计算流体力学课后题作业

合集下载

流体力学课后作业

流体力学课后作业
4-5为什么溢流阀在调压弹簧的预压缩量一定时,进口压力会随着流量的变化而有所波动?
解:溢流阀出口接油箱,则其进出口压差为其进口压力,由孔口流量方程 可知,在面积不变,即弹簧压缩量不变时,流量增大,其进口压力会增加。
4-6减压阀的出口压力取决于什么?其出口压力为定值的条件是什么?
解:
减压阀出口压力取决于负载压力的大小:负载压力小于其调定压力时,出口压力为负载压力;负载压力大于其调定压力时,出口压力为其调定值。
解:
2图示系统为一个二级减压回路,活塞在运动时需克服摩擦阻力F=1500N,活塞面积A=15cm2,溢流阀调整压力py=45×105Pa,两个减压阀的调定压力分别为pj1=20×105Pa和pj2=35×105Pa,管道和换向阀的压力损失不计。试分析:
1)当DT吸合时活塞处于运动过程中,pB、pA、pC三点的压力各为多少?
4某液压泵的输出油压p=10MPa,转速n=1450r/min,排量V=100mL/r,容积效率ηv=0.95总效率η=0.9,求泵的输出功率与电动机驱动功率。
二、作业题
2-9某液压泵的最大工作压力p=10MPa,电机转速n=1450r/min,排量V=17.6mL/r,容积效率ηv=0.90总效率η=0.8,求电动机驱动功率
危害:容积缩小p↑高压油从一切可能泄漏的缝隙强行挤出,使轴和轴承受很大冲击载荷,泵剧烈振动,同时无功损耗增大,油液发热。
容积增大p↓形成局部真空,产生气穴,引起振动、噪声、汽蚀等
总之:由于困油现象,使泵工作性能不稳定,产生振动、噪声等,直接影响泵的工作寿命。
2液压泵的工作压力取决于什么?泵的工作压力与额定压力有何区别?
2如图所示两个结构相同相互串联的液压缸,无杆腔的面积A1=100*10-4m2,有杆腔的面积A2=80*10-4m2,缸1的输入压力p1=0.9MPa,输入流量q=12L/min,不计损失与泄漏,求

流体力课后学习题解答

流体力课后学习题解答

流体力学习题参考及答案第1 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。

解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。

解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。

解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。

题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。

在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。

(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。

计算流体力学课后题作业

计算流体力学课后题作业

课后习题第一章1.计算流体动力学的基本任务是什么计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。

2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合?流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。

如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。

如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。

控制方程是这些守恒定律的数学描述。

常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。

质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。

4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。

建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。

6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何?由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。

CFD商用软件的特点是功能比较全面、适用性强。

具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。

具有比较完备的容错机制和操作界面,稳定性高。

可在多种计算机、多种操作系统,包括并行环境下运行。

常用的商用CFD软件有PHOENICS、CFX、SRARCD、FIDAP、FLUENT。

PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。

《计算流体力学》作业答案

《计算流体力学》作业答案

计算流体力学作业答案问题1:什么是计算流体力学?计算流体力学(Computational Fluid Dynamics,简称CFD)是研究流体力学问题的一种方法,它使用数值方法对流体流动进行数值模拟和计算。

主要包括求解流体运动的方程组,通过空间离散和时间积分等计算方法,得到流体在给定条件下的运动和相应的物理量。

问题2:CFD的应用领域有哪些?CFD的应用领域非常广泛,包括但不限于以下几个方面:1.汽车工业:CFD可以用于汽车流场的模拟和优化,包括空气动力学性能和燃烧过程等。

2.航空航天工业:CFD可以用于飞机、火箭等流体动力学性能的预测和优化,包括机身、机翼的设计和改进等。

3.能源领域:CFD可以用于燃烧、热交换等能源领域的流体力学问题求解和优化。

4.管道流动:CFD可以用于石油、化工等行业的管道流动模拟和流体输送优化。

5.空气净化:CFD可以用于大气污染物的传输和分布模拟,以及空气净化设备的设计和改进。

6.生物医药:CFD可以用于生物流体输送和生物反应过程的模拟和分析,包括血液流动、药物输送等。

问题3:CFD的数值方法有哪些?CFD的数值方法一般包括以下几种:1.有限差分法(Finite Difference Method,FDM):将模拟区域划分为网格,并在网格上离散化流体运动的方程组,利用有限差分近似求解。

2.有限体积法(Finite Volume Method,FVM):将模拟区域划分为有限体积单元,通过对流体流量和通量的控制方程进行离散化,求解离散化方程组。

3.有限元法(Finite Element Method,FEM):将模拟区域划分为有限元网格,通过对流体运动方程进行弱形式的变分推导,将流动问题转化为求解线性方程组。

4.谱方法(Spectral Method):采用谱方法可以对流体运动方程进行高精度的空间离散,通常基于傅里叶变换或者基函数展开的方式进行求解。

5.计算网格方法(Meshless Methods):不依赖网格的数值方法,主要包括粒子方法(Particle Methods)、网格自适应方法(Gridless Method)等。

完整版流体力学课后习题作业答案

完整版流体力学课后习题作业答案

第四章作业答案4-3水在变直径竖管中流动,已知粗管直径d i =300mm ,流速v i =6m/s 。

两断面相距 3m,为使两断面的压力表读值相同。

试求细管直径(水头损失不计) 。

解:4— 4 变直径管段 AB ,d A =0.2m,d B =0.4m ,高差△ h=1.5m ,测得 p A =30kPa ,p B =40kPa , B 点 处断面平均流速 v B =1.5m/s ,试判断水在管中的流动方向。

解:Ad B 21.5 (0.4)2 6m/sH AZ A 邑2 A0臾兰 4.90md A 20.2g2g 9.8 2gH BZ B -P B240 1.525.69mB1.5 g2g9.819.6H B >H A ,水由B 流向A; 水头损失5.69-4.90=0.79m 4— 5用水银压差计测量水管中的点流速u ,如读值 △ h=60mm ,( 1)求该点流速;(2)3若管中流体是 0.8kg /m 的油,△ h 不变,不计水头损失,则该点的流速是多少?解:(1)u <2g 12.6 h J‘19.6 12.6 0.06 3.85m/s⑵u :2g 12.8 h v'19.6 12.8 0.06 4.34m/s4—6利用文丘里管的喉管处负压抽吸基坑中的积水,已经知道管道直径 d [ 100mm ,喉管直径d 2 50mm ,h 2m ,能量损失忽略不计。

试求管道中流量至少为多大,才能抽出基坑中的积水?p 1p 2解:由题意知,只有当(乙-)(Z 2 -) h 时,刚好才能把水吸上来,由文丘里流gg量计原理有Q k* (z _P L ) (Z 2 ~P ^),其中kv g gP i P i2V i 2g Vi 2Z 2P 2v ?d 2v 1d 12300 62—4.837m 2g235.5mmv 2 9.74m/s22V 2 2g代入数据,有Q 12.7l/s。

4-8管道流动管径为d=150mm,喷嘴出口直径d D=50mm,各点高差h1=2m,h2=4m,h3=3m,不计水头损失,求A、B、C、D各点压强。

高等教育-《流体力学》课后习题答案

高等教育-《流体力学》课后习题答案

高等教育 --流体力学课后习题答案习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。

重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510500.25m V V V T α∆=⋅⋅∆=⨯⨯=1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃ 得:1127350273323T t K =+=+=,2227378273351T t K =+=+= 根据mRT p V =,有:111mRT p V '=,222mRT p V '=G =mg自由落体: 加速度a =g得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V = 体积减小了()10.18100%82%-⨯=1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:uT Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅= 上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左 下表面单位宽度受到的内摩擦力:2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左 平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。

流体力学课后作业

流体力学课后作业

流体力学课后作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1.1 A pressure of 2106N/m2 is applied to a mass of water that initially filleda 1,000cm3 volume. Estimate its volume after the pressure is applied.将2106N/m2的压强施加于初始体积为1,000cm3的水上,计算加压后水的体积。

