抖动和眼图分析工具
jitter抖动(相位噪声)的概念及其测量方法(EyeDiagram)
抖动的概念及其测量方法摘要:在数字通信系统,特别是同步系统中,随着系统时钟频率的不断提高,时间抖动成为影响通信质量的关键因素。
本文介绍了时间抖动(jitter)的概念及其分析方法。
关键字:时间抖动、jitter、相位噪声、测量一、引言随着通信系统中的时钟速率迈入GHz级,抖动这个在模拟设计中十分关键的因素,也开始在数字设计领域中日益得到人们的重视。
在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率。
不仅如此,它还会导致通信链路的误码率增大,甚至限制A/D转换器的动态范围。
有资料表明在3GHz 以上的系统中,时间抖动(jitter)会导致码间干扰(ISI),造成传输误码率上升。
在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。
本文向数字设计师们介绍了抖动的基本概念,分析了它对系统性能的影响,并给出了能够将相位抖动降至最低的常用电路技术。
二、时间抖动的概念在理想情况下,一个频率固定的完美的脉冲信号(以1MHz为例)的持续时间应该恰好是1us,每500ns有一个跳变沿。
但不幸的是,这种信号并不存在。
如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。
这种不确定就是抖动。
抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。
在绝大多数文献和规范中,时间抖动(jitter)被定义为高速串行信号边沿到来时刻与理想时刻的偏差,所不同的是某些规范中将这种偏差中缓慢变化的成分称为时间游走(wander),而将变化较快的成分定义为时间抖(jitter)。
图1 时间抖动示意图1.时间抖动的分类抖动有两种主要类型:确定性抖动和随机性抖动。
确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。
随机抖动是指由较难预测的因素导致的时序变化。
例如,能够影响半导体晶体材料迁移率的温度因素,就可能造成载子流的随机变化。
通信原理中眼图的应用
通信原理中眼图的应用什么是眼图眼图是通信原理中用于评估和分析数字信号质量的重要工具。
它通过对数字信号的采样和显示,以一种直观的方式展示信号的稳定性和失真情况。
眼图通常用于分析和判断数字通信系统的性能,并对其中的问题进行诊断和调试。
眼图的生成过程1.信号采样:在生成眼图之前,需要对数字信号进行采样。
采样过程中,根据信号的时钟信号来确定采样时机,通常使用快速采样仪来进行高速、精确的采样。
2.信号显示:采样后的信号会通过一个显示设备进行展示。
在传统的眼图中,信号通常会被划分为许多由采样点组成的窗口,然后通过展示这些窗口来形成眼图。
现代的眼图仪器一般都具备高分辨率的显示屏,可以直接以高质量的图像形式呈现眼图。
3.眼图优化:在生成眼图之后,可能需要对眼图进行一定的优化。
例如,可以通过调整采样时机、增加采样点数等方式来改善眼图的质量。
这样可以更清晰地观察到眼图中的细节,有助于对信号质量进行更准确的评估。
眼图的应用眼图作为一种直观的信号展示方式,在通信原理中具有广泛的应用,以下列举了一些常见的应用场景:1. 信号质量评估眼图可以直观地显示信号的稳定性和失真情况。
通过对眼图的观察可以判断信号是否存在幅度失真、时钟抖动、时序偏移等问题,评估信号的质量是否符合预期要求。
这对于设计和优化数字通信系统至关重要。
2. 噪声分析眼图可以帮助分析信号受到的噪声干扰情况。
通过观察眼图的展开,可以判断信号在传输过程中受到的各种噪声的影响程度,进而进行噪声的分析和统计。
这对于优化传输链路、提高传输性能非常有帮助。
3. 时钟同步评估眼图中的时钟信号是通过采样时机生成的,所以眼图展示的时钟信息非常直观和准确。
通过眼图可以观察时钟信号的稳定性和抖动情况,进而评估时钟同步的精度和可靠性。
对于需要精确时序的通信系统,这是一个非常有用的工具。
4. 相位偏差分析眼图中的时钟信息还可以用于分析信号的相位偏移情况。
通过观察眼图中的相位偏移,可以评估信号传输中的相位稳定性和补偿需求。
信号完整性常用的三种测试方法
信号完整性常用的三种测试方法信号完整性是指在传输过程中信号能够保持原始形态和准确性的程度。
在现代高速通信和数字系统中,信号完整性测试是非常重要的工作,它能够帮助工程师评估信号的稳定性、确定系统的极限速率并发现信号失真的原因。
下面将介绍三种常用的信号完整性测试方法。
一、时域方法时域方法是信号完整性测试中最常见和最直观的方法之一、它通过观察信号在时间轴上的波形变化来评估信号的完整性。
时域方法可以检测和分析许多类型的信号失真,如峰值抖动、时钟漂移、时钟分布、幅度失真等。
时域方法的测试设备通常包括示波器和时域反射仪。
示波器可以显示信号的波形和振幅,通过观察波形的形状和幅度变化来判断信号完整性。
时域反射仪可以测量信号在传输线上的反射程度,从而评估传输线的特性阻抗和匹配度。
二、频域方法频域方法是另一种常用的信号完整性测试方法。
它通过将信号转换为频域表示,分析信号的频谱分布和频率响应来评估信号完整性。
频域方法可以检测和分析信号的频谱泄漏、频谱扩展、频率失真等。
频域方法的测试设备通常包括频谱分析仪和网络分析仪。
频谱分析仪可以显示信号的频谱图和功率谱密度,通过观察频谱的形状和峰值来评估信号完整性。
网络分析仪可以测量信号在不同频率下的响应和传输损耗,从而评估传输线的频率响应和衰减特性。
三、眼图方法眼图方法是一种特殊的信号完整性测试方法,它通过综合时域和频域信息来评估信号的完整性。
眼图是一种二维显示,用于观察信号在传输过程中的失真情况。
眼图可以提供信号的时钟抖动、峰值抖动、眼宽、眼深、眼高等指标。
眼图方法的测试设备通常包括高速数字示波器和信号发生器。
高速数字示波器可以捕捉信号的多个周期,并将其叠加在一起形成眼图。
通过观察眼图的形状和特征,工程师可以评估信号的稳定性和传输质量。
总结起来,时域方法、频域方法和眼图方法是常用的信号完整性测试方法。
它们各自具有独特的优势和适用范围,可以互相协作来全面评估信号的完整性。
在实际应用中,根据具体需求和测试对象的特点,选择合适的测试方法是非常重要的。
Agilent-眼图、抖动、相噪
Agilent——眼图、抖动、相噪随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。
抖动是在高速数据传输线中导致误码的定时噪声。
如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。
新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。
随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。
为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。
低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。
本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。
