倍数为2×2×3×5=1;故答案为10,1.【点睛】此题主要考查求两个数的最大公约数和最小公倍数的方法:几个数的公有质因数连乘积是这几个数的最大公约数,两个数的公有质因数和它们独有的质因数的连乘积就是它们的最小公倍数.4.79的分数单位是(_____),它里面有(____)个这样的分数单位,再添上(____)个这样的分数单位就是最小的质数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版六年级数学上册奥数题
1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。

小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。

那么,小明这辆山地车的原价是________元。

【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%
2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。

已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。

【分析】方法一:方程。

设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:
故A的浓度为。

方法二:比例。

1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100
克,这时浓度比为7:3.
【分析】比例思想。

两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。

倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。

3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。

4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?
【分析】
每亿人每年消耗资源量为1份。

新生资源量:(份)
即为保证不断发展,地球上最多养活70亿人。

5.有三块草地,面积分别是5,15,25亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供()头牛吃60天。

【分析】
设每头牛每天的吃草量为1份。

第一块草地,5亩原有草量+5亩30天长的草=10×30=300(份),则每亩面积=原有草量+每亩面积30天长的草=300÷5=60(份):第二块草地,15亩原有草量+15亩45天长的草=28×45=1260(份),即每亩面积原有草量+每亩面积45天长的草=1260÷15=84(份).所以每亩面积每天长草量(84-60)÷(45-30)=1.6(份).每亩原有草量=60-30×1.6=12(份).第三块草地面积是25亩,60天新生长的草量为:6×60×25=2400(份).所以第三块草地可供(2400+12×25)÷60=45(头)牛吃60天。

6.有一块草地,每天都有新的草长出。

这块草地可供9头牛吃12天,或可供8头牛吃16天。

开始只有4头牛在这块草地上吃草,从第7天起又增加了若干头牛来吃草,又吃了6天吃完了所有的草。

假设草的生长速度每天都相同,每头牛每天的吃草量也相同,那么从第7天起增加了头牛来吃草
【分析】
设每头牛每天的吃草量为1份。

每天长草:(8×16-9×12)÷(16-12)=5(份)
原有草:108-5×12=48(份)
吃12天需要牛的头数:[48+(5-4)×6] ÷6+5=14(头)
增加牛的头数:14-4=10(头)
7.放满一个水池,如果同时打开1,2号阀门,则12分钟可以完成;
如果同时打开1,3号阀门,则15分钟可以完成;如果单独打开1号阀门,则20分钟可以完成;那么,如果同时打开1,2,3号阀门,分钟可以完成。

【分析】根据题意可知,1,2号阀门的效率之和为,1,3号阀门的效率之和为,1号阀门的效率为,所以1,2,3号阀门的效率之和为,所以,如果同时打开1,2,3号阀门,10分钟可以完成。

8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,在三人合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。

完成这项工程共用______天。

【分析】甲的工作效率是,乙的工作效率是,丙的工作效率是,三人工作3天完成。

,剩下的乙、丙继续工作需要天。

所以一共要用6天。

9.有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。

甲、乙同时开始各搬运一个仓库的货物。

开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。

则丙帮甲小时,帮乙小时。

【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,所以它们完成工作的总时间为小时。

在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。

甲完成的工作量是,所以丙帮甲搬了的货物,丙帮甲做的时间为小时,那么丙帮乙做的时间为小时。

10.某人将他所有的钱的给他的儿子,给他的女儿,剩下的钱则全给他的妻子。

若他的妻子得到元,请问此人原来有多少元?
【分析】(元)。

11.四位小朋友合购一个价值600元的生日礼物送给同学。

第一位小朋友付的钱是其他小朋友付的总数的;第二位小朋友付的钱是其他小朋友付的总数的;第三位小朋友付的钱是其他小朋友付的总数的。

请问第四位小朋友付多少钱?
【分析】(元)
12.实验小学六年级有学生152人.现在要选出男生人数的和女生5人,到国际数学家大会与专家见面.学校按照上述要求选出若干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人?
【分析】(人)
13.某次考试共有9道题,做对1~9题的人数分别占参加考试人数的82%,65%,92%,93%,68%,98%,70%,60%,72%。

如果做对5道或5道以上为及格,那么这次考试的及格率至少()。

【分析】不妨设参加考试的人数为100,那么做错l~9题的人数分别为18人,35人,8人,7人,32人,2人,30人,40人,28人,共做错18+35+8+7+32+2+30+40+28=200(道)。

一人做错5道或5道以上为不及格,,因此。

100人中至多有40人不及格,至少有100 -40=60及格,及格率至少是60%。

14.有5堆苹果,较小的3堆平均有18个苹果,较大的2堆苹果数之差为5个。

,较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个。

最大堆与最小堆平均有22个苹果。

问:每堆各有多少苹果? 【分析】最大堆与最小堆共22×2=44个苹果较大的2堆与较小的2堆共44×2+7-5=90个苹果所以中间的一堆有:(18×3+26×3-90)÷2=21
个苹果较大的2堆有:26×3-21=57
个苹果,最大的一堆有:(57+5)÷2=31
个苹果,次大的2堆有:57-31=26
个苹果较小的2堆有:18×3-21=33
个苹果次小的一堆有:(33+7)÷2=20
个苹果最小的一堆有:20-7=13个苹果
15.小张、小李和小黄三人乘飞机出差,三人携带的行李重量都超过了可免费携带行李的重量,需另付行李托运费,三人其付90元。

而三人行李共重65千克,如果三人的行李只由一人携带,除免费部分外,应另付行李托运费810元。

求每人可免费携带的行李重量。

【分析】设每人可免费携带x千克行李。

如果65千克行李由三人携带,三人可免费携带3x千克行李,三人共付90元托运费,则超重行李每千克付90÷(65 -3x);
如果65千克行李由一人携带,一人可免费携带x千克行李,付810元托运费,则超重行李每千克付810÷(65 -x)。

可列出方程
所以每人可免费携带的行李重量是20千克。

相关文档
最新文档