第19届中国女子数学奥林匹克试题及解答

合集下载

2021-08-17-2021年中国女子数学奥林匹克第8题的解答

2021-08-17-2021年中国女子数学奥林匹克第8题的解答

2021年中国女子数学奥林匹克第8题的解答---含有60°角的三角形的性质与判定之一2018年女子数学奥林匹克于2018年8月13、14两天举行考试,每天4个题目。

此次考试规模恢宏,几乎聚齐了世界各地的巾帼英雄——女子数学奥林匹克选手。

在此,我顺便说点题外话,一直以来有一种普遍的认识是女性的理科比较弱,女科学家相当少,数学尤其不适合女生,因为女数学家更是凤毛麟角。

甚至有人认为女生天生缺乏理科思维,不适合学理科,特别是数学!这种说法在农村里面尤其盛行。

我来自农村,原来我也这样认为,因为周围的女生确实普遍理科弱。

但是等我到了大城市以后,我发现班级里面的女学霸层出不穷,大学有不少同学毕业后留在大学、从事数学研究。

再后来教书以后,发现班级里面也有不少女生的理科学得非常好。

我开始对这个观点产生怀疑。

后来读了不少科普知识,感觉今是而昨非。

我的理解是:从生物本能上看,雌性生物整体比雄性生物各方面都要出色,因为她们负担着物种延续的使命。

所以人类平均寿命女性比男性高很多。

因此男女在理科学习上应该也没有明显的差异。

有不少统计数据来证实这个观点。

之所以以往女科学家及数学家比较少,是因为以前一直是男权社会,重男轻女的思想特别严重。

导致女性没有足够的机会学习理科及数学。

再加上重男轻女思想的侵蚀,给女性造成了巨大的舆论和生活、思想压力,导致她们很难全身心的投入到理科及数学的研究中去。

当今社会,农村里面的重男轻女思想还是很盛行,所以农村女孩整体的理科学习都比较弱。

而在城市里面,男女平等,公平竞争,女生的理科思维得到充分锻炼,理科优秀的女性就越来越多了。

我相信将来擅长理科的女性会层出不穷。

我也经常鼓励喜欢理科的女学生报考及从事理科及数学相关专业。

我也相信女性在社会中会扮演着越来越重要的角色,甚至会超过半边天。

也希望喜欢理科的女读者放下思想包袱,坚持下去,发挥自己的理科优势。

下面言归正传,今年女子竞赛压轴题第8题是一个几何题,这是一件破天荒的事情!以往的几何题都是前两题中的简单题,最多放到第三题,今年压轴算是一个创举。

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答


证明:当6|n + 2时,令z
=
ei
π 3
=
1 2
+
3 2
i,
z6
=

1,
|z|
=
1.


zn+1
− zn
−1
=
e−i
π 3

ei
π 3
−1
=
(
1 2

3 2
i)

(−
1 2

3 2
i)

1
=
0.
∴ zn+1 − zn − 1 = 0有模为1的复根.
若zn+1 − zn − 1 = 0有模为1的复根eiθ = cos θ + i cos θ.
成立.请证明上述命题及其逆命题. 证明:原命题的证明:由0 xi 1, xi − x2i 0, xi x2i (i = 1, 2, . . . , n). (1)若ai 0(i = 1, 2, . . . , n),则显然有a1x1 + a2x2 + · · · + anxn a1x21 + a2x22 + · · · + anx2n; (2)否 则 至 少 存 在 一 个ai < 0,由 对 称 性 不 妨 设a1 < 0. 又 因 为a1, a2, . . . , an中 任 两 数 之 和 非 负,所 以ai + a1 0, ai −a1 > 0(i = 2, 3, . . . , n).
试求:(1)放置最大数的点和放置最小数的点之间的最短距离.
(2)所有结点上数的总和S.
解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数

2021年第20届中国女子数学奥林匹克试题(几何详细解析

2021年第20届中国女子数学奥林匹克试题(几何详细解析

题目:△ABC 内接于圆O .I 、J 分别是△ABC 的内心和∠BAC 所对的旁心,点X .Y 在圆O 上,满足∠AXI =∠AXJ =90°,线段IJ 的中垂线交直线BC 于K 点,求证:AK 平分XY .
证明:设AI 交△ABC 于另一点M ,YJ 交△ABC 外接圆与另一点E ,AY ,AX 分别交直线BC 于F ,G .
因为∠AYE =90°,
所以AE 是直径,X ,Y ,E 三点共线,EM ⊥IJ ,
由鸡爪定理,MB =MC =MI =MJ ,
所以M ,E ,K 三点共线,
由切割线定理,GX ·GA =GC ·GB ,
所以点G 对于OM 与⊙(A ,X ,J )等幂,
即点G 在OM 与⊙(A ,X ,J )的根轴上,
因为OM 与O (A ,X ,J )外切,I 为切点,
所以IG ⊥AM ,
同理,FJ ⊥AM ,
于是IG ,KM ,FJ 互相平行,
由平行线等分线段定理,K 是FG 中点,
注意到△EMJ ≌△EMI ,
由射影定理,LAFJ =ZEJM =ZEIM =ZAIX =ZAGI ,
于是△AJF ∽△AIG ,所以IG
AI XG AX JF AJ YF AY ===2222,所以XY ∥FG ,
由射线束定理,AK 平分XY .
推广:。

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。

个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。

国际数学奥林匹克(IMO)竞赛试题(第19届)

国际数学奥林匹克(IMO)竞赛试题(第19届)
a2+ b2<= 2且A2+ B2<= 1.
5.a,b是正整数,设a2+ b2除以a + b得到商为q,余数是r.试求出所有的正整数对(a,b)使得q2+ r = 1977.
6.f是定义在所有正整数上且取值也是正整数的函数,求证如果f(n+1) > f(f(n))对所有正整数n都成立,则f(n) = n对每个n都成立.
3.n>2是一给定整数,Vn是所有1+kn形式的整数构成的集合,其中k是正整数,对于Vn中的一个数m,如果不存在Vn中的两个数p、q使得m=pq,则称m是不可分解的.求证:Vn中存在一数r,它可有多于一种的方式表示为Vn中不可分解数的乘积.(乘积中若仅仅是因数的顺序不同则视为是同一种分解.)
4.定义f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x,其中a,b,A,B都是实数常量.如果f(x)>=0对所有实数x都成立,求证
国际数学奥林匹克(பைடு நூலகம்
1.在正方形ABCD中作等边三角形ABK、BCL、CDM、DAN,证明线段KL、LM、MN、NK的四个中点以及线段AK、BK、BL、CL、CM、DM、DN、AN的八个中点构成一个正十二边形的定点.
2.在一个有限项的实数序列中,任意的相连七项之和为负,任意的相连十一项之和为正.求出这种序列最多有几项.