抖动分析基本上包括比较抖动时钟信号和参考时钟信号。
参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。
在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。
如图1所示,眼图是逻辑脉冲的重叠。
它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。
边沿由‘1’到‘0’转换和‘0’到‘1’转换组成,样点位于眼图的中心。
如果电压(或功率)高于样点,则码被标为逻辑‘1’;如果低于样点,则标为‘0’。
系统时钟决定着各个位的样点水平位置。
图1: 具有各项定义的眼图E1是逻辑‘1’的平均电压或功率电平,E0是逻辑‘0’的平均电压或功率电平。
参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。
Eye Crossing Point: 眼图交点Left Edge: 左沿Right Edge: 右沿Nominal Sampling Point: 标称样点幅度噪声可能会导致逻辑‘1’的电压或功率电平垂直波动,低于样点,导致逻辑‘1’码错误地标为逻辑‘0’码,即误码。
2024版泰克示波器测眼图教程从基础到实践
介绍针对不同类型的噪声所采取的抑制措施,包括滤波、屏蔽、接 地等。
噪声测试与评估
讲解如何在示波器上进行噪声测试,并评估噪声对系统性能的影响。
高速串行通信中的眼图测试挑战
1 2
高速串行通信特点
介绍高速串行通信的特点,如高传输速率、低电 压摆幅等,以及由此带来的测试挑战。
眼图测试难点及解决方案 分析在高速串行通信中进行眼图测试的难点,如 信号衰减、码间干扰等,并给出相应的解决方案。
信号测量基础概念
信号测量涉及的基本概念包括幅度、 频率、相位、波形等。
波形是信号在时域上的表现形式,不 同类型的信号具有不同的波形特征, 如正弦波、方波、脉冲波等。
幅度表示信号的大小,频率表示信号 的周期性变化速度,相位表示信号波 形在时间上的相对位置。
了解这些基础概念对于正确使用示波 器进行信号测量至关重要。
02
采样过程需要保证 足够的采样率和精 度,以捕获信号中 的高频成分和细节。
03
触发信号用于同步 采样过程,确保每 次采样都能捕获到 完整的信号周期。
04
显示过程将采样得 到的信号数据以图 形化方式呈现出来, 形成眼图。
眼图质量评估指标
表示数字信号在时域上的不稳定 性,包括随机抖动和确定性抖动。
表示数字信号在逻辑“0”和逻辑 “1”之间的电平阈值。
3
高速串行通信标准与眼图要求 介绍常见的高速串行通信标准(如PCI Express、 USB3.0等),以及这些标准对眼图的具体要求。
自动化测试脚本编写与应用
自动化测试脚本概念及作 用
介绍自动化测试脚本的概念,以及其在眼图测 试中的应用,如提高测试效率、减少人为误差 等。
自动化测试脚本编写方法
抖动测量的几种方法
抖动测量的几种方法测试抖动常用在测试数据通信IC或测试电信网络中。
抖动是应该呈现的数字信号沿与实际存在沿之间的差。
时钟抖动可导致电和光数据流中的偏差位,引起误码。
测量时钟抖动和数据信号就可揭示误码源。
测量和分析抖动可借助三种仪器:误码率(BER)测试仪,抖动分析仪和示波器(数字示波器和取样示波器)。
选用哪种仪器取决于应用,即电或光、数据通信以及位率。
因为抖动是误码的主要原因,所以,首先需要测量的是BER。
若网络、网络元件、子系统或IC的BER超过可接受的限制,则必须找到误差源。
大多数工程技术人员希望用仪器组合来跟踪抖动问题,先用BER测试仪、然后用抖动分析仪或示波器来隔离误差源。
BER测试仪制造商需要测量其产品的BER,以保证产品符合电信标准。
当需要表征数据通信元件和系统时,BER测试对于测试高速串行数据通信设备也是主要的。
BER测试仪发送一个称之为伪随机位序列(PRBS)的预定义数据流到被测系统或器件。
然后,取样接收数据流中的每一位,并对照所希望的PRBS图形检查输入位。
因此,BER测试仪可以进行严格的BER 测量,有些是抖动分析仪或示波器不可能做到的。
尽管BER测试仪可进行精确的BER测量,但是,对于10-12BER(每1012位为1位误差)精度的网络或器件测试需数小时。
为了把测试时间从数小时缩短为几分钟,BER测试仪采用“BERT sCAN”技术,此技术用统计技术来预测BER。
可以编程BER测试仪在位时间(称之为“单位间隔”或“UI”)的任何点取样输入位。
“澡盆”曲线表示BER是取样位置的函数。
若BER测试仪检测位周期(0.5UI)中心的位,则抖动引起位误差的概率是小的。
若BER测试仪检测位于靠近眼相交点上的位,则将增大获得抖动引起位误差的似然性。
抖动分析仪BER测试仪不能提供有关抖动持性或抖动源的足够信息。
抖动分析仪(往往称之为定时时间分析仪或信号完整性分析仪)可以测量任何时钟信号的抖动,并提供故障诊断抖动的信息。
(整理)LVDS--抖动综述.
码间干扰
码间干扰属于数据信号相关型抖动(Data - Dependent)的一种表现形式,出现在传输介质和/或元件的带宽小于所发送的信号的带宽时。从时间域的角度来看,传输路径的带宽限制会使所发送信号的上升沿的变化速率变慢。对于时钟等周期性信号来说,信号沿速率的变慢会使信号沿变得圆滑,因此有可能对信号造成衰减。而对于数据信号来说,较慢的下降沿速率会影响到实际的1-0和0-1转换的时序。
图1-2.总的抖动直方图
占空比失真
造成占空比失真(Duty Cycle Distortion,DCD)抖动的主要原因有两个。如果发送器的数据信号输入在理论上是理想的,但发送器的阀值偏离了其理想水平,则发送器的输出将出现随数据信号的边沿切换的回转速率变化而变化的DCD。
图1-3中虚线所代表的波形示出了阀值电平被精确地设定为50%、占空比为50%时发送器的理想输出。实线则代表由于阀值电平发生正向偏移而导致的输出波形的失真。阀值电平产生正向偏移时,相应的发送器输出信号的占空比将小于50%。若阀值产生负向偏移时,那么发送器输出信号的占空比将大于50%。
图1-8.背板损耗和串扰SDD21特性的实例
SDD21(使用采用S参数命名转换的差模信号名)
当使用信号调理且存在较高的近端串扰时,可考虑在系统的发送器端使用预加重功能,而不是使用均衡手段,以便在接收器端维持一个更高的SNR。均衡器会提升输入信号中的高频分量,无论该分量是信号还是串扰。另一方面,对信号进行预加重处理也会提高信道中必须克服的NEXT量。良好的电路板布线设计实践可减小系统中的FEXT和NEXT的数量。
眼图的概念
眼图的概念眼图是指在频谱分析中常出现的一种信号特征,通常用来表示信号的带宽与中心频率。
它是通过对信号进行傅里叶变换后,在频域中观察信号的频谱特征得到的。
眼图主要用于对数字通信系统中的时域信号进行分析和评估,以了解信道传输性能和判断系统的可靠性。
眼图的原理是基于信号的采样和重构过程。
当信号经过采样和重新构造后,得到的信号会受到噪声和其他干扰的影响,因此在信号的波形上会出现一定的失真和扭曲。
而眼图可以通过观察信号的波形特征来判断信号的质量和误码率等性能指标。
眼图的基本形状是一串类似于“眼睛”的波形,其中包含了信号的多个周期。
在眼图中,通常可以观察到信号的上下垂直边界和左右水平边界,它们分别代表了信号的幅度和时间轴。