(999.1cm3)1.2 As shown in Fig.1-9, in a heating systemthere is a dilatation water tank. The whole volumeof the water in the system is 8m3. The largesttemperature rise is 500C and the coefficient ofvolume expansion is v=0.0005 1/K, what is thesmallest cubage of the water bank?如图1-10所示,一采暖系统在顶部设一膨胀水箱,系统内的水总体积为8m3,最大温升500C,膨胀系数v=0.005 1/K,求该水箱的最小容积(0.2m3) Fig. 1-9 Problem 1.21.3 When the increment of pressure is 50kPa, the density of a certain liquid is 0.02%. Find the bulk modulus of the liquid.当压强增量为50kPa时,某种液体的密度增加0.02%。

求该液体的体积模量。

( 2.5108Pa)1.4 Fig.1-10 shows the cross-section of an oiltank, its dimensions are length a=0.6m, widthb=0.4m, height H=0.5m. The diameter of nozzleis d=0.05m, height h=0.08m. Oil fills to theupper edge of the tank, find:(1)If only the thermal expansion coefficientv=6.510-41/K of the oil tank is considered,what is the volume Fig.1-10 Problem 1.4of oil spilled from the tank when the temperature of oil increases from t1=-200C to t2=200C?(2)If the linear expansion coefficient l=1.210-51/K of the oil tank is considered, what is the result in this case?(3)图1-10为一油箱横截面,其尺寸为长a=0.6m、宽b=0.4m、高H=0.5m,油嘴直径d=0.05m,高h=0.08m。