2024年第22届中国女子奥林匹克竞赛数学试卷

2024年第22届中国女子奥林匹克竞赛数学试卷

2024年第22届中国女子奥林匹克竞赛数学试卷1、求所有的三元正整数组(aa,bb,cc),满足aa2aa=bb2bb+cc2cc.2、如图,用144根完全相同的长度为1的细棒摆成边长为8的正方形网格状图形.问:至少需要取走多少根细棒,才能使得剩余图形中不含矩形?请证明你的结论.3、设aa,bb,cc,dd都是不超过1的非负实数.证明:11+aa+bb+11+bb+cc+11+cc+dd+11+dd+aa⩽41+2√aabbccdd4.4、如图,四边形AAAAAAAA内接于圆Γ,对角线AAAA,AAAA互相垂直,交点为EE.设FF是边AAAA上一点,射线FFEE交Γ于点PP,线段PPEE上一点QQ满足PPQQ⋅PPFF=PPEE2,过点QQ且垂直于AAAA的直线交AAAA于点RR.证明:RRPP=RRQQ.5、如图,在锐角△AAAAAA 中,AAAA <AAAA ,AAAA 是高,GG 是重心,PP 、QQ 分别是内切圆与边AAAA 、AAAA 的切点,MM 、NN 分别是线段AAPP 、AAQQ 的中点.设AA 、EE 是△AAAAAA 内切圆上两点,满足:∠AAAAAA +∠AAAAAA =180°,∠AAEEAA +∠AAAAAA =180°.证明:直线MMAA ,NNEE ,GGAA 三线共点.6、设实数xx 1,xx 2,⋯,xx 22满足对任意1⩽ii ⩽22,有2ii−1⩽xx ii ⩽2ii .求(xx 1+xx 2+⋯+xx 22)�1xx 1+1xx 2+⋯+1xx 22� 7、给定奇素数pp 和正整数aa 、bb 、mm 、rr ,其中pp ∤aabb ,且aabb >mm 2.证明:至多只有一对正整数(xx ,yy )满足xx 与yy 互素,且aaxx 2+bbyy 2=mmpp rr .8、对于平面直角坐标系中任意两点AA (xx 1,yy 1)、AA (xx 2,yy 2),定义dd (AA ,AA )=|xx 1−xx 2|+|yy 1−yy 2|,设PP 1,PP 2,⋯,PP 2023是该坐标系中2023个两两不同的点.记λλ=mmaaxx 1⩽ii <jj⩽2023dd�PP ii ,PP jj �mmii mm 1⩽ii <jj⩽2023dd�PP ii ,PP jj �.(1) 证明:λλ⩾44.(2) 给出一组PP 1,PP 2,⋯,PP 2023,使得λλ=44.1 、【答案】(1,4,4),(2,4,4),(4,5,6),(4,6,5);【解析】设xx mm=mm2nn,则当nn⩾2时,xx mm−xx mm+1=mm−12nn+1>0,故12=xx1=xx2>xx3>xx4>⋯,不妨设bb⩽cc,由条件等式得aa<bb⩽cc,(1)若bb=cc,则aa2aa=bb2bb−1,故bb aa=2bb−aa−1∈ZZ,设bb=aaaa(aa>1),则aa=2aaaa−aa−1⩾aaaa−aa,即(aa−1)(aa−1)⩽1,由aa⩾2知aa=1或2,均有bb=2bb−2,得bb=4,(2)若bb<cc,则aa2aa⩽aa+12aa+1+aa+22aa+2=3aa+42aa+2①⇒aa⩽4,注意到,xx1=xx2=12,xx3=38,xx4=14,xx5=532,xx6=332<18,若aa=1或2,则xx bb+xx cc=12⇒xx bb>14⇒bb=3,此时cc无解.若aa=3,则xx bb+xx cc=38⇒xx bb>316⇒bb=4,此时cc无解;若aa=4,则式①等号成立,即bb=5,cc=6,经检验,满足要求,综上,所求(aa,bb,cc)为(1,4,4),(2,4,4),(4,5,6),(4,6,5).【标注】 ( 数论模块 )2 、【答案】43;【解析】首先证明至少需要移除43根细棒,假设图形中不含矩形,则每个有界连通区域至少由3个单位正方形组成,即面积至少为3,记[xx]表示不超过实数xx的最大整数,这样至多有�643�=21个有界连通区域,每取走一根细棒至多使得有界连通区域的个数减少1(将两个有界连通区域合并为一个有界连通区域,或者将一个有界连通区域与无界连通区域合并),最初时有64个有界连通区域,故至少取走64−21=43根细棒,下图给出了取走43根细棒的例子,其中每个有界连通区域的面积均是3,且图中不含矩形.【标注】 ( 数论模块 )3 、【答案】证明见解析;【解析】注意到,当√aacc⩽xx时,1xx+aa+1xx+cc−2xx+√aacc=(√aa−√cc)2(√aacc−xx)(xx+aa)(xx+cc)(xx+√aacc)⩽0,①由条件可知√aacc⩽1⩽1+bb,√aacc⩽1+dd,在式①中取xx=1+bb和xx=1+dd,分别得11+aa+bb+11+bb+cc⩽21+bb+√aacc,11+cc+dd+11+dd+aa⩽21+dd+√aacc,可见以√aacc代替aa和cc时,不等式左边不减,而右边不变,故不妨设aa=cc,类似地,不妨设bb=dd,这样,原不等式变为证明11+aa+bb⩽11+2√aabb,由均值不等式aa+bb⩾2√aabb可知上式成立.【标注】 ( 不等式 )4 、【答案】证明见解析;【解析】如图,作EEEE//AAFF,交AAPP于点EE,交AAPP于点YY,延长EEQQ、YYQQ,分别交AAAA于点SS、TT,联结AAPP,记⊙AAAAAA表示过AA,AA,AA三点的圆,由PPPP PPPP=PPPP PPPP=PPPP PPPP⇒EEQQ//AAEE,类似地,YYQQ//AAEE,由∠EEEESS=∠AAEEEE=∠AAAAAA=∠EEAASS⇒EE,EE,SS,AA四点共圆,由∠PPEEEE=∠PPAAAA=∠PPAAEE⇒EE,EE、PP,AA四点共圆,故EE,EE,SS,PP,AA五点共圆,类似地,YY,EE、TT,PP,AA五点共圆,由∠PPQQTT=∠PPEEAA=∠PPSSTT⇒PP,SS、QQ,TT四点共圆,由SSQQ//AAEE,TTQQ//AAEE,AAEE⊥AAEE⇒SSQQ⊥TTQQ,由∠RRQQSS=90°−∠QQEEYY=90°−∠QQTTSS=∠RRSSQQ,可知RR是⊙PPSSQQTT的圆心.从而,RRPP=RRQQ.【标注】 ( 平面几何 )5 、【答案】证明见解析;【解析】在△AAAAAA的外接圆上取点FF,使得AAAAAAFF是等腰梯形.直线FFAA与⊙AAAAAA的另一个交点为LL,与中线AAAA交于点GG′.如图,由AAFF=2AAAA⇒PPGG′GG′KK=PPPP HHKK=2⇒GG′是△AAAAAA的重心⇒点GG′与GG重合,故∠AALLAA=∠AALLFF=12AAFF⌢∘=12AAAA⌢∘=∠AAAAAA,结合条件∠AAAAAA+∠AAAAAA=180°得∠AAAAAA+∠AALLAA=180°⇒AA,LL,AA,AA四点共圆,类似可证∠AALLAA=∠AAAAAA,且AA,LL,AA、EE四点共圆,由于∠AALLAA=∠AAAAAA,PPAA与⊙AALLAAAA切于点AA,记△AAAAAA的内切圆为Γ,PPAA是Γ与⊙AALLAAAA的外公切线,由MMPP =MMAA 可知MM 是Γ与⊙AALLAAAA 的等幂点,从而,直线MMAA 是Γ与⊙AALLAAAA 的根轴,类似可证直线NNEE 是Γ与⊙AALLAAEE 的根轴,又直线GGAA 是⊙AALLAAAA 与⊙AALLAAEE 的根轴,故直线MMAA 、NNEE 、GGAA 要么三线共点,要么两两平行.