而眼图中的开口宽度和深度则代表了信号的峰-峰值(也即电平差)和噪声信号。
眼图的开口宽度反映了信号的峰-峰值。
如果开口很窄,代表峰-峰值很小,即信号的幅度很小。
而如果开口很宽,代表峰-峰值较大,即信号的幅度较大。
通过对眼图开口宽度的观察,可以判断信号的灵敏度和抗干扰能力。
眼图的深度则反映了信号中的噪声。
如果眼图深度很浅,代表噪声信号很小,即信号的质量很好。
而如果眼图深度很深,代表噪声信号很大,即信号的质量较差。
通过对眼图深度的观察,可以判断信号的信噪比和误码率。
眼图的另一个重要特征是眼图的跳动,即眼图上各个周期的变化。
这种跳动反应了信号在传输过程中的时钟偏移和抖动等问题。
通过对眼图跳动的观察,可以判断信号的时钟同步性和时钟失真程度。
眼图的分析主要通过眼图的偏移、闭合度和对称性等指标进行。
眼图的偏移表示了信号的直流偏移情况,可以判断信号的偏置和直流分量。
眼图的闭合度表示了信号的完整性,可以判断信号的时钟同步性和时延扩大情况。
而眼图的对称性表示了信号的对称性,可以判断信号的相位和频率稳定性。
在实际应用中,眼图常用于数字通信系统的调试和优化。
通过对眼图进行分析,可以发现系统中的时钟同步问题、噪声干扰问题和时域失真问题等,并采取相应的措施进行改进和优化。
电路中eye-概述说明以及解释
电路中eye-概述说明以及解释1.引言1.1 概述概述眼图(Eye diagram)是电路中一种常用的信号分析工具,它可以直观地展示出数字信号的品质和传输效果。
在现代通信系统中,眼图被广泛应用于高速串行数据传输的评估和调试。
通过观察眼图的开口大小、噪声水平和信号失真情况,工程师可以更好地了解信号的质量,并进行相应的优化和改进。
眼图的形状对于判断信号传输的可靠性至关重要。
一个完整的眼图通常由交错的开口组成,类似于人的眼睛。
开口的大小代表了信号的幅度范围,而开口的位置则表示了信号的平衡情况。
当信号失真或受到干扰时,眼图的开口会变小或者变形,这表明数字信号的质量下降。
通过分析眼图的形态特征,工程师可以判断信号传输中存在的问题,并进一步进行故障定位和改进。
在电路设计和调试中,眼图的使用非常广泛,特别是在高速数据传输和时钟恢复等领域。
通过采集信号的波形数据,然后进行采样和重新组合,就可以生成眼图。
通过眼图,工程师可以看到数字信号在不同时间点的变化情况,并对信号的时序和整体稳定性进行分析。
总之,眼图是一种重要的电路分析工具,能够帮助工程师更好地认识和评估信号的质量。
通过对眼图的观察和分析,我们可以识别出信号传输中存在的问题,并采取适当的措施来改进和优化电路的性能。
接下来,本文将重点介绍电路中眼图的关键要点,并探讨其在实际应用中的意义和挑战。
1.2 文章结构文章结构部分的内容是对整篇文章的结构进行简要介绍和概述。
它可以包括以下信息:文章的整体篇幅和章节分布:介绍文章的总字数和章节划分,使读者能够了解文章的大致结构和篇幅。
各章节内容的概述:对文章中各个章节的主要内容进行简要介绍,让读者对整篇文章的内容有一个整体的概念。
章节之间的逻辑关系:说明各章节之间的逻辑联系和顺序,以便读者能够理解文章的思路和脉络。
注重的重点和亮点:指出文章中的重点部分和亮点,以激发读者的兴趣和引导读者关注重要的内容。
通过文章结构的介绍,读者可以迅速了解整篇文章的脉络和主要内容,从而更好地理解和阅读文章。
眼图测量分析
眼圖之量測分析引言眼圖是一項時間分析工具,讓使用者能夠清楚看見時間和強度的誤差。
在真實生活中,諸如抖動之類的誤差非常難以量化,因為經常改變,而且非常小。
因此,眼圖非常利於尋找最大抖動以及電壓強度的誤差,如圖一所示。
圖一、眼圖檢視的抖動和電壓雜訊示意圖誤差增加時,眼圖中心的白色空間就會縮小。
那個空間由兩項特性所定義:眼寬(Eye Width)和眼高(Eye Height)。
圖二中白色空間的寬度就稱為眼寬。
因此,眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼寬就是用來度量在任何指定的時間期間內、資料線穩定的時間長度的良好工具。
這樣可以了解可允許的保存時間和建立時間有多少。
最後完成的眼圖中的白色空間的高度就稱為眼高。
如果眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼高可以指出接收器的VIH和VIL必須位於何處,才能正確地對資料取樣。
數位訊號轉換的品質越好,眼圖中的開放白色空間越大。
換言之,眼寬和眼高應該盡可能地大。
圖二、眼圖的高度及寬度示意圖實驗原理其形狀似人的眼睛,因此被稱爲眼圖。
而檢視數位傳輸器的輸出三個時間段落,即可建構出眼圖。
圖三中的眼圖是將所有可能的0與1的組合疊在一條線段上,而完成建構。
圖三、數位訊號對應之眼圖在數位系統中,時間是最重要的因素之一。
數位通訊的可靠性和準確性都是根據其時間功能的品質而定。
在真實世界的數位通訊系統中,有許多時間上的誤差,其中最重要的兩個是抖動(Jitter)和飄移(Drift)。
分別以抖動(Jitter)及飄移(Drift)敘述之:一、抖動(Jitter)抖動(Jitter)是指與事件的理想時間的誤差,通常是從參考訊號的過零點(Zero-Crossing)進行測量。
抖動通常歸因於串音(Cross-Talk)、同時切換輸出,以及其它週期性發生的干擾訊號。
由於抖動會隨著時間而變化,如圖四所示,因此對抖動的測量及量化有多種進行方式,從目測幾秒鐘內的抖動範圍,到以數據進行的測量(例如根據長時間的標準誤差)。
抖动和眼图分析工具
抖动和眼图分析工具DPOJET主要特点和优点- 时钟和数据信号的抖动和定时分析- 实时眼图(RT-Eye TM )分析*1- TekWizard TM 界面,单键操作和引 导性抖动摘要- 完善的标准支持库,全面执行通过/失败极限和模板测试; 外加用户极限和模板文件,支持自定义测试配置和新标准或开发中的标准- 可以选择抖动模型,准确分解抖动和估算TJ(BER)*2,支持流行标准;光纤通道或PCI-Express Delta-Delta (Dual-Dirac)和卷积结果- 9种曲线类型,查看和分析抖动:眼图, CDF浴盆, 频谱, 直方图, 趋势, 数据, 相噪和转函- 可编程软件时钟恢复,包括软件PLL *3- 用户可以选择黄金PLL,支持流行标准- 可以选择高通和低通测量滤波器- 可以选择高和低极限测量范围测试- 完善的统计登录、报告和远程自动控制- 捕获和保存最坏情况信号,进行详细分析应用检定高速串行总线和并行总线设计的性能- 检定时钟和数据抖动和信号完整性- 检定PLL 动态性能- 检定扩频时钟电路的调制性能- 检定抖动生成、转函和容限- 对PCI Express、Serial ATA、SAS、光纤通道、DisplayPort、DDR2、DDR3、FBD 及其它电气和光学系统执行物理层测试*1已获专利USPTO #6,836,738,*2已获专利USPTO #6,832,172, #6,853,933, #7,254,168,*3已获专利USPTO #6,812,688.实时抖动和眼图分析DPOJET 为实时示波器提供了优秀的眼图、抖动和定时分析软件。
DPOJET在泰克DPO7000、DPO70000和DSA70000系列示波器中运行,为工程师提供了实时仪器中最高的灵敏度和精度。
通过采用完善的抖动和眼图分析及分解算法,DPOJET在当前高速串行、数字和通信系统设计中简化了发现信号完整性问题和抖动及相关来源的工作。