流体力学课后习题

流体力学课后习题

思考题1.什么是连续介质为何要做这种假定2.流体的粘度与流体的压力有关吗3.流体的重度,比重和密度之间是怎样的关系4.什么是理想流体什么是粘性流体它们有什么区别5.流体的动力粘性系数与运动粘性系数有什么不同它们之间有什么关系6.液体和气体的粘性系数μ随温度的变化规律有何不同为什么7.牛顿流体是怎样的流体非牛顿流体有哪些它们之间有什么区别8.为什么将压力和切应力称为表面力而又将惯性力和重力称为质量力9.怎样理解静止流体或理想流体中一点处的压力是一个标量流体静压强有何特性10.气体和液体在压缩性方面有何不同习题1.海面下8km处水的压力为81.7×106N/m2,若海面水的密度ρ=1025kg/m2,压力为1.01×105N/m2,平均体积弹性模量为2.34×109N/m2,试求水下8km处的密度.2.如图1-12所示,半径为a的圆管内流体作直线单向流动,已知管道横截面上的流体速度分布为其中umax=const,求:r=0,r=和r=a处的流体切应力,并指出切应力的方向.这里流体粘性系数为μ.3.如图1-13所示的旋转粘度计,同心轴和筒中间注入牛顿型流体,轴的直径为D,筒与轴之间的间隙δ很小.筒以等角速度ω旋转,且保持流体的温度不变.假定间隙中的流体作周向流动且速度为线性分布,设L很长,故底部摩擦影响可不计.若测得轴的扭矩为M,求流体的粘性系数.4.如图1-14所示,一平板在另一平板上作水平运动,其间充满厚度为δ=2mm的油,两平板平行.假定油膜内的速度分布为线性分布,粘性系数μ=1.10×10-5N·s/cm2,求单位面积上的粘性阻力.5.有金属轴套在自重的作用下沿垂直轴下滑,轴与轴套之间充满ρ=900kg/m3, 的润滑油.轴套内经d1=102mm,高h=250mm,重100N,轴的直径d2=100mm ,试确定轴套等速下滑的速度.6.如图1-15所示,牛顿型流体从一倾斜板流下,流层厚度为t,与空气接触的上表面阻力可忽略不计.在斜面上(倾角为θ)流体流动速度恒定,若流体的密度为ρ,粘性系数为μ,求流层内的速度分布.7.活塞直径为5cm,在气缸(直径为5.01cm)内运动,当其间的润滑油温度由00C变到120°C时,试确定活塞运动所需的力减少的百分比.设在0°C时,μ1=1.7×10-2N·s/m2,在120°C时,μ2=2×10-3 N·s/m2.8.一飞轮回转半径为30cm,重500N,当其转速达到600r/min后,由于转轴与轴套之间的流体的粘性而使其转速减少1r/min.这里轴套长5cm,轴的直径为2cm,径向间隙为0.05cm,试确定流体的粘度.9.试求常温下(20°C,一个大气压)使水的体积减少0.1%所需的压力,设βp=4.8×10-8cm2/N.10.当压力增量Δp=5×104N/m2时,某种流体的密度增长0.02%,求此流体的体积弹性模量.思考题1 欧拉平衡微分方程综合式可积分的条件是什么2 何谓等压面等压面与质量力作用线之间的关系如何3 何谓连通器原理工程上有何应用4 压力p和总压力P有何不同如何计算静止流体中平板上的总压力和压力中心水箱中储有重度不同的两种流体,如图2-28所示.容器和测管都与大气相通,问测管1和2中的液面是否与o-o面平齐是高于还是低于o-o面两种流体的分界面是等压面吗静止流体(包括相对静止)中的水平面是等压面吗连通容器中的水平面是等压面吗7 如图2-29所示的密闭水箱A,顶部自由液面的压力为p0,橡皮管连接容器B,水箱接有测压管1和2问:(1)1和2两测压管的水面是否平齐若平齐,pa=pb对吗(2)若将容器B提高一些,两测压管的水面将如何变化 p0的值是增加减少还是不变(3)若将容器B下降(测压管1和2均封闭)直至B中水面正好与C点平齐,问此时C点的压力为多少8 何谓压力体它由哪几个面构成实压力体与虚压力体有何异同9 如图2-30所示各AB段壁面均为二向曲面,试画出AB段上的压力体.10 如图2-31所示水平台面上置放五个形状各异,但底面积相等的容器,若容器内的水深H均相等,试比较容器底面积上所受静水总压力的大小.11如图2-32所示形状各异,但面积相等的闸门,浸没在同一种液体中,试比较各闸门所受静水总压力的大小.12 一个任意形状的物体处于静止流体中,若该物体的表面接触的流体压力处处相等, 问其上的流体总压力为多少船舶的平衡条件是什么船舶的漂浮状态通常有哪几种情况(绘出示意图) 表征各种浮态的参数有哪几个根据静力平衡条件,列出各种浮态的平衡方程.习题1.如图2-33所示的差动式比压计中的水银柱高h=0.03m,其余液体为水,容器A,B的中心位置高差H=1m,求A,B容器中心处的压力差.2.如图2-34所示的容器底部有一圆孔,用金属球封闭,该球直径为5cm,圆孔的直径为3cm.求水作用于圆球上的总压力.3.如图2-35所示,H=3m,α=45°,闸门宽为b=1m,求扇形闸门上所受静水总压力.设水的密度为1000kg/m3.4.试确定图2-36所示的单位长圆柱体上所受静水总压力.分别按下列三种情况计算.(1)H1=d,H2=0;(2)H1=d/2,H2=0;(3)H1=d,H2=d/2.5.如图2-37所示,当闸门关闭时,求水作用于闸门上合力对0点的力矩.设γ=9802N/m3.6.如图2-38所示,重度为9100 N/m3的油液所充满的容器中的压力p由水银压力计读数h来确定,水银的重度为1.33×105 N/m3,若压力不变,而使压力计下移至a点的位置.求压力计读数的变化量Δh.7.如图2-39所示,矩形平板闸门,水压力经闸门的面板传到三条水平梁上,为使各横梁的负荷相等,试问应分别把它们置于距自由液面多深的地方已知闸门高4m,宽6 m,水深H=3m.8.如图2-40所示等腰三角形平面的一边水平(即与液面平行),浸入重度为γ的流体中,三角形高为a,水平边宽b,水平边距自由液面为a,求作用于三角形上的静水总压力及压力中心.9.求图2-41所示,d=4m的单位长圆柱体上的静水总压力.10.船沿水平方向作匀加速直线运动,其液体舱的液面倾斜45°,求船的加速度.11.某船从内河出海,吃水减少了20cm,接着在港口装了一些货物后吃水复又增加了15cm.设该船最初的排水量为100t,吃水线附近船的倾面为直壁,海水的密度为ρ=1025kg/m3.问该船在港口装了多少货物12.试证流体静止的必要条件是质量力必须满足式中为质量力.13.如图2-42所示,矩形水箱高1.2m,长2m,在与水平面成30°的倾斜面上向上运动,加速度为4m/s2.试求箱内液面与水平面之间的倾角.14.如图2-43所示,一细长直管,长L=20cm,与铅垂轴的夹角为θ.C处开口通大气,A 处封死.管内盛满密度为ρ的均质流体.若管子绕Z轴作等角速度ω旋转,求截面A 和B处流体质点的质量力的大小和方向.设流体相对管子是静止的.15.直径为4m的圆板铅垂地浸入水中,上面与水面相切时,求作用于该板上的静水总压力及压力中心..160一矩形闸门的位置与尺寸如图2-44所示,闸门上缘A处设有转轴,下缘连接铰链,以备开闭.若忽略闸门自重及轴间摩擦力,求开启闸门所需的拉力T.(Icξ=)17.如图3-45所示为一绕铰链O转动的自动开启式水闸(倾角α=60°),当水闸一侧的水深h1=2m,另一侧的水深h2=0.4m时,闸门自动开启,试求铰链至水闸下端的距离x.18.求图2-46所示封闭容器斜壁上的圆形闸门所受的静水总压力及作用点.已知闸门直径d=2m,a=1m,a=60°,容器内水面的相对压强=98.1kN/m2.(Icξ=)19.一泄水装置如图2-47所示,泄水孔道直径1m,其上斜盖一椭圆形阀门,阀门上缘有一铰链,泄水孔上缘距水面距离H=2m.若不计阀门重量及铰链的摩擦力,试求开启阀门的力T.(Icξ=)第三章思考题拉格朗日法与欧拉法有何异同欧拉法中有哪两种加速度它与速度场的定常与否及均匀与否有什么关系如何理解欧拉法求质点加速度时,其表达式中空间位置(x,y,z)是时间的函数陨星下坠时在天空中划过的白线是什么线流线有什么基本性质如何判断流线方向流线与轨迹线有何区别在同一流场中,同一时刻不同流体质点组成的曲线是否都是流线如果在运动过程中,每一流体质点的密度都保持不变,那么是否一定有和一条船在静水中作等速直线运动,观察者在什么坐标系下可以观察到定常运动船模在水池中试验,拖车拖带船模在静水中作等速直线运动.而船模在水槽中试验,则是船模固定不动(相对于地球),水槽中的水以均匀来流绕船模流动,试讨论这两种流动坐标系的选择及流动的定常或非定常性流场为有旋运动时,流体微团一定做圆周运动吗无旋运动时,流体微团一定做直线运动吗11. 流体微团的旋转角速度与刚体的旋转角速度有什么本质差别习题1. 已知流场的速度分布为,求:(1)流体的剪切变形角速度;(2)点(3,1)处流体质点的加速度.2. 给定速度场,,vz=0且令t=0时,r=a,θ=b,τ=c.求流场的加速度.3. 已知平面流速度场为vx=1+2t,vy=3+4t,求:(1)流线方程;(2)t=0时经过点(0,0),(0,1),(0,-1)的三条流线方程;(3)t=0时经过点(0,0)的流体质点的迹线方程.4. 已知平面流动的速度分布为式中Γ为常数,求流线方程.5. 给定速度场vx=-ky,vy=kx,vz=w0.式中k,w0是常数.求通过x=a,y=b,z=c的流线.6. 已知不可压缩液体平面流动的流速场为vx=xt+2yvy=xt2-yt求当t=1s时,点A(1,2)处液体质点的加速度(单位:m/s2).7.已知流体中任一点的速度分量,由欧拉变数给出为vx=x+tvy=-y+tvz=0试求t=0时,通过点(-1,1)的流线.8.已知流体的速度分布为vx=1-y,vy=t,求:t=1时过(0,0)点的流线及t=0时位于(0,0)点的质点轨迹.9.给出流速场为,求:空间点(3,0,2)在t=1时的加速度.10.已知空间不可压缩液体运动的两个流速分量为vx=10x,vy=-6y,试求:z方向上的流速分量的表达式流动是否为有旋运动11.试证明下列不可压缩均质流体运动中,哪些满足连续性方程,哪些不满足连续性方程.(1) vx=-ky vy=kx vz=0(2) vx=kx vy=-ky vz=0(3)(4) vx=ay vy=v vz=0(5) vx=4 vy=vz=0(6) vx=1 vy=2(7) vr=k/r(k是不为零的常数) vθ=0提示:在柱坐标系中,连续性微分方程为(8) vr=0 vθ=k/r(k是不为零的常数)(9) vx=4x vy=c(10) vx=4xy vy=012.给定速度场vx=ax,vy=ay,vz=-2az,式中a为常数,求:(1)线变形速率分量,剪切角速度分量,体积膨胀率;(2)该流场是否为无旋场,若无旋,写出其速度势函数.13.设有从坐标原点引出的径向线上流速分布为vr=4/r,试证明通过圆心为原点的所有圆周上的流量都相等.14.已知流场的速度分布为,该流场是否满足不可压缩流体的连续性方程15.在不可压缩流体的三元流场中,已知速度场vx=x2+y2+x+y+2和vy=y2+2yz,试求vz的表达式.16.下列各流场中哪几个满足连续性条件,它们是有旋流动还是无旋流动其中k为常数.(1)vx=k vy=0(2)vx= vy=(3)vx=x2+2xy vy=y2+2xy(4)vx=y+z vy=z+x vz=x+y17.确定下列各流场是否连续是否有旋式中k为常数(1)vr=0 vθ=kr(2)vr=-k/r vθ=0(3)vr= vθ=-2r.18.已知有旋流动的速度场为vx=x+y,vy=y+z,vz=x2+y2+z2,求过点(2,2,2)的角速度分量.19.已知速度场vx=2y+3z,vy=2z+3x,vz=2x+3y,求流体微团的角速度.20.证明平面不可压缩流场vx=2xy+x,和vy=x2-y2-y满足连续性方程,是有势流并求出速度势函数.21.在管道壁上有一面积为1m2的孔口,如图3-25所示,求孔口处出流的平均速度U,其它数据如图所示.22.已知流场中势函数φ=,试验证该函数在二维和三维流动中是否满足拉普拉斯方程.23.已知势函数φ=ln(x2+y2)1/2除原点外处处无旋,求速度场.第四章思考题1.2.拉格朗日积分和伯努利积分各自适用什么条件3.拉格朗日积分中的通用常数与柏努利方程中的流线常数有何差别4.叙述柏努利方程的几何意义和物理意义.5.说明柏努利方程反映了能量的何种关系6.为什么应用柏努利方程时,其中的位置水头可以任意选取基准面来计算7.