若MMAA 、NNEE ,AAAA 两两平行,则⊙AALLAAAA 的圆心OO 1,⊙AALLAAEE 的圆心OO 2、Γ的圆心II 三点共线, 由于∠AAAAAA 与∠AAEEAA 都是钝角,于是,点OO 1,OO 2在AAAA 下方,显然点II 在AAAA 上方,设OO 1、OO 2、II 在AAAA 上的投影分别为EE 、YY 、ZZ ,则EE ,YY 分别是AAAA 、AAAA 的中点,由AAAA <AAAA 知点YY 、ZZ 在AAAA 同侧,且AAZZ =PPAA+BBAA−PPBB 2>BBAA 2>AAHH 2=AAYY , 故点ZZ 在线段EEYY 上.因此,OO 1、OO 2、II 不可能共线,矛盾, 从而,MMAA 、NNEE 、GGAA 三线共点.【标注】 ( 平面几何 )6 、【答案】 �212−1−1211�2 ;【解析】 设yy ii =xx ii 211(ii =1,2,⋯,22) , 注意到, ff (tt )=tt +1tt在区间(0,1]上递减,在区间[1,+∞)上递增,对1⩽ii ⩽11,有1212−ii ⩽yy ii ⩽1211−ii ⇒yy ii +1yy ii ⩽212−ii +1212−ii ; 对12⩽ii ⩽22,有 2ii−12⩽yy ii ⩽2ii−11⇒yy ii +1yy ii ⩽2ii−11+12ii −11, 则 �∑22ii=1xx ii ��∑22ii=11xx ii �=�∑22ii=1yy ii ��∑22ii=11yy ii� ⩽14���yy ii +1yy ii �mm ii=1�2⩽14���212−ii +1212−ii �11ii=1+��2ii−11+12ii −11�22ii=12�2=�21+22+⋯+211+121+122+⋯+1211�2 =�212−1−1211�2, 当xx ii =�2ii−1,1⩽ii ⩽112ii ,12⩽ii ⩽22 时,上式等号成立, 故所求最大值是 是�212−1−1211�2. 【标注】 ( 不等式 )7 、【答案】 证明见解析;【解析】 反证法.假设有两对不同的正整数解 (xx 1,yy 1)、(xx 2,yy 2),由于xx 1与yy 1互素,于是,pp ∤xx 1yy 1, 类似地,pp ∤xx 2yy 2,由 aaxx 12≡−bbyy 12(mod pp rr )aaxx 22≡−bbyy 22(mod pp rr ),可知 aabbxx 12yy 22≡aabbxx 22yy 12(mod pp rr ) 又pp ∤aabb ,故pp rr |(xx 12yy 22−xx 22yy 12), 注意到,xx 1yy 2−xx 2yy 1与xx 1yy 2+xx 2yy 1不能都被pp 整除,否则,pp |2xx 1yy 2,这与pp 是奇素数且pp ∤xx 1yy 1xx 2yy 2矛盾, 故pp rr |(xx 1yy 2−xx 2yy 1)或pp rr |(xx 1yy 2+xx 2yy 1), 若xx 1yy 2−xx 2yy 1=0,则 xx 1xx 2=yy1yy 2, 结合aaxx 12+bbyy 12=aaxx 22+bbyy 22,可知xx 1=xx 2,yy 1=yy 2,这与(xx 1,yy 1)≠(xx 2,yy 2)矛盾, 因而,xx 1yy 2−xx 2yy 1≠0, 若pp rr |(xx 1yy 2+xx 2yy 1),则xx 1yy 2+xx 2yy 1⩾pp rr ,若pp rr |(xx 1yy 2−xx 2yy 1),则xx 1yy 2+xx 2yy 1⩾|xx 1yy 2−xx 2yy 1|⩾pp rr ,因此总有xx 1yy 2+xx 2yy 1⩾pp rr ,利用条件aabb>mm2和上式有mm2pp2rr=(aaxx12+bbyy12)(aaxx22+bbyy22)=(aaxx1xx2−bbyy1yy2)2+aabb(xx1yy2+xx2yy1)2⩾aabb(xx1yy2+xx2yy1)>mm2pp2rr,矛盾.故假设不成立,原命题成立.【标注】 ( 数论模块 )8 、【答案】 (1) 证明见解析;(2) 见解析;【解析】 (1) 对aa=1,2,⋯,2023,设PP aa(xx aa,yy aa),记uu aa=xx aa+yy aa,vv aa=xx aa−yy aa,记AA=mmaaxx1⩽ii⩽jj⩽2023dd�PP ii,PP jj�,则对于任意1⩽ii、jj⩽2023,有|uu ii−uu jj|=|�xx ii−xx jj�+�yy1−yy jj�|⩽|xx ii−xx jj|+|yy ii−yy jj|=dd�PP ii,PP jj�⩽AA,因此,uu1,uu2,⋯,uu2023中的最大数与最小数之差不超过AA,即全在某个区间[aa,aa+AA]中,类似地,vv1,vv2,⋯,vv mm全在某个区间[bb,bb+AA]中,对aa、ll=1,2,⋯,44,考虑区域AA aa,ll=��uu+vv2,uu−vv2�|aa+aa−144AA⩽uu⩽aa+aa44AA,bb+ll−144AA⩽vv⩽bb+ll44AA�,点PP ii,PP2,⋯,PP2023落在这442=1936个区域中,由抽屉原理知存在两点在同一区域,假设PP1、PP jj∈AA aa,ll,记UU=uu ii−uu jj,VV=vv ii−vv jj,则−DD44⩽UU、VV⩽DD44,dd�PP ii,PP jj�=|xx ii−xx jj|+|+|yy ii−yy jj|=�uu ii+vv ii−uu jj+vv jj�+�uu ii−vv ii−uu jj−vv jj�=�UU+VV 2�+�UU−VV 2� ∈�±UU+VV 2±UU−VV 2�={UU ,−UU ,VV ,−VV },由于每种情况都有 dd�PP ii ,PP jj �⩽mmaaxx {|UU |,|VV |}⩽DD 44, 故 mmii nn 1⩽ii<jj⩽2023dd�PP ii ,PP jj �⩽dd�PP ii ,PP jj �⩽DD 44⇒λλ⩾44. (2) 关于构造,取点集MM ={(xx ,yy )∈ZZ 2|xx ,yy 同奇偶,|xx +yy |⩽44,|xx −yy |⩽44} =��uu+vv 2,uu−vv 2�|uu =0,±2,±4,⋯,±44;vv =0,±2,±4,⋯,±44�, 集合MM 中共有452=2025个点,从中任选2023个点作为PP 1,PP 2,⋯,PP 2023,则 dd�PP ii ,PP jj �=|xx ii −xx jj |+|yy ii −yy jj |是偶数且大于0,即dd�PP ii ,PP jj �⩾2, 另一方面,dd�PP ii ,PP jj �=|xx ii −xx jj |+|yy ii −yy jj |⩽mmaaxx�|(xx ii +yy ii )−�xx jj +yy jj �|,|(ii yy ii )−�xx jj −yy jj �|�⩽88, 故此时λλ=mmaaxx 1⩽ii <jj⩽2023dd�PP ii ,PP jj �mmii mm 1⩽ii <jj⩽2023dd�PP ii ,PP jj �⩽882,由(1)知此时λλ=44, 图1是nn =25个点满足λλ=4的例子,图2是16个区域划分,可以用来证明nn =17个点时λλ⩾4.第11页, 共11页【标注】。