眼图的名词解释
眼图的名词解释眼图(Eye diagram)是一种用于电信领域信号质量评估的图形分析工具。
它利用实际信号的采样数据绘制而成,通常呈现为上方为信号波形,下方为相关的信号参数。
眼图通过将连续波形的多个周期叠加在一起,形成多个瞬态过程的重叠,从而提供了信号的稳态和瞬态特征的直观展示。
它能够有效地反映信号的时域和频域特征,以及信号的抗干扰能力、传输质量和时钟恢复性能。
眼图的形状和特征对于信号的质量评估至关重要。
通过观察眼图,我们可以判断信号的完整性和稳定性。
一个清晰、稳定的眼图表示信号传输良好,存在较高的抗噪声和干扰能力。
相反,如果眼图模糊或变形,可能意味着信号存在时钟偏移、抖动、畸变或其他噪声问题。
眼图常用于高速数字通信系统的设计、调试和故障排除中。
它可以帮助工程师确定信号失真的原因,并调整系统参数以提高传输质量。
通过观察眼图,工程师可以识别出信号的主要问题,例如噪声、时钟偏移、串扰、 ISI(Inter-Symbol Interference,符号间干扰)等。
在信号调试中,工程师通常会根据眼图上的特征,对发送和接收端的设备进行相应的调整和优化。
眼图在不同应用领域具有广泛的应用。
在电信领域,眼图可以用于评估数字通信系统的性能,例如以太网、光纤通信、无线通信等。
在光学领域,眼图可以帮助工程师分析光信号的传输质量,以便改善光通信系统的性能。
在高频电路设计中,眼图可以用于评估高速信号的时钟恢复和数据传输能力。
综上所述,眼图是一种用于信号质量评估的重要工具,具有直观、全面的特点。
通过观察眼图,我们可以深入了解信号的稳态和瞬态特征,从而改进通信系统的性能。
眼图的应用范围广泛,对于电信、光学和电路设计等领域都具有重要意义。
随着通信技术的发展,眼图将继续发挥其重要的作用,帮助我们理解和优化信号传输的质量和性能。
高速数字信号的眼图和抖动测量技术(基于Keysight示波器测量)
20
码间干扰ISI
由于链路的有限带宽,抑制了信号中高频成分的通过
• 驱动器 Driver • 对比器Comparator • PCB线路与电缆的散射(衰减、损耗、阻抗不连续性导致的反射) 对经常切换的“1,0,1,0,…” 的高频信号,衰减比连续的“1,1,1,1,0,0,0,0,…” 的低
频信号要来得厉害。所以长的连续不变码到达更高的电平,在跳变时需要更多的 时间才能到达门限电平,导致信号抖动。因为这个抖动的幅度与码型相关,所以 又称码型相关抖动。
定义: 信号的某特定时刻相对于其理想时间位置上的短期偏离
参考: Bell Communications Research, Inc (Bellcore), “Synchrouous Optical Network (SONET) Transport Systems: Common Generic Criteria, TR-253-CORE”, Issue 2, Rev No. 1, December 1997
Total Jitter (Tj)总体抖动
Random Jitter (Rj) 随机抖动
Deterministic Jitter (Dj) 确定性抖动
Periodic Jitter (Pj) 周期性抖动 Data-Dependent Jitter(DDJ)数据相关抖动
Inter-Symbol Interference (ISI)码间干扰 Duty Cycle Distortion (DCD)占空比失真
+
-
JT(t,W, s) dt
t
由于右边信号跳变所造成的误码
由于左边信号跳变所造成的误码
TBER (t,W, s) = LBER (t,W, s) + RBER (t,W, s)
眼图和抖动
数字高清信号具有很高的数据率,为保证高清系统的建设安全,从系统设计到施工选材都要进行严格的测试和测量。
文章介绍了增强性测试、电缆长度增强性测试、SDI 校验场和CRC 误码测试,强调了利用眼图和抖动显示来帮助排查故障的重要性。
SDI 校验场信号 眼图 解调器法向高清晰度电视(HD )过渡可以是一个平稳的过程,当我们一开始对系统设备进行设计时,就应当严格按照正确的工程实践来进行。
对于数字高清信号,它具有很高的数据率,我们应当正确选用合适的电缆类型,这一点十分重要,同时还要确保施工质量。
在安装电缆的过程中应当避免对电缆施加外来的应力,例如扭转、弯曲等不正确的操作,这样就可以保证HD 信号能够很顺利地从A 点传送到B 点。
在施工过程中我们还要做一些简单的测试和测量,以保证每一传输链路段都具有良好的性能。
一 增强性测试在模拟传输系统中,信号的劣化是逐渐衰变的,但数字传输系统却有所不同,在信号崩溃之前它可以实现无故障工作。
到目前为止,还没有一种在线测试(服务中测试)方法可以测量传输系统的余量。
为了评估传输系统的运行状况,需要进行离线(中断服务)增强性测试。
在增强性测试中,可以改变数字信号的一项或多项参数直至出现传输失效。
导致信号传输失试时,我们可以按照有关串行数字视频标准(SMPTE 259M 或SMPTE 292M )来进行,最直观的测试方法就是增加电缆的长度直至错误发生。
其他测试方法有:改变信号的幅度或上升时间,或者在被测信号中插入噪声和(或)抖动等。
在这些测试方法中,每一种测试都可以用来评估接收机性能的一项或多项这种测试方法与SDI 校验场信号(该信号我们将在后文中予以介绍)结合起来,将是最有效的增强性测试,因为它可以反映系统的真实运行状况。
另一方面,我们在对接收机进行增强性测试时,如果所采用的测试方法只是检查接收机处理幅度变化的能力和插入抖动后的特性,虽然这种测试方法对于评估和验收设备是有用的,但是对于查看系统的运行状况却没有太大的意义(测量发送设备的信号幅度以及在系统中的各个部位进行抖动测量对于运行测试是重要的,但却不是增强性测试)。
DPO的优势
带宽 20 GHz 16 GHz 12.5 GHz 8 GHz 6 GHz 4 GHz 20 GHz 16 GHz 12.5 GHz 8 GHz 6 GHz 4 GHz 3.5 GHz 2.5 GHz 1 GHz 500 MHz 1 GHz 500 MHz 350 MHz 350 MHz 500 MHz 500 MHz 400 MHz 300 MHz 300 MHz 200 MHz 100 MHz 100 MHz
泰克数字荧光示波器(DPO)自成一派,因为它是一类独一无二的示波器。作为一类示波器,DPO 采用连续 波形并行处理技术,实时捕获、显示、存储和分析复杂的信号。它使用信号信息的三个维度,即幅度、时 间和幅度在时间上的分布,得到一个辉度等级显示画面。DPO 允许查看信号细节后面的细节。波形中可能 包含每秒发生一次的事件及每纳秒发生一次的事件。只有 DPO 能够向您实时显示差异。通过 DPO,您可 以一目了然地查看异常信号,迅速估算抖动行为,确定幅度变化在哪儿影响信号,找到那些一次性瞬态事 件。
信息丰富的显示画面 多年来,数字示波器一直执行模拟标准。模拟实时(ART)示波器提供了信息丰富的显示画面(右上图)。数字存储示 波器以单调的两维方式提供了显示画面(右下图)。DPO (左上图)在三维数据库中存储波形数据点,提供模拟式实 时显示画面。DPO 最终突破了障碍,既提供了信息丰富的模拟式显示画面,又实现了完善的数字示波器性能。
DPO 帮助您从一开始就做出正确的调试和分析结论。想象一下,您可以在几小时内、而不是几天内完成调 度工作!