在推导柏努利方程时,没有考虑外界对流线上的流体质点做功或输入(出)能量,若实际问题中有能量的输入(出),解柏努利方程时将如何处理8.总压力,驻点压力,静压力,动压力以及伯努利常数的含义是什么9.在不同液体或气体的界面上是否可将压力视为常数为什么10.在求解柏努利方程时,管道出口流入大气中或者流入静止流体中,出口处的压力怎样确定而静止流体流入管道时,管道进口处的压力一般是否为已知量11.如图4-20所示虹吸管,不计损失,流动定常.问:(1)管子出口处(2-2截面)的静压为多少(2)哪段管路为低压向高压的流动此时伯努利方程中的三项能头是如何变化的(3)S处的压力是高于大气压力还是低于大气压力若S处管子破裂流动将如何12.应用积分形式动量方程时,因动量是矢量,其方向如何确定在计算合外力时,为什么通常压力项只计相对压力而不计绝对压力13.积分形式动量方程是适合于控制体的,其控制体内流场是否要求流动无旋无粘习题1.如图4-21所示的管流,直径d=30cm,求管内流速v.2.如图4-22所示的水银比压计与一水平放置的流量计相连接.现读得比压计中水银面高差Δh=800mm.已知d1=250mm,d2=100mm,流动定常,不计损失,求通过的体积流量(管内流体为水).3.用图4-23所示的水银比压计测油速.已知油的比重为0.8,水银比重为13.6,h=60mm,求管内油的流动速度.设流动定常,不计粘性影响.4.如图4-24所示的喷雾器,活塞以v等速运动,喉部处空气造成低压,将液体吸入然后向大气喷雾.若空气密度为ρ,液体密度为ρ′,假定流动为不可压缩,理想定常流动,求能喷雾的吸入高度h.5.如图4-25所示的不可压缩流体在半径为R的管中流动,入口处即截面1处横断面上的流速是均匀的,其值为v,下游截面2处,流动为u=umax表示的速度分布,假定是使截面1-2之间流动减速的平均壁面剪应力.试求以umax,ρ,L,R和表示的压力降.6.如图4-26所示,设宽度为b=5cm,厚度为单位厚度的水平射流射向直立固定的平板.已知v0=20m/s,不计摩擦,流动定常,周围都是大气压力.求平板所受射流的冲击力.7.有一股射流以速度20m/s从直径为5cm的喷嘴向外喷水.设喷流方向如图4-27所示的水平面位置,流体密度为ρ=1000kg/m3.求使船保持稳定的力.8.如图4-28所示,摩托艇在河中以9m/s的速度(相对岸边)逆流而上.河中水流速度为 6.5m/s.该艇用的喷水推进装置,由船首进水.船尾排水.若射流相对艇的速度为18m/s,流量为0.15m3/s,问产生的推力为多少9.如图4-29所示为一突然扩大的管道,d1=50mm,d2=100mm,所通过的流量Q=16m3/h 的水.在截面突变处置一差压计,其中充满γ=15689N/m3的液体,读得液面高差h=173mm,试求管径突然扩大的阻力系数.10.鱼雷在水下5m深处以50km/h的速度运动,据相对性原理,可认为鱼雷不动,流体从无穷远处以流速50km/h流过鱼雷.(1)若流体流过鱼雷表面时,其最大速度为无穷远处速度的1.5倍(如图4-30所示的A点处),求鱼雷A点处的压力.(2)设水温为15℃,产生空泡的压力为2.33kN/m2,求鱼雷产生空泡时,鱼雷的速度.11.如图4-31所示的圆柱形闸门,图(a)为关闭状态,图(b)为开启状态,此时上游水位升高0.6m.计算作用在闸门上水平方向的分力,并比较两垂直分力的大小,两种情况下的合力都通过圆心吗第五章思考题1.速度环量是否一定存在于闭曲线情况下对于非闭曲线的速度环量,能否用斯托克斯定理来计算试归纳一下环量的几种计算法.2.如何理解流体涡线与流线的差别3.在涡核区(rR的范围内,求压力分布时用拉格郎日方程,而在的范围内,求压力时要用欧拉方程直接积分呢8.在求解兰金组合涡流场时,为什么须先解r>R的外部流场,再解rΓ2>0,求这两直线涡的运动轨迹.4.已知速度场为vx=-,vy,其中k为大于零的常数.求沿周线x2+y2=32的速度环量.5.流体在平面环形区域a1<ra),其中a,ω为常数,k为柱坐标系中z方向的单位矢量,设速度分布是轴对称的, 求此速度分布.15.已知流线为同心圆族,其速度分别为()(r>5)试求:沿圆周x2+y2=R2的速度环流,其中圆的半径分别为R=3,R=5和R=10.16.给定柱坐标内平面流动vr=(1-)cosθ其中,k,a均为常数,求包含r=a圆周在内的任意封闭曲线的速度环量.17.已知速度场为,求:沿圆x2+y2=1的速度环量.18.已知速度场为,求:沿椭圆4x2+9y2=36的速度环量.19.如图5-26所示,初瞬时在(1,0),(-1,0),(0,1)和(0,-1)上分别有环量Γ等于常数的点涡,求其运动轨迹.第六章1.举例说明势流理论解决流体力学问题的思路.2.速度势和流函数同时存在的条件是什么各自具有什么样的性质3.举例说明用保角变换解决势流问题的思路.4.举例说明附加质量和附加惯性力的概念.5.均质不可压缩理想流体绕物体的定常,三维流动,若物体有升力,问物体是否有阻力习题1.a)ψ=kxy, c)ψ=klnxy2b)ψ=x2-y2, d)ψ=k(1-1/r2)rsinθ式中k为常数.2.已知不可压缩流体平面流动的速度势为φ=x2-y2+x求其流动的流函数.3.给定速度场vx=x2y+y2,vy=x2-y2x,vz=0,问:(1)是否同时存在流函数和势函数(2)如存在,求出其具体形式.4.已知vx=2xy+x,vy=x2-y2-y,vz=0,问:是否存在势函数如存在,试求出其具体形式.5.已知不可压缩平面流动的势函数φ=xy,求流函数及速度分布.6.下列流函数描述的流场是否为有势流,式中C为常数.(1)ψ=2y-52y2+52x2-3x+C(2)ψ=x+x2-y27.已知速度势ψ=Ccosθr,求对应的流函数.式中C为常数.8.求流函数ψ=x+x2-y2的速度势,并求点(-2,4)和点(3,5)之间的压力差.9.一强度为Γ的平面点涡位于(a,0)点,若y轴为一物体表面,求:(1) 流场的流函数;(2) 该物体表面上的压力分布.假定无穷远处压力为零.10.假设在(-a,0)处有一平面点源,在(a,0)处有一平面点汇,它们强度均为Q.若平行直线流和这一对强度相等的源与汇叠加,试问:此流动表示什么样的物体绕流画出绕流示意图,并确定物面方程及驻点所在位置.11.流函数ψ=rπ/αsinπθα表示经流α角的流动,如图6-29所示.(1) 求流动的速度势;(2) 证明α=π是表示二平行直线流动,并画出流线图;(3) 证明α=π2时,表示为一流径α=π2角的流动,并画出流线图.12.求图6-30所示流动的复势.13.求图6-31所示流动的复势,m为偶极矩.14.在静止无界流场中,如图6-32所示分布着四个等强度的平面点源和点汇.求流场的复势.15.如图6-33所示,在速度为v∞的均匀来流中,若在原点处放置一个流量为Q的源,试求沿x轴的压力分布.16v∞的平行均匀来流中,在坐标原点放置一个流量为Q的源,从而形成一个半体头部绕流的组合流场,求:(1)驻点位置;(2)过驻点的流线;(3)沿过驻点(零流线上)的速度分布和压力分布.17.给定复势(1+i)ln(z2-1)+(2-3i)ln(z2+4)+1z,试求通过圆x2+y2=9的体积流量(单位长度)及沿该圆周的速度环量.18.已知平面流动的势函数或流函数,求相应的复势.(1)φ=tg-1yx(2)ψ=ln(x2+y2)19.在点(a,0),(-a,0)上放置等强度的点源.(1)证明圆周x2+y2=a2上的任意一点的速度都与y轴平行,且此速度大小与y成反比;(2)求y轴上速度最大的点;(3)证明y轴是一条流线.20.设复势为:W(z)=mln(z-1/z).(1)流动是由哪些基本流动组成的;(2)求流线方程;(3)求单位时间内通过z=i和z=1/2两点连线的流体体积.21W(z)=2z+8z+3ilnz,试证明x2+y2=4为零流线且为圆柱体表面,并求圆柱体的受力.22一无穷长的平坦河床上有一障碍物,其外形为一圆弧oa如图6-34所示,来流速度为U,W(z)=U(π-απααzπ/(π-α)-123在宽度为B的无穷长渠道中央放置一强度为2πΓ的点涡,方向如图6-35所示,W(z)=iΓlneπz/B-ieπz/B+i24圆柱体半径为0.5m,在静水中从速度为零加速至速度为3m/s,求所需推力作功为多少25有一半径为r0的无限长圆柱,在距圆柱中心b(b>r0)处,放置强度为2πM的偶极子.试求此圆柱体受的力.设流体密度为ρ.26在水下有一水平的圆柱体,其半径为0.1m,每米长度重力G=196.2N.如果垂直向下对每米长度圆柱体作用以F=392.4N的力,求圆柱体的运动方程.第七章思考题1.为什么波浪运动是理想流体的无旋运动2.波浪运动是定常运动吗3.波形传播速度与流体质点的绝对速度有何不同4.什么是波的群速度当水深h远大于波长L时,群速度与相速度比例如何当水深h 远小于波长L时,群速度与相速度比例如何5.水波如何按水深进行分类对于不同水深的波浪,其相速度有什么差别其群速度又有什么差别6.重力和惯性力在液体的波浪运动中各起什么作用7.二元进行波,由深水进行到浅水后,若波长保持不变,其波能传播速度是否变化习题1.在水深h=10 m的水域内有一微振幅波,波振幅a=1 m,波数k=0.21,试求:波长,波速,周期;(2)波面方程式;(3)x0=0及z0=-5m处水质点的轨迹方程.2.海洋波以10 m/s的速度移动,求这些波的波长和周期.3.在无限深液体波面上,观察到浮标一分钟内上升下降15次,试求波长和波的传播速度.4如图7-5所示,半径为a的二维圆柱绕流,已知水面为小振幅波,试建立方程及边界条件.5.已知有限深液体平面进行波的速度势为试给出自由表面的波形表达式.6.已知进行水波的速度势为求:(1)波速C;(2)波峰上流体质点的速度.7.有一全长为90m的船沿某一方向以等速V航行,今有追随在船后并与船航行方向一致的波浪以传播速度C追赶该船.它赶过一船长所需时间为16.5s,而超过一个波长的距离所需时间为6s,求波长及船速V.8.波长为3.14m的波,在某一深度处次波面的波高减小一半,试求这一深度.9.考虑一线性平面重力波,其自由面形状为η=a coskx cosσt.若水是无限深的,求:(1)流体质点的速度;(2)流体质点的运动轨迹;(3)流体中的压力分布.10. 已知表面波自由面形状为η=asin(3x-σt),如果水深h=2m,a L.求:(1)波长;(2)频率.11. 考虑线性平面重力波,水深比波长小得多,已知自由面形状为η=a sin(kx-σt),求:速度势,波长,周期和相速度.12. 已知波长λ=10m,波高为1m,求水下1m体的相对压力.第八章思考题纳维尔——斯托克斯方程应用时有无什么限制在哪些流动情况下有精确解2.两平行平板间粘性不可压缩流体作定常层流流动时,其流动是否为有旋运动此时迁移加速度是否为零压力梯度 (沿流动方向)是否为常数3.理想流体压力与粘性流体压力有何差别4.粘性流体运动的剪切应力与剪切变形角速度成什么关系这一关系是否适用于各种流体的流动5.试讨论物体在粘性流体中运动和在理想流体中运动其物面边界条件有何差别.习题1.试验证管内完全发展的层流流动,任意截面上的速度分布u满足下列方程式:式中μ为流体的粘性系数.流体为不可压缩流体.2.如图8-13所示,倾斜平板上流体作层流流动,试证明:(1)速度分布为:(2)单位宽度上的流量为3.光滑管的湍流运动核心部分的速度分布式中umax,r0为常数,试证管流平均流速为4.如图8-14所示,粘性流体沿垂直圆筒表面以稳定的层流流下,试求出该流动的速度分布.该流体的粘性系数和密度分别为μ和ρ.5.一皮带输送机装在船上,用来清除浮在海面上的油污,如图8-15所示.假设皮带以一稳定速度v运行,试利用θ,v以及油的粘性系数μ,确定单位宽度皮带所携带油的流量.6.μ=0.05N·s/m2的油在环状缝隙中流动.如图8-16所示,已知内径a=0.01m,外径b=0.02m,若外壁的剪应力为40N/m2,求:(1)每米长度上环状缝隙的压力降;(2)流体的体积流量;(3)流体作用在长度为L的内壁上的轴向力.7.证明相距为h的两无限长不动的平行平板间不可压缩粘性流体定常层流运动时,截面上通过的体积流量与单度长度平板上的压力降成正比.第九章思考题1.试分别讨论量纲,基本量纲,导出量纲的函义,在一般流体力学中,基本量纲(独立量)有几个2.试讨论量纲齐次性原理的意义.3.两个流动现象相似的充分,必要条件是什么。