2019年中国数学奥林匹克完整试题及解析

2019年中国数学奥林匹克完整试题及解析

(因为
C325

max L(x, y)).
(x,y)∈X
下面构造例子说明 C325 是可以取到的最好的常数:
设 S = {1, 2, · · · , 35}, 考虑置换 f = (12 · · · 35), 即:
f (1) = 2, f (2) = 3, · · · , f (34) = 35, f (35) = 1,
极值可以在满足一些对称性的序列 (ai) 上取到. 毋庸置疑,满足题目条件的数列集合是闭集,因此两个
小题中的目标函数(都是连续的)确实能取到最大值.
(1)设序列
(ai)
使
a+b+c+d
取到最大,令
ci
=
ai
+
ai+10
+ ai+20 4
+ ai+30 ,下标模
40
理解.

据上一段,ci 满足题目条件,而且(1)中目标函数在序列 (ai) 和 (ci) 上取值相同,因此可以只对具有
2019 年中国数学奥林匹克试题解析
6
注意到: L(x, y) ≤ L(f1(x), f1(y)) + 1, 从而
L(x, y) ≤ L (fk−1(· · · (f1(x))), fk−1(· · · (f1(y)))) + (k − 1) = k ≤ |X| = C325,
所以
m

C325
时总是可以办到的
(解题 : )
题 2. 已知:△ABC 中,AD 为角平分线,E 为 AD 上一点,EF 、EG 为 △ABD、△ACD 外接圆 切线,F 、G 分别为切点,CF 交 BG 于 J. 过 J 的 BC 平行线交 DF 、DG、DE 于 H、I、K.