DPX® 采集技术在更少的时间内捕获更多的信号 那么,DPO 前所未有的信号查看能力来自哪儿呢?所有这一切首先始于 DPX® 采集技术,这是一种新型并 行处理架构,提供了每秒高达 300,000 个波形(wfms/s)的连续波形捕获速率,而普通 DSO 的捕获速率约为 8000 wfms/s。事实上,在发生异常事件时,DPO 采集到波形的可能性要高得多,它以最高的概率来发现 数字系统中常见的问题,包括欠幅脉冲、毛刺、时序问题等等。
matlab中的eyediagram语法
一、简介eyediagram是Matlab中用来绘制眼图的函数。
眼图是用来观察数字信号在接收端的信号质量以及其中包含的噪声和失真情况的重要工具。
眼图通过将数字信号分成若干窗口进行显示,可以直观地观察到信号的抖动和时钟偏移情况,对于分析和诊断信号的传输质量非常有帮助。
二、语法在Matlab中使用eyediagram函数可以按照以下语法进行调用:eyediagram(x,n)其中,x代表输入的数字信号序列,n代表每个窗口中包含的采样点数。
三、参数说明在使用eyediagram函数时,可以根据实际需求调整参数以获得最佳的眼图效果。
1. x:输入的数字信号序列,可以是一维数组或矩阵。
对于多通道的数字信号,可以将各通道的信号分别传入eyediagram函数进行绘制。
2. n:每个窗口中包含的采样点数。
这个参数决定了眼图中水平方向的分辨率,可以根据信号的速率和时钟频率进行调整。
四、示例下面是一个使用eyediagram函数绘制眼图的简单示例:```matlab% 定义输入信号fs = 1000; % 采样频率t = 0:1/fs:1-1/fs; % 时间序列x = cos(2*pi*100*t) + 0.5*sin(2*pi*200*t) + 0.2*randn(size(t));% 绘制眼图eyediagram(x, 64); % 显示64个采样点```五、注意事项在使用eyediagram函数时,需要注意以下几点:1. 确保输入的数字信号序列长度足够长,以便获得准确的眼图显示。
2. 根据实际情况调整每个窗口中的采样点数,以获得清晰的眼图效果。
3. 结合其他工具和方法,对眼图结果进行更深入的分析和诊断,以获取更多有关数字信号传输质量的信息。
六、总结eyediagram函数是Matlab中用于绘制眼图的重要工具,通过对数字信号进行分窗显示,提供直观的信号质量分析方法。
在工程实践中,眼图是分析和诊断数字通信系统的重要手段,通过对信号抖动、时钟偏移等现象的观察,可以帮助工程师及时发现和解决问题,提高系统的性能和稳定性。
高速数字信号的眼图和抖动测量技术(基于Keysight示波器测量)
深圳市飞尔沃科技©
V 1.0
9
眼图模板(Mask)测试
•
• • • • •
模板测试是一种优化的制造级测试 (Pass / Fail);
大多数情况下,模板测试能代替各种眼图指标的测试; 大部分标准都定义了为容易进行一致性测量的模板; 模板测试比眼图的各种指标测量更容易,更快捷; 模板定义的区域是禁止信号进入的一个区域,有信号进入,说明信号不满 足这种模板要求,即 Fail。 模板测试功能:
由于阻抗不匹配,导致信号反射
• 反射的信号叠加在原来的信号上,导致幅度增加 • 最终使转换电平所耗费的时间更长,从而产生抖动
深圳市飞尔沃科技©
V 1.0
21
总体抖动TJ
基于“双狄拉克模型”,参考应用指南5989-3206EN
• /litweb/pdf/5989-3206EN.pdf
20
码间干扰ISI
由于链路的有限带宽,抑制了信号中高频成分的通过
• 驱动器 Driver • 对比器Comparator • PCB线路与电缆的散射(衰减、损耗、阻抗不连续性导致的反射) 对经常切换的“1,0,1,0,…” 的高频信号,衰减比连续的“1,1,1,1,0,0,0,0,…” 的低
频信号要来得厉害。所以长的连续不变码到达更高的电平,在跳变时需要更多的 时间才能到达门限电平,导致信号抖动。因为这个抖动的幅度与码型相关,所以 又称码型相关抖动。
JT(t,W, s)
将右边信号跳变误当为 左边的而导致误码
JT(t - UI,W, s)
Jitter pdf shifted 1 UI 将左边信号跳变误当为 右边的而导致误码
(仅供参考)抖动和眼图的视觉分析
抖动和眼图的视觉化分析抖动为实际数据与其理想位置的时间偏差TIE 为信号相对于标准时钟或者标准信号的定时误差TIE 在高速数字系统中即为抖动…0.0ns0.990ns 2.000ns 2.980ns 4.000nsP2P3P4P1TIE0.000ns-0.010ns0.000ns-0.020ns眼图是怎么形成的?Random Jitter(随机抖动)•随机抖动符合高斯型分布•直方图(估计) ↔ pdf(数学模型)•抖动峰峰值=无穷大…无界!1-sigma or RMS 7-sigma•内部热能现象•Flicker Noise, Shot Noise •热能的原子与分子振动•分子的解体•外部的宇宙射线Deterministic Jitter(确定性抖动)•确定性抖动是非高斯分布并且有界Peak-to-PeakPeriodic Jitter(周期性抖动)•TIE 随时间的变化是重复的、周期性的•Periodic jitter 和相位调制(PM)是等效的Peak-to-Peak•系统时钟(抖动频率在MHz 量级)•开关电源(抖动频率在KHz 量级)Duty Cycle distortion(占空比失真)•上升时间和下降时间不对称•或者测试时参考电平选择不当0.0v-0.1vInter-Symbol Interference(码间干扰抖动)•DDJ 或PDJ –数据相关性抖动或码型相关性抖动,和ISI的术语是等价的.•码型是如何影响随后的比特位的?◦由于传输链路的效应、反射等换个角度看抖动,时域看看我们有了什么视角?抖动视觉化–时间趋势图▪直方图告诉了我们分布,但是只有统计特性,缺少了时间信息▪时间趋势图可以直观告诉我们波形里是否有特定频率的调制▪下图为5个周期SSC @ 30khz抖动视觉化Gaussian Random Noise Sinusoidal Jitter抖动视觉化–频谱图▪从频域上观测抖动▪抖动中决定性的频率成分会在谱线上明显超出噪底哪个眼图好?哪个直方图好?视觉化眼图和抖动的问题?浴盆曲线误码率是关键vs. UI 张开程度•For a given position in the time there’s a given probability of error –“BER ”, Bit Error Ratio•For a given position in the time there’s a given probability of signal crossing –PDF , probability density function1 UIP r o b a b i l i t y o f ‘h i t ’P r o b a b i l i t y o f E r r o r –B E R基于示波器分析的浴盆曲线Rj δδ/Dj δδ与Tj @ BERAssume bi-modal distribution (dual-Dirac), measure Tj at two BER Fit curve to points, slope is Rj, Intercept is DjMeasuredTj @ 10-7MeasuredTj @ 10-4½Dj δδ½xRj δδEstimatedTj @ 10-12x≈7.4σx≈10.4σx≈14.1σ双狄拉克模型Conditions: only where Gaussian.抖动类型分析•抖动分离为误码产生的根本原因提供了更精确的定位和分析方法•抖动分析方法,参照T11 MJSQ ,已经被工业界广泛接受Constituent Components of Jitter= Unbounded= Bounded Total Jitter(TJ)Duty-Cycle Jitter (DCD)Data Dependent Jitter (DDJ)Periodic Jitter(PJ)Deterministic Jitter (DJ)Random Jitter(RJ)Jitter Visualization –Bathtub Plot▪Shows the Eye Opening at a Specified BER Level▪Note the eye closure of System I vs. System II due to the RJ-RJ is unbounded so the closure increases as BER level increases▪System I has .053UI of RJ with no PJ▪System II has .018UI of RJ and .14UI of PJ @ 5 and 10MhzSystem I System ISystem II System IITektronix -Innovators of Jitter Analysis •1998First Real-Time Scope Based Jitter Analysis Software•2002 Invented SW Based PLL Clock Recovery and the Spectral Approach for Jitter Separation•2004–Invented RT Eye rendering on a Real Time Scope•2004-First vendor to support both modeled (Dual-Dirac) and measured (Spectral) jitter methods •2005-Invented measurements with Jitter and Noise reconciliation•2011-First scope vendor with BUJ support•2015–RT Noise Analysis and Sampling BER and PDF Mask Testing抖动和眼图的视觉化眼图怎么切割的?时钟决定!TIE 抖动需要参考时钟•参考时钟提取的过程就是时钟恢复•参考时钟有几种确定的方式:◦Constant Clock with Minimum Mean Squared ErrorThis is the mathematically “ideal” clockBut, only applicable when post-processing a finite-length waveformBest for showing very-low-frequency effectsAlso shows very-low-frequency effects of scope’s timebase◦Phase Locked Loop (e.g. Golden PLL)Tracks low-frequency jitter (e.g. clock drift)Models “real world” clock recovery circuits very well◦Explicit ClockThe clock is not recovered, but is directly probed◦Explicit Clock (Subrate)The clock is directly probed, but must be multiplied up by some integral factorImportance of Clock Recovery•From spec, “The jitter measurement device shall comply with the JTF”.•How do I verify JTF?◦JTF is difference between input clock (ref) and input clock(unfiltered)◦Use 1100b or 0011b pattern (proper 50% transition density)◦Check 1) LF attenuation, 2) -3 dB corner frequency, and 3) slope23JTF vs PLL Loop Bandwidth•Configuring the correct PLL settings is key to correctmeasurements•Most standards have a reference/defined CR setup◦For example, USB 3.0 uses a Type II with JTF of 4.9Mhz•Type I PLL◦Type I PLL has 20dB of roll off per decade◦JTF and PLL Loop Bandwidth are Equal•Type 2 PLL◦Type II PLL has 40dB of roll off per decade◦JTF and PLL Loop Bandwidth are not Equal▪For example, USB 3.0 uses a Type 2 PLL with a JTF of 4.9Mhz.The corresponding loop bandwidth is 10.126 Mhz▪Setting the Loop Bandwidth as opposed to JTF will lead to24PLL Loop Bandwidth vs. Jitter Transfer Function(JTF)JTF Filtering Effects based on different PLL bandwidthsf3dB= 30 kHz f3dB= 300 kHz f3dB= 3 MHzJitter for Busy People Hints, Tips and Common ErrorsUsing the Jitter Analysis Tools•Issues manifested in different layers of theprotocol stack◦Crosstalk, jitter, reflections, skew◦Disparity, encoding or CRC errors•Where do I start debugging?