(完整版)工程流体力学课后习题(第二版)答案.doc

(完整版)工程流体力学课后习题(第二版)答案.doc

h 12 h 6 2 1 0.1 12h 6 得h4 m 3 2-11.有一盛水的开口容器以的加速度 3.6m/s 2沿与水平面成 30o 夹角的斜面向上运动, 试求容器中水面的倾角。 [ 解 ] 由液体平衡微分方程 dp ( f x dx f y dy f z dz) f x a cos300 , f y 0 , f z ( g asin 300 ) 在液面上为大气压, dp a cos300 dx ( g a sin 300 )dz 0 dz a cos300 0.269 tan g a sin 300 dx 150 2-12.如图所示盛水 U 形管,静止时,两支管水面距离管口均为 h ,当 U 形管绕 OZ 轴以等角速度ω旋转 时, 求保持液体不溢出管口的最大角速度ωmax 。 [ 解 ] 由液体质量守恒知, 管液体上升高度与 管液体下降高度应相等,且两者液面同在一等压面上, 满足等压面方程: 2r 2 C z z I II
=45 °,闸门挡水深 h=3m ,试求水对闸门的作用力及 方向 [ 解 ] 水平分力: F px gh c A x hhb 1000 3.0 g 9.81 3 44.145kN 2 2 压力体体积: V [ h( h h) 1 h 2 ] 8 ( h ) 2 sin 45 2 sin 45 [ 3(3 3) 1 32 ] ( 3 )2 sin 45 2 8 sin 45 1.1629m 3 铅垂分力: F pz gV 1000 9.81 1.1629 11.41kN 合力: Fp F px 2 F pz 2 44.1452 11.412 45.595kN 方向: arctan
2g h 液体不溢出,要求 z I z II 2h , 以 r 1 a, r 2 b 分别代入等压面方程得: a b a>b gh 2 a2 b2 max 2 gh b2 a2 2-13.如图, 600 ,上部油深 h 1= 1.0m ,下部水深 h 2 = 2.0m ,油的重度 =8.0kN/m 3,求:平板 ab 单位 宽度上的流体静压力及其作用点。 [ 解 ] 合力 Pb 1 h11h22油 h 1 sin 600 2 水 h 2 sin 600 = 46.2kN +油h1h20 sin 60 作用点: 1