2019年高一数学奥林匹克竞赛决赛试题及答案

2019年高一数学奥林匹克竞赛决赛试题及答案

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。

个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。

历届女子数学奥林匹克试题

历届女子数学奥林匹克试题

目录2002年女子数学奥林匹克 (1)2003年女子数学奥林匹克 (3)2004年女子数学奥林匹克 (5)2005年女子数学奥林匹克 (7)2006年女子数学奥林匹克 (9)2007年女子数学奥林匹克 (11)2008年女子数学奥林匹克 (13)2009年女子数学奥林匹克 (16)2010年女子数学奥林匹克 (19)2011年女子数学奥林匹克 (21)2012年女子数学奥林匹克 (24)2002年女子数学奥林匹克1.求出所有的正整数n,使得20n+2能整除2003n+2002.2.夏令营有3n(n是正整数)位女同学参加,每天都有3位女同学担任执勤工作.夏令营结束时,发现这3n位女同学中的任何两位,在同一天担任执勤工作恰好是一次.(1)问:当n=3时,是否存在满足题意的安排?证明你的结论;(2)求证:n是奇数.3.试求出所有的正整数k,使得对任意满足不等式k(aa+ab+ba)>5(a2+a2+b2)4.⊙O1和⊙O2相交于B、C两点,且BC是⊙O1的直径.过点C作⊙O1的切线,交⊙O2于另一点A,连结AB,交⊙O1于另一点E,连结CE并延长,交⊙O2于点F.设点H为线段AF内的任意一点,连结HE并延长,交⊙O1于点G,连结BG并延长,与AC的延长线交于点D.求证:AA AH=AA AC.5.设P1,P2,⋯,P n(n≥2)是1,2,⋯,n的任意一个排列.求证:1P1+P2+1P2+P3+⋯+1P n−2+P n−1+1P n−1+P n>n−1n+2.6.求所有的正整数对(x,y),满足x y=y x−y.7.锐角△ABC的三条高分别为AD、BE、CF.求证:△DEF的周长不超过△ABC周长的一半.8.设A1,A2,⋯,A8是平面上任意取定的8个点,对平面上任意取定的一条有向直线l,设A1,A2,⋯,A8在该直线上的摄影分别是P1,P2,⋯,P8.如果这8个射影两两不重合,以直线l的方向依次排列为P i1,P i2,⋯,P i8,这样,就得到了1,2,…,8的一个排列i1,i2,⋯,i8(在图1中,此排列为2,1,8,3,7,4,6,5).设这8个点对平面上所有有向直线作射影后,得到的不同排列的个数为N8=N(A1,A2,⋯88的最大值.图12003年女子数学奥林匹克1. 已知D 是△ABC 的边AB 上的任意一点,E 是边AC 上的任意一点,连结DE ,F 是线段DE 上的任意一点.设AC AA =x ,AA AA =y ,CH CA =z .证明: (1) S △ACH =(1−x )yzS △AAA ,S △AAH =x (1−y )(1−z )S △AAA ;(2) �S △ACH 3+�S △AAH 3≤�S △AAA 3.2. 某班有47个学生,所用教室有6排,每排有8个座位,用(i ,j )表示位于第i 排第j 列的座位.新学期准备调整座位,设某学生原来的座位为(i ,j ),如果调整后的座位为(m ,n ),则称该生作了移动[a ,a ]=[i −m ,j −n ],并称a +b 为该生的位置数.所有学生的位置数之和记为S .求S 的最大可能值与最小可能值之差.3. 如图1,ABCD 是圆内接四边形,AC 是圆的直径,BB ⊥AA ,AC 与BD 的交点为E ,F 在DA 的延长线上.连结BF ,G 在BA 的延长线上,使得BD ∥BB ,H 在GF 的延长线上,AC ⊥DB .证明:B 、E 、F 、H 四点共圆.图14.(1)证明:存在和为1的5个非负实数a、b、c、d、e,使得将它们任意放置在一个圆周上,总有两个相邻数的乘积不小于19;(2)证明:对于和为1的任意玩个非负实数a、b、c、d、e,总可以将它们适当放置在一个圆周上,且任意相邻两数的乘积均不大于19.5.数列{a n}定义如下:a1=2,a n+1=a n2−a n+1,n=1,2,⋯.证明:1−120032003<1a1+1a2+⋯+1a2003<1.6.给定正整数n(n≥2).求最大的实数λ,使得不等式a n2≥λ(a1+a2+⋯+a n−1)+2a n对任意满足a1<a2⋯<a n的正整数a1,a2,⋯,a n均成立.7.设△ABC的三边长分别为AB=b、BA=a、AA=a,a、b、c互不相等,AD、BE、CF分别为△ABC的三条内角平分线,且DE=DF.证明:(1)a b+c=b c+a+c a+b;(2)∠BAA>90°.8.对于任意正整数n,记n的所有正约数组成的集合为S n.证明:S n中至多有一半元素的个位数为3.2004年女子数学奥林匹克1.如果存在1,2,⋯,n的一个排列a1,a2,⋯,a n,使得k+a k(k=1,2,⋯,n)都是完全平方数,则称n为“好数”.问:在集合{11,13,15,17,19}中,哪些是“好数”,哪些不是“好数”?说明理由.(苏淳供题)2.设a、b、c为正实数.求a+3c a+2b+c+4b a+b+2c−8c a+b+3c的最小值.(李胜宏供题)3.已知钝角△ABC的外接圆半径为1.证明:存在一个斜边长为√2+1的等腰直角三角形覆盖△ABC.(冷岗松供题)4.一副三色纸牌,共有32张,其中红黄蓝每种颜色的牌各10张,编号分别是1,2,⋯,10;另有大小王牌各一张,编号均为0.从这副牌中任取若干张牌,然后按如下规则计算分值:每张编号为k的牌记为2k分.若它们的分值之和为2004,则称这些牌为一个“好牌组”.试求“好牌组”的个数.(陶平生供题)5.设u、v、w为正实数,满足条件u√vv+v√vu+v√uv≥1.试求u+v+v的最小值. (陈永高供题)6.给定锐角△ABC,点O为其外心,直线AO交边BC于点D.动点E、F分别位于边AB、AC上,使得A、E、D、F四点共圆.求证:线段EF在边BC上的投影的长度为定值.(熊斌供题)7.已知p、q为互质的正整数,n为非负整数.问:有多少个不同的整数可以表示为ii+jj的形式,其中i,j为非负整数,且i+j≤n.(李伟固供题)8.将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置多少个互不重叠的“十字形”(每个“十字形”恰好盖住棋盘上的5个小方格)?(冯祖明供题)2005年女子数学奥林匹克1.如图1,点P在△ABC的外接圆上,直线CP、AB相交于点E,直线BP、AC相交于点F,边AC的垂直平分线与边AB相交于点J,边AB的垂直平分线与边AC相交于点K.求证:AA2AH=AA⋅AA AA⋅AH.图1(叶中豪供题)2.求方程组�5�x+1x�=12�y+1y�=13(z+1z)xy+yz+zx=1,的所有实数解.(朱华伟供题)3.是否存在这样的凸多面体,它共有8个顶点、12条棱和6个面,并且其中有4个面,每两个面都有公共棱?(苏淳供题)4.求出所有的正实数a,使得存在正整数n及n个互不相交的无限整数集合A1,A2,⋯,A n满足A1∪A2∪⋯∪A n=Z,而且对于每个A i中的任意两数b>c,都有a−b≥a i.(袁汉辉供题)5.设正实数x、y满足x3+y3=x−y.求证:x2+4y2<1. (熊斌供题)6.设正整数n(n≥3).如果在平面上有n个格点P1,P2,⋯,P n满足:当�P i P j�为有理数时,存在P k,使得|P i P k|和�P j P k�均为无理数;当�P i P j�为无理数时,存在P k,使得|P i P k|和�P j P k�均为有理数,那么,称n是“好数”.(1)求最小的好数;(2)问:2005是否为好数(冯祖明供题)7.设m、n是整数,m>n≥2,S=�1,2,⋯,m�,T=�a1,a2,⋯,a n�是S的一个子集.已知T中的任两个数都不能同时整除S中的任何一个数.求证:1a1+1a2+⋯+1a n<m+n m. (张同君供题)8.给定实数a、b(a>a>0),将长为a、宽为b的矩形放入一个正方形内(包含边界).问正方形的边至少为多长?(陈永高供题)2006年女子数学奥林匹克1.设a>0,函数f:(0,+∞)→R满足f(a)=1.如果对任意正实数x、y,有f(x)f(y)+f�a x�f�a y�=2f(xy),求证:f(x)为常数.(朱华伟供题)2.设凸四边形ABCD的对角线交于点O.△OAD、△OBC的外接圆交于点O、M,直线OM分别交△OAB、△OCD的外接圆于点T、S.求证:M是线段TS的中点.(叶中豪供题)3.求证:对i=1,2,3,均有无穷多个正整数n,使得n,n+2,n+28中恰有i个可表示为三个正整数的立方和.(袁汉辉供题)4.8个人参加一次聚会.(1)如果其中任何5个人中都有3个人两两认识,求证:可以从中找出4个人两两认识;(2)试问:如果其中任何6个人中都有3个人两两认识,那么是否一定可以找出4个人两两认识?(苏淳供题)5.平面上整点集S=�(a,a)�1≤a,a≤5(a、a∈Z)�,T为平面上一整点集,对S中任一点P,总存在T中不同于P的一点Q,使得线段PQ上除点P、Q外无其它的整点.问T的元素个数最少为多少?(陈永高供题)6.设集合M={1,2,⋯,19},A={a1,a2,⋯,a k}⊆M.求最小的k,使得对任意的a∈M,存在a i、a j∈A,满足a=a i或a=a i±a j(a i、a j 可以相同).(李胜宏供题)7.设x i>0(i=1,2,⋯,n),k≥1.求证:∑11+x i n i=1⋅∑x i n i=1≤∑x i k+11+x i n i=1⋅∑1x i k n i=1. (陈伟固供题)8.设p为大于3的质数,求证:存在若干个整数a1,a2,⋯,a t满足条件−p2<a1<a2<⋯<a t<p2,使得乘积p−a1|a1|⋅p−a2|a2|⋅⋯⋅p−a t|a t|是3的某个正整数次幂.(纪春岗供题)2007年女子数学奥林匹克1.设m为正整数,如果存在某个正整数n,使得m可以表示为n和n的正约数个数(包括1和自身)的商,则称m是“好数”.求证:(1)1,2,⋯,17都是好数;(2)18不是好数.(李胜宏供题)2.设△ABC是锐角三角形,点D、E、F分别在边BC、CA、AB上,线段AD、BE、CF经过△ABC的外心O.已知以下六个比值AC CA、AA AA、AH HA、AH HA、AA AA、AC CA中至少有两个是整数.求证:△ABC是等腰三角形.(冯祖明供题)3.设整数n(n>3),非负实数a1,a2,⋯,a n满足a1+a2+⋯+a n=2.求a1a22+1+a2a32+1+⋯+a n a12+1的最小值.(朱华伟供题)4.平面内n(n≥3)个点组成集合S,P是此平面内m条直线组成的集合,满足S关于P中每一条直线对称.求证:m≤n,并问等号何时成立?(边红平供题)5.