•Jitter and Eye Diagram Tools◦Oscilloscope-based for quick results▪Fast jitter measurements with▫‘One Button’ Jitter Wizard▪Compare timing, jitter, eye, amplitude measurements▪User-definable clock recovery, filters, pass/fail limits, andreference levelsMore Hints for Successful Jitter Analysis•Clock Recovery has a great deal of influence on jitter results. Think about what you’re trying to accomplish.◦Constant-Clock is the most “unbiased”Often best if you’re trying to see very-low-frequency effectsBut it can also show wander in the scope’s timebase◦PLL recovery can model what a real data receiver will seeIt can track and remove low-frequency effects, allowing you to “see through” to the jitter that really contributes to eye closur e ◦Explicit-Clock is appropriate if your design uses a forwarded clockMake sure your probes are deskewedHints for looking at Spread-Spectrum Clock•If you don’t want to see the SSC effects, use TIE and PLL clock recovery with a bandwidth of at least 1 MHz. A Type-II (2nd-order) PLL will track out the SSC more effectively than a Type-I PLL.•If you do want to observe the SSC profile:◦Use a Period measurement and turn on a 3rd-order low-pass filter(in DPOJET) with abandwidth of 200 kHzBecause Period trends accentuate high frequency noise, the low-frequency SSC trend will be obscured if you don’t use a filter You can’t use a Frequency measurement directly. The combination of filtering and the reciprocal operation (Freq = 1/Per) cau se distortion in the resulting waveshape. (This is a mathematical fact, not a DPOJET defect.)◦If you use a TIE measurement, you’ll see modulation that looks like a sine wave. This is normal. It’s because TIE measures phase modulation, which is the integral of frequency. It turns out that the integral of a triangle wave looks very much like a sine wave.误码率与噪声分析Anatomy of a Serial Data LinkComplete LinkReceiverChannel+-+-+-+-+-+-+-+-E q u a l i z e rP r e -E m p h a s i sTransmitterAspirational goal: 0 errorsPractical Goal: Bit Error Rate < Target BER•Since BER is the ultimate goal, why not measure it directly?Serial Data Link Integrity = Bit Error Rate•Bit Error Ratio Testers (BERTs) are the tools for measuring BER directly •Why not use ONLY BERTs for Serial Data Link Analysis?◦Difficult to model/emulate equalizer◦Measurements could take a very long time◦Instruments are very expensive and not all that flexible◦Does not analyze the root causes of the impairments of the links•Alternative approach: use a scope and advanced analysis tools ◦Easily move from Compliance to Debug◦Better equipped to identify root causes of eye closure◦Equalizer can easily be modeled◦More cost effective◦Faster throughputWhy Measure Jitter and Noise?▪Link Model: Transmitter + Channel + Receiver▪Transmitter generates a stream of symbols▪Receiver uses a slicer to make a decision on the transmitted symbol▪The Bit Decision is made at a certain time (t) of the symbol interval and a comparison of the sliced data to a threshold (v) is performed ▪Jitter impairs the time slicing position▪Noise impairs the decision threshold?Jitter combined with Noise Analysis is a better predictor of BER performance!A Quick Look at Jitter and Noise Duality•Jitter analysis evaluates a waveform in the horizontal dimension based on when the waveform crosses a horizontal reference line.•Jitter decomposition is based on spectral analysis of Time Interval Error vs. time◦Individual jitter componentscan be separated (i.e.PJ, RJ, DDJ, etc.)◦TJ can then be estimated at atarget BER level ▪Noise evaluates along a vertical dimension on the basis ofcrossings of a vertical referenceline at some percentage of the unit interval (usually 50%).▪Noise decomposition is based on spectral analysis of voltage error vs. time–Individual noise components canbe separated (i.e. PN,RN, DDN, etc.)–TN can then be estimated at atarget BER level抖动和噪声的解析•Jitter and Noise Decomposition provide deep insight into BERFull Jitter Analysis vs. Mask Testing•Jitter separation analysis is able to extrapolate total jitter or eye closure at various Bit Error Rates at a specific voltage threshold but it doesn’t reveal the statistical eye closure at any other voltage.•Conventional mask testing considers both time and voltage , but cannot extrapolate eye closure at low BER.Can we combine the best of both?41Statistical Jitter + Noise Analysis•By jointly analyzing Jitter and Noise, behavior at all points in the eye can be extrapolated at low BER•The methodology is analogous to current jitter analysis, but is performed across both dimensions of the eye◦Jitter and noise are separated into components (Random, Periodic, Data-Dependent,…)◦The components are reassembled into a model that allows accurate extrapolation.42Timing-Induced Jitter•Since jitter is defined as a shift in an edge’s time relative to its expected position, it is easy to think of jitter as being caused by horizontal (chronological) displacement.•Note that the displaced edge (green) has not moved vertically in this example.43Noise-Induced Jitter•Consider a burst of voltage noise (right) that displaces a waveform vertically.◦In this case, the displaced edge (green) has not moved horizontally.•The jitter as measured at the chosen reference voltage is identical in these cases!