流体力学第一次作业答案

流体力学第一次作业答案
F΄=ρVr2 h (1 + cos30°) = (5.374 kN) (6/12)2 = 1.344 kN
4
处于大气压环境中,沿流线速度不变 V1 = V2 = V 。由连续性方程及对称性 h1 = h2 = 0.5h。
设作用力沿 x 轴方向(由对称性,垂直方向合力为零),由 x 方向的动量方程 2ρV(0.5h)(-V )cos30°-ρVhV= -F
F =ρV 2h (1+cos30°) = (10 3 kg/m3) (12 m/s)2 (0.02 m) (1+0.866) =5.374 kN (2) 在匀速运动控制体动量方程中 Vr = V-U = (12 m/s) - (6 m/s) = 6m/s
eln(x+t+1) × ec = et ,即 x+t+1= et /e c = C1 et , ∴x= C1 et -t-1. 同理,v=dy/dt=-y+t, dv/dt=d(-y+t)/dt= -dy/dt+1=y-t+1= -(-y+t-1)
∫ ∫ d (− y + t) /− (− y + t − 1) = dt , ㏑(-y+t-1)-㏑ C=-t, y= C2 e−t +t-1,
t = 0 时 y = 1, C2 = 2, 迹线方程为 x = 2et - t – 1, y = 2 e-t + t – 1
以上是一阶常微分方程的一种解法,也可以如下解法:
u=dx/dt=x+t, du/dt=d(x+t)/dt=dx/dt+1=x+t+1
2
10 秋船舶专升本流力第一次课外作业

流体力学课后习题与答案

流体力学课后习题与答案

第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。

求流线方程并画出若干条流线。

解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。

z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。

解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。

流体力学课后作业

流体力学课后作业

1.1 A pressure of 2⨯106N/m2 is applied to a mass of water that initially filled a 1,000cm3 volume. Estimate its volume after the pressure is applied.将2⨯106N/m2的压强施加于初始体积为1,000cm3的水上,计算加压后水的体积。

(999.1cm3)1.2 As shown in Fig.1-9, in a heating systemthere is a dilatation water tank. The whole volume ofthe water in the system is 8m3. The largesttemperature rise is 500C and the coefficient ofvolume expansion is αv=0.0005 1/K, what is thesmallest cubage of the water bank?如图1-10所示,一采暖系统在顶部设一膨胀水箱,系统内的水总体积为8m3,最大温升500C,膨胀系数αv=0.005 1/K,求该水箱的最小容积?(0.2m3) Fig. 1-9 Problem 1.21.3 When the increment of pressure is 50kPa, the density of a certain liquid is 0.02%. Find the bulk modulus of the liquid.当压强增量为50kPa时,某种液体的密度增加0.02%。

求该液体的体积模量。

( 2.5⨯108Pa)1.4 Fig.1-10 shows the cross-section of an oiltank, its dimensions are length a=0.6m, widthb=0.4m, height H=0.5m. The diameter of nozzleis d=0.05m, height h=0.08m. Oil fills to theupper edge of the tank, find:(1)If only the thermal expansioncoefficient αv=6.5⨯10-41/K of the oil tank isconsidered, what is the volume Fig.1-10 Problem 1.4of oil spilled from the tank when the temperature of oil increases from t1=-200C to t2=200C?(2)If the linear expansion coefficient αl=1.2⨯10-51/K of the oil tank is considered, what is the result in this case?图1-10为一油箱横截面,其尺寸为长a=0.6m、宽b=0.4m、高H=0.5m,油嘴直径d=0.05m,高h=0.08m。

(完整版)工程流体力学课后习题答案1-3.doc

(完整版)工程流体力学课后习题答案1-3.doc

第一章 流体及其主要物理性质1-1. 轻柴油在温度 15oC 时相对密度为 0.83,求它的密度和重度。

水1000kg / m 3 相对密度: d解: 4oC 时9800 N / m3水水水0.83 所以,0.83水水0.83 1000 830kg / m 3 0.83 9800 8134 N / m 31-2.甘油在温度 0oC 时密度为 1.26g/cm 3 ,求以国际单位表示的密度和重度。

解: 1g / cm 3 1000kg / m 3g1.26g / cm 3 1260kg / m 3g 1260 9.8 12348N / m 31-3.水的体积弹性系数为 1.96×109N/m 2,问压强改变多少时,它的体积相对压缩 1%?解: E1(Pa)pdV VpdppV VV E 0.01E 1.96 10 7 Pa 19.6MPapV1-4.35 2时容积减少3容积 4m 的水,温度不变,当压强增加 10 N/m 1000cm ,求该水的体积压缩系数β p 和体积弹性系数 E 。

V V 1000 10 6解:4 91pp1052.5 10 PaE12.5 1 4 10 8 Pap10 91-5. 用 200L 汽油桶装相对密度为 0.70 的汽油,罐装时液面上压强为 1 个大气压,封闭后由于温度变化升高了 20oC ,此时汽油的蒸气压为 0.18 大气压。

若汽油的膨胀系数为 0.0006oC -1,弹性系数为 2。

试计算由于14000kg/cm 压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?4解: E =E ’· g =14000×9.8×10 PadVVdTVdpT pV V 0 VTVV V 0 V TTTppp Vp所以, dVVdTVdpT V 0dTp V 0dpTp从初始状态积分到最终状态得:V T pdVT V 0 dTp V 0 dpV 0T 0p 0即V V 0T (T T 0 )V 01( p p 0 )V 0E 1040.000620 0.18 9.8 2002009.8 104140002.4L2.57 10 3 L 2.4LMVV 0.7 1000200 2.4138.32kg 1000另解:设灌桶时每桶最多不超过 V 升,则V dV t dV p 200dV t tVdt 0.00061 20VdV ppV dp1 0.18V (1 大气压= 1Kg/cm 2)14000V =197.6 升dV t =2.41 升-3G =0.1976×700= 138Kg = 1352.4N1-6.石油相对密度 0.9,粘度 28cP ,求运动粘度为多少 m 2/s?解: 1cP 10 2 P1mPa s 10 3 Pa s1P 0.1Pa s28 10 3 3.1 10 5 m 2 / s 0.31St 31cSt0.9 10001-7.相对密度 0.89 的石油,温度 20oC 时的运动粘度为 40cSt ,求动力粘度为 多少?解: d-420.89ν= 40cSt =0.4St = 0.4 ×10 m/s水μ=νρ= 0.4 ×10-4 ×890= 3.56 × 10-2 Pa ·s1-8. 图示一平板在油面上作水平运动,已知运动速度 u=1m/s ,板与固定边界的距离δ =1,油的动力粘度μ= 1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:du 1.147 1 1.147 103 N / m 2dy 1 10 31-9. 如图所示活塞油缸,其直径D= 12cm,活塞直径 d= 11.96cm,活塞长度L=14cm,油的μ= 0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力 F=?解: A=π dL , μ= 0.65P=0.065 Pa · s , u=0.5m/s , y=(D-d)/2FA du0.065 3.14 11.96 10 2 14 10 2 0.510 28.55N dy 12 11.96 2第二章 流体静力学2-1. 如图所示的 U 形管中装有水银与水,试求:( 1) A 、 C 两点的绝对压力及表压各为多少?( 2) A 、 B 两点的高度差为多少?解:① p A 表 =γ h 水= 0.3mH 2O =0.03at = 0.3× 9800Pa =2940Pap A 绝= p a + p A 表 =(10+0.3)mH 2 O =1.03at = 10.3×9800Pa= 100940Pap C 表=γ hg h hg + p A 表= 0.1× 13.6mH 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝= p a + p C 表 =(10+1.66)mH 2O = 11.66 mH 2O =1.166at = 11.66×9800Pa =114268Pa ② 30c mH 2 = 2h = 30/13.6cm=2.2cmO 13.6h cmH O题 2-2题 2-32-2. 水银压力计装置如图。

流体力学课后作业答案

流体力学课后作业答案

49
2.37 圆柱体直径d=2m,长l=5m,放置于60°的斜
面上,求水作用于圆柱体上的静水总压力大小及其

作用方向。


解: Px ghxC Ax

9800 d cos 60 d cos 60 5
2
60°
24.5kN
V

1 2
V圆

V三角
[1 (d )2
22
1 d sin 60 2
0


R3 H3
h3dh
=39.6N m
33
1-13 水暖系统为防止水温升高时体积膨胀将水管胀裂, 在系统顶部设膨胀水箱,若系统内水的总体积V=8m3,
流 体 力
加温前后温差为50ºC,水的体膨胀系数为0.0005 1/ºC, 学
求膨胀水箱的最小容积。
dV
解:由
V