设D是△ABC内的一点,满足∠BAA=∠BAA=30°,∠BBA=60°,E是边BC的中点,F是边AC的三等分点,满足AF=2FC.求证:BD⊥DB.(叶中豪供题)6.已知a、a、b≥0,a+a+b=1.求证:�a+14(a−b)2+√a+√b≤√3(李伟固供题)7.给定绝对值都不大于10的整数a、b、c,三次多项式f(x)=x3+ ax2+ax+b满足条件�f(2+√3)�<0.0001.问:2+√3是否一定是这个多项式的根?(张景中供题)8.n个棋手参加象棋比赛,每两个棋手比赛一局.规定:胜者得1分,负者得0分,平局得0.5分.如果赛后发现任何m个棋手中都有一个棋手胜了其余m-1个棋手,也有一个棋手输给了其余m-1个棋手,就称此赛况具有性质P(m).对给定的m(m≥4),求n的最小值f(m),使得对具有性质P(m)的任何赛况,都有所有n名棋手的得分各不相同.(王建伟供题)2008年女子数学奥林匹克1.(1)问能否将集合�1,2,⋯,96�表示为它的32个三元子集的并集,且每个三元子集的元素之和都相等;(2)问能否将集合�1,2,⋯,99�表示为它的33个三元子集的并集,且每个三元子集的元素之和都相等.(刘诗雄供题)2.已知式系数多项式ϕ(x)=ax3+ax2+bx+d有三个正根,且ϕ(0)<0.求证:2a3+9a2d−7aab≤0. (朱华伟供题)3.求最小常数a(a>1),使得对正方形ABCD内部任一点P,都存在△P AB、△PBC、△PCD、△PDA中的某两个三角形,其面积之比属于区间�a−1,a�.(李伟固供题)4.在凸四边形ABCD的外部分别作正△ABQ、△BCR、△CDS、△DAP,记四边形ABCD的对角线的和为x,四边形PQRS的对角线中点连线的和为y.求y x的最大值.(熊斌供题)5.如图1,已知凸四边形ABCD满足AB=BC,AD=DA,E、F分别是线段AB、AD上一点,满足B、E、F、D四点共圆,作△DPE顺向相似于△ADC,作△BQF顺向相似于△ABC.求证:A、P、Q三点共线.图1 注:两个三角形顺向相似是指它们的对应顶点同按顺时针方向或同按逆时针方向排列.(叶中豪 供题)6. 设正数列x 1,x 2,⋯,x n ,⋯满足(8x 2−7x 1)x 17=8及x k+1x k−1−x k 2=x k−18−x k 8(x k x k−1)7(k ≥2).求正实数a ,使得当x 1>a 时,有单调性x 1>x 2>⋯>x n >⋯,当0<x 1<a 时,不具有单调性. (李胜宏 供题)7. 给定一个2008×2008的棋盘,棋盘上每个小方格的颜色均不相同.在棋盘的每一个小方格中填入C 、G 、M 、O 这4个字母中的一个,若棋盘中每一个2×2的小棋盘中都有C 、G 、M 、O 这4个字母,则称这个棋盘为“和谐棋盘”,问有多少种不同的和谐棋盘?(冯祖明 供题)8. 对于正整数n ,令f n =�2n √2008�+[2n √2009].求证:数列f 1,f 2,⋯中有无穷多个奇数和无穷多个偶数([x ]表示不超过实数x 的最大整数).(冯祖明 供题)B2009年女子数学奥林匹克1. 求证:方程aab =2009(a +a +b )只有有限组正整数解(a,b,c).(梁应德 供题)2. 如图1,在△ABC 中,∠BAA =90°,点E 在△ABC 的外接圆圆Γ的弧BC (不含点A )内,AE >EC .连结EC 并延长至点F ,使得∠DAA =∠AAB ,连结BF 交圆Γ于点D ,连结ED ,记△DEF 的外心为O .求证:A 、C 、O 三点共线.图1 (边红平 供题)3. 在平面直角坐标系中,设点集�P 1,P 2,⋯,P 4n+1�=�(x ,y )�x 、y 为整数,|x |≤n ,|y |≤n ,xy =0�,其中,n ∈N +.求(P 1P 2)2+(P 2P 3)2+⋯+(P 4n P 4n+1)2+(P 4n+1P 1)2的最小值.(王新茂 供题)4. 设平面上有n (n ≥4)个点V 1,V 2,⋯,V n ,任意三点不共线,某些点之间连有线段.把标号分别为1,2,⋯,n 的n 枚棋子放置在这n 个点处,每个点处恰有一枚棋子.现对这n 枚棋子进行如下操作:每B次选取若干枚棋子,将它们分别移动到与自己所在点有线段相连的另一个点处;操作后每点处仍恰有一枚棋子,并且没有两枚棋子在操作前后交换位置.若一种连线段的方式使得无论开始时如何放置这n 枚棋子,总能经过有限次操作后,使每个标号为k (k =1,2,⋯,n )的棋子在点V k 处,则称这种连线段的方式为“和谐的”.求在所有和谐的连线段的方式中,线段数目的最小值. (付云皓 供题)5. 设实数xyz 大于或等于1.求证:(x 2−2x +2)(y 2−2y +2)(z 2−2z +2)≤(xyz )2−2xyz +2 (熊 斌 供题)6. 如图2,圆Γ1、Γ2内切于点S ,圆Γ2的弦AB 与圆Γ1切于点C ,M 是弧AB (不含点S )的中点,过点M 作MN ⊥AB ,垂足为N .记圆Γ1的半径为r .求证:AA ⋅AB =2rMN .图2 (叶中豪 供题)7. 在一个10×10的方格表中有一个有4n 个1×1的小方格组成的图形,它既可被n 个“”型的图形覆盖,也可被n 个“”或“”型(可以旋转)的图形覆盖.求正整数n的最小值.(朱华伟供题)8.设a n=n√5−�n√5�.求数列a1,a2,⋯,a2009中的最大项和最小项,其中,[x]表示不超过实数x的最大整数.(王志雄供题)2010年女子数学奥林匹克1. 给定整数n (n ≥3),设A 1,A 2,⋯,A 2n 是集合�1,2,⋯,n�的两两不同的非空子集,记A 2n+1=A 1.求∑|A i ∩A i+1||A i |⋅|A i+1|2n i=1的最大值.(梁应德 供题)2. 如图1,在△ABC 中,AB =AA ,D 是边BC 的中点,E 是在△ABC 外一点,满足AD ⊥AB ,BD =BB .过线段BE 的中点M 作直线MB ⊥BD ,交△ABD 的外接圆的劣弧AD 于点F .求证:DB ⊥BB .图1 (郑焕 供题)3. 求证:对于每个正整数n ,都存在满足下面三个条件的质数p 和整数m :(1)i ≡5(mmd 6);(2)i ∤n ;(3)n ≡m 3(mmd i ).(付云皓 供题) 4. 设实数x 1,x 2,⋯,x n 满足∑x i 2=1(n ≥2)n i=1.求证:∑(1−k ∑ix i 2n i=1)2x k 2k n k=1≤(n−1n+1)2∑x k 2k n k=1,并确定等号成立的条件.(李胜宏供题)5.已知f(x)、g(x)都是定义在R上递增的一次函数,f(x)为整数当且仅当g(x)为整数.证明:对一切x∈R,f(x)−g(x)为整数.(刘诗雄供题)6.如图2,在锐角△ABC中,AB>AA,M为边BC的中点,∠BAA的外角平分线交直线BC于点P.点K、F在直线P A上,使得MB⊥BA,MM⊥PA.求证:BC2图2(边红平供题)7.给定正整数n(n≥3).对于1,2,⋯,n的任意一个排列P=(x1,x2,⋯,x n),若i<j<k,则称x j介于x i和x k之间(如在排列(1,3,2,4)中,3介于1和4之间,4不介于1和2之间).设集合S={P1,P2,⋯,P m}的每个元素P i(1≤i≤m)中都不介于另外两个数之间.求m的最大值.(冯祖鸣供题)8.试求满足下列条件的大于5的最小奇数a:存在正整数m1、n1、m2、n2,使得a=m12+n12,a2=m22+n22,且m1−n1=m2−n2.(朱华伟供题)2011年女子数学奥林匹克1.求出所有的正整数n,使得关于x,y的方程1x+1y=1n恰有2011组满足x≤y的正整数解(x,y) .(熊斌供题)2.如图1,在四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q,若MB⋅AB=NB⋅AB, BQ⋅BP=AQ⋅AP,求证:PQ垂直于BC.图1(郑焕供题)3.设正数a,a,b,d满足aabd=1,求证:1+1+1+1+9≥25(朱华伟供题)4.有n(n≥3)名乒乓球选手参加循环赛,每两名选手之间恰好比赛一次(比赛无平局).赛后发现,可以将这些选手排成一圈,使得对于任意三名选手A,B,C,若A,B在圈上相邻,则A,B中至少有一人战胜了C,求n的所有可能值.(付云皓供题)5.给定非负实数a,求最小实数f=f(a),使得对任意复数,Z1,Z2和实数x(0≤x≤1),若|Z1|≤a|Z1−Z2|,则|Z1−xZ2|≤f|Z1−Z2|.(李胜宏供题)6.是否存在正整数m,n,使得m20+11n是完全平方数?请予以证明.(袁汉辉供题)7.从左到右编号为B1,B2,⋯,B n的n个盒子共装有n个小球,每次可以选择一个盒子B k,进行如下操作:若k=1且B1中至少有1个小球,则可从B1中移1个小球至B2中;若k=n,且B n中至少有1个小球,则可从B n中移1个小球至B n-1中,若2≤k≤n-1且B k中至少有2个小球,则可从B k中分别移1个小球至B k-1和B k+1中,求证:无论初始时这些小球如何放置,总能经过有限次操作使得每个盒子中恰有1个小球.(王新茂供题)8. 如图2,已知⊙O 为△ABC 中BC 边上的旁切圆,点D 、E 分别在线段AB 、AC 上,使得BD ∥BA .⊙O 1为△ADE 的内切圆,O 1B 交DO 于点F ,O 1C 交EO 于点G .⊙O 切BC 于点M .⊙O 1切DE 于点N .求证:MN 平分线段FG .图2 (边红平 供题)A2012年女子数学奥林匹克1.设a1,a2,⋯,a n为非负实数,求证:11+a1+a1(1+a1)(1+a2)+⋯+ a1a2⋯a n−1(1+a1)(1+a2)⋯(1+a n)≤1.2.如图1所示,圆O1和O2外切于点T,点A、E在圆O1上,AB切圆O2于点B,ED切圆O2于点D,直线BD、AE交于点P.(1)求证:AB⋅DT=AT⋅DB;(2)求证:∠ATP+∠DTP=180°Array图13.求所有整数对(a,b),使得存在整数d>1,对任意的正整数n,都有d|a n+a n+1.4.在正十三边形的13个顶点上各摆放一枚黑子或者白子,一次操作是指将两枚棋子的位置交换.求证:无论开始时棋子是如何摆放的,总可以至多操作一次,使得各个棋子的颜色关于正十三边形的某一条对称轴是对称的.5.如图2所示,在△ABC中,I为内切圆圆心,D、E分别为AB、AC边上的切点,O为△BIC的外心,求证:∠OBB=∠ODA.图26. 某个国家有n (n ≥3)个城市,每两个城市间都有一条双向航线.这个国家有两个航空公司,每条航线由一家公司经营.一个女数学家从某个城市出发,经过至少两个其它城市,回到出发地.如果无论怎样选择出发城市和路径,都无法只乘坐一家公司的航班,求n 的最大值.7. 有一个无穷项的正整数数列a 1≤a 2≤a 3≤⋯.已知存在正整数k和r ,使得r a r =k +1,求证:存在正整数s ,使得s a s =k .8. 集合{0,1,2,⋯,2012}中有多少个元素k ,使得A 2012k 是2012的倍数.B。