◦So, why should we care?44Noise-to-Jitter (AM-to-PM) Conversion•Since waveform transitions are never instantaneous, the slope (slew rate) of the edge acts as a gain constant that controls how effectively noise is converted to “observed jitter”.•We can think of RJ as being composed of two components.◦Horizontally induced: RJ(h)◦Vertically induced: RJ(v)•Since these two components are uncorrelated with each other, they add in the RSS sense:RJ=RJ(h)2+RJ(v)2•Similarly, PJ can be decomposed into PJ(h) and PJ(v) based on root cause•We measure noise at a reference point in the bit interval (usually 50%)•If slew rate isn’t zero, jitter (horizontal displacement) causes observed noise•So as with RJ, RN can be decomposed into components:◦Horizontally induced: RN(h)◦Vertically induced: RN(v)•Similarly, PN can be decomposed into PN(h) and PN(v) based on root causeNoise to Jitter and Jitter to Noise ConversionConsider: an “ideal” edge in a patternactually has two impairments:◦Jitter(h) (see the blue trace)INTROD UCTION –and Noise(note that both of Jitter and Noise result in jitter on edge)The Combined response (bottomright) includes the jittercaused by noiseNon-impaired bit edgeWe can separate the noisecontribution of jitter for diagnosticpurposes by breaking RJ intoRJ(v) and RJ(h)DPOJET and 80SJNB are the only tool that will show you this separation, and thus give youan important troubleshooting hint: e.g. is it crosstalk causing trouble, or the clocks?48Theory: Construction of the BER Eye •Consider a very simple pattern: 7 bit repeating•Overlay multiple segments of the 7-bit pattern. Each one has noise and jitter, so although the bit pattern is clear, they follow many slightly different paths:•Average many pattern repeats together. Everything that is uncorrelated with the pattern averages out. What remains is called the ‘correlated waveform’.◦This waveform fully characterizes DDJ, DCD, DDN, ISI –all data dependent effects•The correlated waveform can be snipped into individual bits and overlaid to form an eye diagram, using the recovered clock as the alignment reference. This forms the ‘correlated eye’:•Spectral jitter separation is used to find PDFs of the random and periodic jitter.•The RJ and PJ PDFs are convolved to find the uncorrelated jitter PDF (red)• A similar analysis of the noise yields the uncorrelated noise PDF (blue)◦Care must be taken to properly account for AM-to-PM and PM-to-AM conversion in these steps; otherwise some noise or jitter would be ‘double-counted’.•Two-dimensional convolution is used to create a joint PDF of uncorrelated jitter + noise. (We can call this the ‘jitter/noise set’)•The jitter/noise set is convolved (two-dimensionally) with the correlated eye for the ‘1’ bits to get the overall(correlated + uncorrelated) PDF for ‘1’ bits•The ‘1’ bit PDF is integrated vertically (from bottom to top) to get the ‘1’ bit CDF (Cumulative Distribution Function)◦In this color-graded view, each color represents a particular BER level•A similar treatment for ‘0’ bits yields the ‘0’ bit CDF54Theory: Construction of the BER Eye –Conclusion•The ‘1’ bit and ‘0’ bit CDFs are added to get the overall “BER Eye”◦ A particular BER contour can be found in the 3D version of this plot by slicing it horizontally, or by extracting a specific color on either version◦Since this ‘eye’ looks rather unconventional, DPOJET extracts the3D ViewColor-Graded View。
信号完整性 常用的三种测试方法
信号完整性常用的三种测试方法信号完整性测试的手段有很多,主要的一些手段有波形测试、眼图测试、抖动测试等,目前应用比较广泛的信号完整性测试手段应该是波形测试,即使用示波器测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
信号完整性的测试手段主要可以分为三大类,下面对这些手段进行一些说明。
1. 抖动测试抖动测试现在越来越受到重视,因为专用的抖动测试仪器,比如TIA(时间间隔分析仪)、SIA3000,价格非常昂贵,使用得比较少。
使用得最多是示波器加上软件处理,如TEK的TDSJIT3软件。
通过软件处理,分离出各个分量,比如RJ和DJ,以及DJ中的各个分量。
对于这种测试,选择的示波器,长存储和高速采样是必要条件,比如2M以上的存储器,20GSa/s的采样速率。
不过目前抖动测试,各个公司的解决方案得到结果还有相当差异,还没有哪个是权威或者行业标准。
2. 波形测试首先是要求主机和探头一起组成的带宽要足够。
基本上测试系统的带宽是测试信号带宽的3倍以上就可以了。
实际使用中,有一些工程师随便找一些探头就去测试,甚至是A公司的探头插到B公司的示波器去,这种测试很难得到准确的结果。
波形测试是信号完整性测试中最常用的手段,一般是使用示波器进行,主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
由于示波器是极为通用的仪器,几乎所有的硬件工程师都会使用,但并不表示大家都使用得好。
波形测试也要遵循一些要求,才能够得到准确的信号。
其次要注重细节。
比如测试点通常选择放在接收器件的管脚,如果条件限制放不到上面去的,比如BGA封装的器件,可以放到最靠近管脚的PCB走线上或者过孔上面。
距离接收器件管脚过远,因为信号反射,可能会导致测试结果和实际信号差异比较大;探头的地线尽量选择短地线等。
最后,需要注意一下匹配。
高速串行互连中的抖动分析
高速串行互连中的抖动分析高速串行互连中的抖动分析随着科技的不断发展和需求的不断增长,高速串行互连已经成为现代电子系统中一种常见的数据传输方式。
然而,由于信号在互连线路中传输过程中的各种不确定因素,如电磁干扰和信号传输延迟等,高速串行互连中常常会出现抖动现象。
本文将对高速串行互连中的抖动问题进行详细分析与讨论。
首先,我们来了解一下什么是抖动。
抖动是指在信号传输过程中由于各种因素引起的信号波形发生的不稳定性,表现为信号的时序误差。
这种时序误差可能导致数据传输错误或者信号失真,进而影响整个系统的性能。
因此,对于高速串行互连中的抖动进行准确的分析非常重要。
高速串行互连中的抖动主要包括时钟抖动和数据抖动。
时钟抖动是指时钟信号在互连线路中由于时钟源的不稳定性或者传输线路的干扰而导致的时钟相位变化。
时钟抖动可能造成数据的抖动,甚至导致数据误判。
而数据抖动则是指由于信号传输线路的传输延迟和衰减等因素引起的数据波形的不稳定性。
数据抖动可能导致数据误码率的增加,从而影响系统的可靠性。
为了对高速串行互连中的抖动进行有效分析,我们需要从物理层和电气特性两个方面进行综合考虑。
在物理层方面,我们需要考虑传输线路的传输特性。
互连线路的传输特性包括传输线路的阻抗匹配、传输线路的传输延迟、传输线路的传输带宽等。
这些因素会影响信号的传输质量,从而产生抖动现象。
在电气特性方面,我们需要考虑互连线路的电磁兼容性以及信号干扰问题。
电磁兼容性是指互连线路在高速传输过程中其它设备或电磁波的干扰对信号传输的影响。
信号干扰则是指信号在传输过程中受到的电磁辐射和串扰干扰。
这些因素都会对信号波形产生不利影响,导致抖动的产生。
在抖动分析过程中,我们通常会借助于抖动测量仪器,并采用一些常用的抖动分析方法。
常用的抖动测量仪器包括时域测量仪、频域测量仪和眼图仪等。
时域测量仪可以用来测量信号的时间域波形,从而分析信号的时钟抖动和数据抖动。
频域测量仪则用来分析信号的频域特性,从而得出信号的频域抖动信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抖动和眼图分析工具
DPOJET
主要特点和优点
- 时钟和数据信号的抖动和定时分析- 实时眼图(RT-Eye TM )分析*1
- TekWizard TM 界面,单键操作和引 导性抖动摘要
- 完善的标准支持库,全面执行通过/失败极限和模板测试; 外加用户极限和模板文件,支持自定义测试配置和新标准或开发中的标准- 可以选择抖动模型,准确分解抖动和估算TJ(BER)*2,支持流行标准;光纤通道或PCI-Express Delta-Delta (Dual-Dirac)和卷积结果- 9种曲线类型,查看和分析抖动:眼图, CDF浴盆, 频谱, 直方图, 趋势, 数据, 相噪和转函- 可编程软件时钟恢复,包括软件PLL *3- 用户可以选择黄金PLL,支持流行标准- 可以选择高通和低通测量滤波器- 可以选择高和低极限测量范围测试- 完善的统计登录、报告和远程自动控制- 捕获和保存最坏情况信号,进行详细分析
应用
检定高速串行总线和并行总线设计的性能
- 检定时钟和数据抖动和信号完整性- 检定PLL 动态性能
- 检定扩频时钟电路的调制性能- 检定抖动生成、转函和容限- 对PCI Express、Serial ATA、SAS、光纤通道、DisplayPort、DDR2、DDR3、FBD 及其它电气和光学系统执行物理层测试
*1
已获专利USPTO #6,836,738,
*2
已获专利USPTO #6,832,172, #6,853,933, #7,254,168,
*3
已获专利USPTO #6,812,688.