V dt
dV V dt V 0.0005508 0.2m3
若反向流动,Q不变,Re不变,λ不变,hf不变,
所以h不变,只是反向高差为9cm。
26
4-20 环形断面管道中水温10℃,流量Q=400L/min,
当量粗糙高度K=0.15mm,d=75mm,D=100mm。求 流
在管长l=300m管段上的沿程水头损失。

解: v Q 4Q 1.94m/s
34
第二章习题解答
2-29 有一容器上部盛油h1=1m,ρ1=800kg/m3,下部盛水 h2=2m,侧壁倾角θ=60º。求容器壁上单宽静水压力及作用 位置。
解:F1 1gh1C A1
油 h1
8009.8 0.5 (1/ sin 60) 1 4.52kN

《流体力学》课后习题详细解答

《流体力学》课后习题详细解答
克服轴承摩擦所消耗的功率为
1-8解:
或,由 积分得
1-9解:法一:5atm
10atm
=0.537 x 10-9x (10-5) x98.07 x 103= 0.026%
法二: ,积分得
1-10解:水在玻璃管中上升高度
h =
水银在玻璃管中下降的高度
H= mm
第二章流体静力学
2-1解:已知液体所受质量力的x向分量为–a ,z向分量为-g。液体平衡方程为
重心C位于浮心之上,偏心距
沉箱绕长度方向的对称轴y轴倾斜时稳定性最差。浮面面积A=15m2。浮面关于y
轴的惯性矩和体积排量为
定倾半径
可见, >e,定倾中心高于重心,沉箱是稳定的。
第三章流体运动学
3-1解:质点的运动速度
质点的轨迹方程
3-Байду номын сангаас解:
由 和 ,得

3-3解:当t=1s时,点A(1,2)处的流速
线速度u = 0r,速度环量
(2)半径r+dr的圆周封闭流线的速度环量为

忽略高阶项2 0dr2,得d
(3)设涡量为 ,它在半径r和r+dr两条圆周封闭流线之间的圆环域上的积分为d 。因为 在圆环域上可看作均匀分布,得
将圆环域的面积dA=2 rdr代入该式,得
可解出 =2 + dr/r。忽略无穷小量 dr/r,最后的涡量
沉箱绕长度方向的对称轴y倾斜时稳定性最差。浮面面积A=15m2.浮面关于y轴的惯性矩和体积排量为
定倾半径
可见, ,定倾中心低于重心,沉箱是不稳定的。
(2)沉箱的混凝土体积
沉箱的重量
沉箱水平截面面积
设吃水深度为h,取水的密度 =1000kg/m3.浮力F等于重量G。有

计算流体力学习题答案(6)

计算流体力学习题答案(6)

解:算子2222()1L x y∂∂=-++∂∂正定:222222222222(),[()][()][()()][()()]u uL u u u udxdyx y u uu u dxdyx y u u u uu u dxdy dxdy u dxdy x x y y x y ΩΩΩΩΩ∂∂<>=-++∂∂∂∂=-++∂∂∂∂∂∂∂∂=-++++∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰利用高斯公式,并注意到边界s 上的边界条件有:22[()()]S S u u uu u dxdy u dS u dS x x y y n Ω∂∂∂∂∂+==-∂∂∂∂∂⎰⎰⎰⎰ 因此得到:22222(),[()()]0S u u L u u dxdy u dS u dxdy x y ΩΩ∂∂<>=+++>∂∂⎰⎰⎰⎰⎰正定 对称:222222222(),[()]()[()()][(][]S u uL u v u vdxdyx y u uvdxdy uvdxdy x y u u u v u v v v dxdy dxdy uvdxdy x x y y x x y y u v u vdxdy uvdS uvdxdy x x y y ΩΩΩΩΩΩΩΩ∂∂<>=-++∂∂∂∂=-++∂∂∂∂∂∂∂∂∂∂=-++++∂∂∂∂∂∂∂∂∂∂∂∂=+++∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰同理22222(),[()][]S v vL v u v udxdyx y u v u vdxdy uvdS uvdxdy x x y y ΩΩΩ∂∂<>=-++∂∂∂∂∂∂=+++∂∂∂∂⎰⎰⎰⎰⎰⎰⎰(),(),L u v L v u <>=<>对称于是写出赫林定力的泛函式:22222221()(),,2111[()()]222y y S J u L u u u x e u u dxdy u dS u dxdy x e udxdy x y --ΩΩΩ=<>-<->∂∂=++++∂∂⎰⎰⎰⎰⎰⎰⎰解:算子2222()L x y∂∂=-+∂∂证明算子正定:222222(),[()][()()][()()]u u u u u uL u u udxdy u u dxdy dxdyx y x x y y x y ΩΩΩ∂∂∂∂∂∂∂∂<>=-+=-+++∂∂∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰ 根据格林公式2222[()()][(1*)(1*)]()S Su u u uu u dxdy u dS g dS x x y y n n u u u ug dxdy g dxdy x x y y x y ΩΩΩ∂∂∂∂∂∂+==∂∂∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰222222(),[()()]()u u u uL u u dxdy g dxdy x y x y ΩΩ∂∂∂∂<>=+-+∂∂∂∂⎰⎰⎰⎰事实上,无法证明上式大于0,无法证明其正定性。

流体力学课后习题与解答(供参考)

流体力学课后习题与解答(供参考)

1.1 按连续介质的概念,流体质点是指:( )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

1.2 作用于流体的质量力包括:( )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。

1.3 单位质量力的国际单位是:( )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。

1.4 与牛顿内摩擦定律直接有关的因素是:( )(a )剪应力和压强(b )剪应力和剪应变率(c )剪应力和剪应变(d )剪应力和流速 1.5 水的动力黏度μ随温度的升高:( ) (a )增大;(b )减小;(c )不变;(d )不定。

1.6 流体运动黏度ν的国际单位是:( )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。

1.7 无黏性流体的特征是:( )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。

1.8 当水的压强增加1个大气压时,水的密度增大约为:( )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。

2.1 静止流体中存在:( )(a )压应力;(b )压应力和拉应力;(c )压应力和剪应力;(d )压应力、拉应力和剪应力。

2.2 相对压强的起算基准是:( )(a )绝对真空;(b )1个标准大气压;(c )当地大气压;(d )液面压强。

2.3 金属压力表的读值是:( )(a )绝对压强(b )相对压强(c )绝对压强加当地大气压(d )相对压强加当地大气压 2.4 某点的真空度为65000Pa ,当地大气压为0.1MPa,该点的绝对压强为:( )(a )65000Pa ;(b )55000Pa ;(c )35000Pa ;(d )165000Pa 。

2.5 绝对压强abs p 与相对压强p 、真空度V p 、当地大气压a p 之间的关系是:( )(a )abs p =p +V p ;(b )p =abs p +a p ;(c )V p =a p -abs p ;(d )p =V p +V p 。