《中等数学》2020年总目次

《中等数学》2020年总目次

2020年第12期49《中等数学》2020年总目次I M O快讯(10.封底)数学活动课程讲座.初中.初中数学竞赛中的组合最值问题解法举例(钟志强6-2)完全平方数的性质及其应用(李昌勇刘应成6-7)•高中•一些关于无穷多个素因子的问题(吴宇培丨*2) “线性化”在多元不等式证明与最值求解中的应用(唐智逸茹双林2-2)数学竞赛中两种不等式基本思想的应用(缠祥瑞3*2)数学竞赛中的复数问题(唐立华 4.27-2)数学竞赛中组合几何问题的常见解法(程振峰李宝毅5-2)递归计数的六种方式(冯跃峰8-2)圆锥曲线几个结论的证明与应用(金荣生9-2)数学竞赛中数列不等式的常见解法举例(王逸凡王彬瑶10-2)数论中的升幂引理及其应用(王永喜丨卜2)对应思想在组合问题中的应用(缠祥瑞12-2)命题与解题数学命题中的“抱残守缺”(陶平生I*7)例谈不等式题的命制方法(张端阳卜1丨)两道赛题的创作思路、答题情况及启示(林天齐何忆捷熊斌2-8)开世定理的推广与应用(李庆圣2,12)老题新芽别样趣味(肖恩利陈博文3-6) 2019年全国高中数学联赛加试第三题的改进(晏兵川赵凌燕3*13)一道罗马尼亚竞赛题的分析与推广(朱华伟邱际春4‘7)一道高中数学竞赛题的探讨(邱慎海沈家书4’11)一道集训队选拔考试题的推广(李伟健4*14)一道不等式赛题的演变与推广(邱际春朱华伟郑焕5-9)利用抽屉原理证明三道竞赛题(隋婷婷5*11)一道数学竞赛题的推广(林根 5 •13)一道中国北方数学奥林匹克试题的引申(赵凌燕隋世友6‘11)判别式在不定方程中的应用(雷勇7-9)三道国外竞赛题的简解(姚先伟于娟7 •12)两道数学竞赛题的分析与推广(邱际春朱华伟8‘12)与三角形的内切圆有关的一个性质及相关性质和命题(李庆圣一道印度赛题的解题思考(李明谈谈数学竞赛中的数学期望(吴宇培关于一道数论题的思考(李彬解题小品—投石问路(陶平生利用复数证明竞赛题(刘东华华洁一道东南赛题与2020年高中联赛数论题的渊源(陶平生一道高中联赛题的推广与变形(王若飞9.9)9.16)10.11)10-13)11.7)11-11)12.7)12.9)赛题另解(1-154-155-157-1310-15)2020年全年高中数学联赛加试题另解(李庆圣杨续亮刘晓理等12-13)专题写作一类麦比乌斯反演问题及其应用(刘志乐2•15)多项式根的倒数和问题求解(梅述恩 3 •17)一个与多项式相关的不等式(刘亮赵斌5*18)高斯整数在数学竞赛中的应用(古德麟 7_15)一道北方希望之星数学夏令营试题的拓展第29届南美洲数学奥林匹克(8.36) (贾秀平段敏敏11-14)2020年全国高中数学联赛浙江赛区预赛(9-20)学生习作2020年全国高中数学联赛重庆赛区预赛(9-25)2018中国香港代表队选拔考试(9-28)论局部调整法的妙用(阮书镐4-17)2018中美洲及加勒比地区数学奥林匹克(9-32)构造表格探究一类数的分布(徐博润6-18)第61届I M O试题(10-16)一种证明三元齐次不等式的方法(王一鹏8.16)2020年全国高中数学联合竞赛(10-17)两道罗马尼亚大师杯赛题的另解(严彬玮9-18)第17届中国东南地区数学奥林匹克(10-25)竞赛之窗第61届I M O试题解答(11-18)第16届中国东南地区数学奥林匹克2019中国数学奥林匹克希望联盟夏令营(1.29 2.30第30届亚太地区数学奥林匹克第35届中国数学奥林匹克2019年全国高中数学联赛四川赛区预赛第三届中国北方希望之星数学夏令营2019青少年数学国际城市邀请赛2019年全国高中数学联赛江苏赛区预赛2019美国数学竞赛(八年级)2019年北京市中学生数学竞赛复赛(高一)2019年全国高中数学联赛吉林赛区预赛第六届伊朗几何奥林匹克2019年全国高中数学联赛甘肃赛区预赛第12届罗马尼亚大师杯数学邀请赛2020美国数学竞赛(十、十二年级)2018爱沙尼亚国家队选拔考试(初中)2018荷兰数学奥林匹克(初中)2019马其顿数学奥林匹克(初中)2019巴尔干地区数学奥林匹克(初中)2〇19希腊数学奥林匹克(初中)2019希腊国家队选拔考试(初中)2019年全国高中数学联赛贵州赛区预赛2019年全国高中数学联赛重庆赛区预赛第83届莫斯科数学奥林匹克(7,29 2020欧洲女子数学奥林匹克2019年全国高中数学联赛广西赛区预赛2019美国国家队选拔考试第60届I M O预选题(11-2212-20) 0-17)2019亚太地区数学奥林匹克(11-32) 3-33)第19届中国女子数学奥林匹克(11-36)首届百年老校数学竞赛(12-30) (1*35)(2.18)2019瑞士数学奥林匹克(初赛)(12-37) (2.25)再品佳题(2-36)(3.20)第二届国际大都市竞赛(数学)(1-38) (3-27)第32届北欧数学竞赛(2-39) (4.21)2018瑞士数学奥林匹克(预赛)(3-39)(4.26)课外训练(4-29)(4.34).初中.(5.20)(186罗家亮 6.34187 李铁汉汪波 6 •(5.27)39 188 谢文晓9.34189 陈迁赵手志(5-32)王祥10.38)(6.20).高中■(6.23)(247 巢中俊 1.41 248王永中2•41 249 (6.28)于现峰 3.41250王永喜4■41251 刘(6-30)小杰宛昭勋5‘42252杨运新6•42 253 (6.31)李潜7 41254徐节槟龙崎钢8-40(6.33)255何忆捷9.39256李培臣谭祖春郝(7.20)泽来10.42 257 胡满11.42258褚小光(7-26)田开斌12.39)8.29)(7.36)(8.20)(8.24)数学奥林匹克问题(1-48 2-47 3.474-475-48 6.477.488.469-4610-48 11-48 12-46)。