实时抖动和眼图分析
DPOJET 为实时示波器提供了优秀的眼图、抖动和定时分析软件。
DPOJET在泰克DPO7000、DPO70000和DSA70000系列示波器中运行,为工程师提供了实时仪器中最高的灵敏度和精度。
通过采用完善的抖动和眼图分析及分解算法,DPOJET在当前高速串行、数字和通信系统设计中简化了发现信号完整性问题和抖动及相关来源的工作。
随着处理器时钟速率超过3 GHz,背板总线和串行数据链路数据速率超过8 GT/s,计算机、半导体和通信行业中的模拟和
数字设计人员面临着许多新的挑战。
日益提高的速率意味着电路容限或裕量下降,带来了抖动和相关的信号完整性问题。
通过使用可以帮助您迅速检定和发现抖动和信号完整性问题来源的工具,您可以更快地向市场上推出新的设计,并树立更高的信心,相信它们能够在当前超高速环境中可靠地运行。
更快地向市场上推出可靠性更高、性能更高的新产品,意味着贵公司可以有更多的机会改善余量。
AWG5000系列。
抖动和眼图分析工具DPOJET
DPOJET抖动和眼图分析工具扩展了泰克实时示波器功能,可以对单次采集模式或连续运行采集模式下捕获的时钟信号、串行和并行数据信号执行复杂的测量和分析。
DPOJET为当前最常见的行业标准提供了抖动和定时测量及通过/失败参数测量和眼图及模板,是为满足当前计算机行业和通信行业中高速数字设计人员的高级测量需求专门设计的。
DPOJET能够测量单端信号和差分信号,
在两个不同输入上执行测量,及同时在
多个输入上执行测量,它可以独立配置
每个输入和每项测量,实现了最大灵活
性。
DPOJET支持在内置显示屏或外置监视
器或两个位置显示测量结果和曲线,全
面利用示波器的双显示端口。
DPOJET分析曲线(如频谱和趋势)超越了
简单地显示测量数据和结果。
趋势分析
迅速向工程师显示定时参数怎样随时间
变化,如频率漂移、PLL启动瞬态信号或
电路对电源变化的响应。
频谱分析迅速
显示抖动和调制源的精确频率和幅度,
迅速简便地识别抖动源。
工程师现在可
以非常轻松地找到相邻振荡器和时钟、
电源噪声或信号串扰等来源。
DPOJET还
提供相噪曲线及转函曲线,前者以根源/
Hertz的形式显示抖动,后者则允许在两
个不同频率的信号之间直接比较抖动频
谱,这在业内是独一无二的,为确定PLL
电路(如时钟倍频器)中的抖动提供了完美
的工具。
DPOJET提供了完整的抖动和眼图分析
工具。
由于优秀的测量灵活性、广泛的示
波器型号支持、极限测试、结果登录和报
告及集成式远程编程能力,DPOJET全面
支持各种应用,从设备和系统调试和检
定,直到短期功能测试和生产。
图1- SATA-2 3.0 Gb/s MFTP的频谱,
眼图和BER曲线
2 Oscilloscope Software /accessories
抖动和眼图分析工具
DPOJET
订货信息
DPOJET 高级版
物理特点
软件在内置硬盘及光盘上提供。
软件安装及运行在DPO7000, DPO70000和DSA70000系列示波器上。
产品带有PDF格式的在线文档和可以打印的手册。
Oscilloscope Software /accessories 3
© 2007 年 Tektronix, Inc. 版权所有。
全权所有。
Tektronix 产品,不论已获得专利和正在申请专利者,均受美国和外国专利法的保护。
本文提供的信息取代所有以前出版的资料。
本公司保留变更技术规格和售价的权利。
TEKTRONIX 和 TEK 是 Tektronix, Inc.的注册商标。
本文提及的所有其它商号分别为其各自所有公司的服务标志、商标或注册商标。
11/07 JS/WOW 61C-21170-2
上海市浦东新区川桥路1227号邮编:201206
电话:(8621)50312000传真:(8621)58993156
泰克上海办事处
上海市静安区延安中路841号东方海外大厦18楼1802-06室邮编:200040
电话:(8621)62896908传真:(8621)62897267
泰克广州办事处
广州市环市东路403号
广州国际电子大厦2807A 室邮编:510095
电话:(8620)87322008传真:(8620)87322108
泰克武汉办事处
武汉市武昌区武珞路558号中南花园饭店将军楼4201室邮编:430070
电话:(8627)87812831传真:(8627)87305230
泰克深圳办事处
深圳市罗湖区深南东路5002号信兴广场地王商业大厦G1-02室邮编:518008
电话:(86755)82460909传真:(86755)82461539
泰克西安办事处
西安市东大街
西安凯悦(阿房宫)饭店345室邮编:710001
电话:(8629)87231794传真:(8629)87218549
泰克成都办事处
成都市人民南路一段86号城市之心23层D-F 座邮编:610016
电话:(8628)86203028传真:(8628)86203038
泰克科技(中国)有限公司
泰克香港办事处
香港铜锣湾希慎道33号利园3501室
电话:(852)25856688传真:(852)25986260
泰克北京办事处
北京市海淀区花园路4号通恒大厦1楼101室邮编:100088
电话:(8610)62351210/1230传真:(8610)6235
1236
抖动和眼图分析工具
DPOJET
有关最新的产品信息请访问泰克公司网站:
产品按ISO 注册设备制造。
产品符合IEEE标准488.1-1987, RS-232-C, 以及泰克公司标准代码和格式。