2019年中国数学奥林匹克完整试题及解析

2019年中国数学奥林匹克完整试题及解析

题 5. 数列 {an } 定义如下: 正整数 a1 > 1, an+1 = an + P (an ), n ≥ 1, 其中, P (x) 表示正整数 x 的最 大素因子. 证明: 数列 {an } 中有完全平方数.
题 6. 是否存在正实数 a1 , a2 , · · · , a19 ,使得多项式 P (x) = x20 + a19 x19 + · · · + a1 x + a0 无实数根, 但是任意调换两个系数 ai , aj 形成的新多项式都有实根.
(1)设序列 (ai ) 使 a + b + c + d 取到最大, 令 ci = 根
,下标模 40 理解.
据上一段, ci 满足题目条件, 而且(1) 中目标函数在序列 (ai ) 和 (ci ) 上取值相同, 因此可以只对具有
周期 10 的序列考虑这个最大值. 此时 a = b = c = d.
a20+k = − k (0 ≤ k ≤ 10), a30+k = a40 − k = − − k (0 ≤ k ≤ 5)
时取等.
(解题人:龚 固)
题 2. 已知: △ABC 中, AD 为角平分线, E 为 AD 上一点, EF 、EG 为 △ABD 、△ACD 外接圆 切线, F 、G 分别为切点, CF 交 BG 于 J . 过 J 的 BC 平行线交 DF 、DG 、DE 于 H 、I 、K .
(a29+k + a41 − k ) + (a15 + a35 )
≥ (x − 2k) + (x − 2k) + (x − 18 − 2k) + (x − 20)

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答1972年,国际数学奥林匹克竞赛的第一届在罗马尼亚布加勒斯特举办,这是一个面向全球中学生的数学竞赛。

在这个竞赛中,参赛者将面临一系列富有挑战性的数学问题,需要灵活运用数学知识和解题技巧,找到问题的最优解。

随着时间的推移,国际数学奥林匹克竞赛逐渐成为全球数学领域最具声望和影响力的竞赛之一。

每年,数千名来自不同国家和地区的优秀中学生参加这一盛会,相互竞争,共同探索数学的奥妙。

在国际数学奥林匹克竞赛中,试题的难度极高,需要参赛者拥有扎实的数学功底和灵活的思维能力。

下面将介绍一道典型的国际数学奥林匹克竞赛试题,并给出详细的解答过程。

试题一:已知自然数 n 的三位数表示为 $\triangle$ABC(A、B、C是三个数字,可以相同),计算器可以做两种操作:1. 把数 n 变成 n + 1 或 n - 1;2. 把数 n 变成 $\triangle$BCA;问:对于任意的三位数n,最少需要多少次操作才能将n 变成100。

解答一:我们可以从 100 开始,逆向思考,通过操作 2 将 100 变成任意的三位数。

对于任意一个三位数 $\triangle$XYZ:- 如果 $\triangle$X < $\triangle$Z,则可以通过操作 1 进行两次变换$\triangle$XYZ -> $\triangle$XZ(Y+1) -> $\triangle$XZ(Y+1+1) -> 100。

- 如果 $\triangle$X > $\triangle$Z,则可以通过操作 1 进行两次变换$\triangle$XYZ -> $\triangle$XZ(Y-1) -> $\triangle$XZ(Y-1-1) -> 100。

- 如果 $\triangle$X = $\triangle$Z,则可以通过操作 1 进行一次变换$\triangle$XYZ -> $\triangle$XZY -> 100。

2021年中国女子数学奥林匹克(CGMO)试题及参考答案

2021年中国女子数学奥林匹克(CGMO)试题及参考答案

2021 年中国女子数学奥林匹克(CGMO )试题及其解答解答人:文武光华数学工作室 田开斌一、设A 是平面直角坐标系中三条直线x = 1,y = 0和y = t (2x − t )围成的闭区域,其 中0<t <1,求证:在区域 A 内,以P(t ,t 2)和Q(1,0)为其中两个顶点的三角形的面积不超过1。

4 证明:如图,阴影部分即为区域 A 。

设直线y = t (2x − t )与 x轴、y 轴的交点分别为 M 、 N ,则点M (t ,0),N (1,t (2 − t ))。

显然点 P 在线段 MN 上。

对于区域 A 内任一点 A ,显然 2有S △PQA ≤ max ➨S △PQM ,S △PQN ➧,所以我们只需证明S △PQM ≤ 1且S △PQN ≤ 1。

作 PB ⊥x 轴于 B ,作 PC ⊥QN 于C ,则S △PQM =MQ·PB 2 4 (1–t )t 2 = 2 = 24(2–t)t 2 <4 (2–t)t ≤ 1; 4 4S △PQN = NQ·PC = t(2–t)·(1–t) ≤ (2–t) < 1。

命题得证。

2 2 8 4二、如图,在梯形ABCD 中,AB ∥CD ,⊙O 1与 DA 、AB 、BC 三边相切,⊙O 2与 BC 、CD 、DA 三边相切。

设P 是⊙O 1与边 AB 的切点,Q 是⊙O 2与边 CD 的切点。

求证:AC 、BD 、PQ 三 线共点。

D证明:因为 AB ∥CD ,根据位似,我们要证 AC 、BD 、PQ 共点,只需证明AP= CQ 。

BPDQ如图,连接O 1A 、O 1B 、O 1P ,O 2C 、O 2D 、O 2Q 。

因为 AB ∥CD ,所以∠O 1AP +∠O 2DQ = 90°,∠O 1BP + ∠O 2CQ = 90°。

所以O 1P= DQ ⇒ AP · DQ = O 1P · O 2Q ,AP O 2QO 1P =CQ ⇒ BP · CQ = O 1P · O 2Q ,于是知AP · DQ = BP · CQ ⇒ AP = CQ 。

第七至十九届中国数学奥林匹克竞赛试题含答案

第七至十九届中国数学奥林匹克竞赛试题含答案

第七至十九届中国数学奥林匹克竞赛试题第七届中国数学奥林匹克 (1992年)1. 设方程x n +a n-1x n-1+a n-2x n-2+....+a 1x+a 0=0的系数都是实数,且适合条件0<a 0≦a 1≦a 2≦....≦a n-1≦1。

已知λ为方程的复数根且适合条件|λ|>1,试证:λn+1=1。

2. 设x 1, x 2, ... , x n 为非负实数,记 x n+1= x 1,a=min{x 1, x 2, ... , x n },试证:n Σ i=1 1+x i _ 1+x i+1 ≦n+ 1 (1+a)2nΣ i=1(x i -a)2 ,3. 且等式成立当且仅当 x 1 =x 2= ... =x n 。

4. 在平面上划上一个9x9的方格表,在这上小方格的每一格中都任意填入+1或-1。

下面一种改变填入数字的方式称为一次变动;对于任意一个小方格有一条公共边的所有小方格(不包含此格本身)中的数作连乘积,于是每取一个格,就算出一个数,在所有小格都取遍后,再将这些算出的数放入相应的小方格中。

试问是否总可以经过有限次变动,使得所有方小方格中的数都变为1?5. 凸四边形内接于圆O ,对角线AC 与BD 相交于P ,ΔABP 与ΔCDP 的外接圆相交于P 和另一点Q ,且O 、P 、Q 三点两两不重合。

试证∠OQP=90。

6. 在有8个顶点的简单图中,没有四边形的图的边数的是大值是多少?7. 已知整数序列{a 1, a 2, ...... }满足条件:1. a n+1=3a n -3a n-1+a n-2,n=2, 3, .....。

2. 2a 1= a 0+a 2-2。

3. 对任意的自然数m ,在序列{a 1, a 2, ...... }中必有相继的m 项a k , a k+1, ... , a k+m-1都为完全平方数。

试证:序列{a 1, a 2, ...... }的所有项都是完全平方数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档