流体力学课后习题

流体力学课后习题

流体力学课后习题第一章思考题1.什么是连续介质为何要做这种假定2.流体的粘度与流体的压力有关吗3.流体的重度,比重和密度之间是怎样的关系4.什么是理想流体什么是粘性流体它们有什么区别5.流体的动力粘性系数与运动粘性系数有什么不同它们之间有什么关系6.液体和气体的粘性系数μ随温度的变化规律有何不同为什么7.牛顿流体是怎样的流体非牛顿流体有哪些它们之间有什么区别8.为什么将压力和切应力称为表面力而又将惯性力和重力称为质量力9.怎样理解静止流体或理想流体中一点处的压力是一个标量流体静压强有何特性气体和液体在压缩性方面有何不同10.题习1.海面下8km 处水的压力为81.7 ×106N/m2,若海面水的密度ρ=1025kg/m2,压力为1.01 ×105N/m2,平均体积弹性模量为2.34 ×109N/m2,试求水下8km 处的密度 .2.如图1-12 所示,半径为a的圆管内流体作直线单向流动,已知管道横截面上的流体速度分布为这里流体粘性并指出切应力的方向 . r=a :r=0,r= 和处的流体切应力,其中umax=const,求. μ系数为筒与轴之D, ,同心轴和筒中间注入牛顿型流体,轴的直径为3.如图1-13 所示的旋转粘度计假定间隙中的流体作周.ω旋转,且保持流体的温度不变间的间隙δ很小 .筒以等角速度求流M, 故底部摩擦影响可不计 .若测得轴的扭矩为向流动且速度为线性分布,设L 很长, .体的粘性系数两平=2mm的油, ,一平板在另一平板上作水平运动,其间充满厚度为δ4.如图1-14 所示求单位面·s/cm2,粘性系数μ=1.10 ×10-5N假定油膜内的速度分布为线性分布板平行 . , .积上的粘性阻力轴与轴套之间充满,5.有金属轴套在自重的作用下沿垂直轴下滑的润滑=900kg/m3,ρ试确定轴套等速h=250mm, d2=100mm ,重100N,轴的直径油.轴套内经d1=102mm,高 .下滑的速度与空气接触的上表面阻力可,流层厚度为t,6.如图1-15 所示,牛顿型流体从一倾斜板流下,μ粘性系数为θ)流体流动速度恒定,若流体的密度为ρ,忽略不计 .在斜面上(倾角为 .求流层内的速度分布直径为5.01cm)内运动,当其间的润滑油温度由00C 变到5cm,7.活塞直径为在气缸(试确定活塞运动所需的力减少的百分比,120°C 时在-2N10·s/m2,, .设在0°C 时μ1=1.7 ×s/m2.×120°C 时, μ2=2-103N ·由于转轴与轴套之间的流后,重一飞轮回转半径为30cm, 500N,当其转速达到600r/min 8.0.05cm, 2cm,这里轴套长5cm,轴的直径为径向间隙为1r/min. 体的粘性而使其转速减少 .试确定流体的粘度设)(209.试求常温下°C,一个大气压使水的体积减少0.1%,所需的压力-8cm2/N10.p=4.8 β×求此流体的体积弹性×p 10.当压力增量Δ=5104N/m2 0.02%,某种流体的密度增长时, .模量第二章思考题1欧拉平衡微分方程综合式可积分的条件是什么2何谓等压面等压面与质量力作用线之间的关系如何3何谓连通器原理工程上有何应用4压力p 和总压力P 有何不同如何计算静止流体中平板上的总压力和压力中心水箱中储有重度不同的两种流体,如图2-28 所示 .容器和测管都与大气相通,问测管 1和2 中的液面是否与o-o 面平齐是高于还是低于o-o 面中的水平面是等压面吗连)静止流体(包括相对静止两种流体的分界面是等压面吗通容器中的水平面是等压面吗水箱橡皮管连接容器B,所示的密闭水箱A,顶部自由液面的压力为p0,7 如图2-29 : 2 问接有测压管1 和两测压管的水面是否平齐 2 (1)1 和对吗若平齐,pa=pb还两测压管的水面将如何变化p0 的值是增加减少(2)若将容器B 提高一些,是不变中水面正好与直至 B 若将容器 B 下降(测压管 1 和2 均封闭)(3)问此时点平齐,CC点的压力为多少8 何谓压力体它由哪几个面构成实压力体与虚压力体有何异同9如图2-30 所示各AB 段壁面均为二向曲面,试画出AB 段上的压力体 .10如图2-31 所示水平台面上置放五个形状各异,但底面积相等的容器,若容器内的水深H 均相等,试比较容器底面积上所受静水总压力的大小.11 如图2-32 所示形状各异,但面积相等的闸门,浸没在同一种液体中,试比较各闸门所受静水总压力的大小 .问其若该物体的表面接触的流体压力处处相等, 12 一个任意形状的物体处于静止流体中,上的流体总压力为多少表征各种) (绘出示意图船舶的平衡条件是什么船舶的漂浮状态通常有哪几种情况. ,列出各种浮态的平衡方程浮态的参数有哪几个根据静力平衡条件题习的中其余液体为水2-33 所示的差动式比压计中的水银柱高h=0.03m, ,容器A,B 1.如图.容器中心处的压力差H=1m,求A,B 心位置高差该球直径为,用金属球封闭, 2-34 2.如图所示的容器底部有一圆孔圆孔的直径为5cm,.求水作用于圆球上的总压力3cm.3.如图2-35 所示,H=3m, α=45°,闸门宽为b=1m,求扇形闸门上所受静水总压力 .设水的密度为1000kg/m3..分别按下列三种情况计算.所示的单位长圆柱体上所受静水总压力 4.试确定图2-36 (1)H1=d,H2=0;(2)H1=d/2,H2=0;(3)H1=d,H2=d/2.5.如图2-37 所示,当闸门关闭时,求水作用于闸门上合力对0 点的力矩 .设γ=9802N/m3.6.如图2-38 所示,重度为9100 N/m3 的油液所充满的容器中的压力p 由水银压力计读数h 来确定,水银的重度为1.33 ×105 N/m3,若压力不变,而使压力计下移至a点的位置 .求压力计读数的变化量h.水压力经闸门的面板传到三条水平梁上,所示,矩形平板闸门7.如图2-39 为使各横,6宽已知闸门高梁的负荷相等,试问应分别把它们置于距自由液面多深的地方4m,H=3m.m,水深,的流体γ8.如图),浸入重度为即与液面平行所示等腰三角形平面的一边水平2-40 (中三角形高为a,水平边宽b,水平边距自由液面为a,求作用于三角形上的静水总压力及压力中心 .9.求图2-41 所示,d=4m 的单位长圆柱体上的静水总压力 .10.船沿水平方向作匀加速直线运动,其液体舱的液面倾斜45°,求船的加速度 .11.某船从内河出海,吃水减少了20cm,接着在港口装了一些货物后吃水复又增加了15cm.设该船最初的排水量为100t, 吃水线附近船的倾面为直壁, 海水的密度为ρ=1025kg/m3.问该船在港口装了多少货物.试证流体静止的必要条件是质量力必须满足式中为质量力12.加速, 2m,在与水平面成30°的倾斜面上向上运动矩形水箱高13.如图2-42 所示, 1.2m,长 .试求箱内液面与水平面之间的倾角度为4m/s2.处θ .C处开口通大气,A ,一细长直管,长L=20cm, 与铅垂轴的夹角为2-43 14.如图所示B 求截面 A 和若管子绕Z 轴作等角速度ω旋转,管内盛满密度为封死. ρ的均质流体 .设流体相处流体质点的质量力的大小和方向 . .对管子是静止的求作用于该板上的静水总压,15.直径为4m 的圆板铅垂地浸入水中,上面与水面相切时 ..力及压力中心以下缘连接铰链, A 处设有转轴,160 一矩形闸门的位置与尺寸如图2-44 所示,闸门上缘=)ξ,求开启闸门所需的拉力T.(Ic 若忽略闸门自重及轴间摩擦力备开闭 .水闸一侧的°当),α17.如图3-45 所示为一绕铰链O 转动的自动开启式水闸(倾角=60 x. ,试求铰链至水闸下端的距离水深h1=2m,另一侧的水深h2=0.4m 时,闸门自动开启已知闸门18.求图2-46 所示封闭容器斜壁上的圆形闸门所受的静水总压力及作用点.=)ξ容器内水面的相对压强=98.1kN/m2.(Ic 直径d=2m,a=1m,a=60°,阀门上缘有一1m,其上斜盖一椭圆形阀门,泄水孔道直径19.一泄水装置如图2-47 所示,试求开启阀门的, H=2m.若不计阀门重量及铰链的摩擦力,铰链泄水孔上缘距水面距离力T.(Ic ξ=)第三章思考题拉格朗日法与欧拉法有何异同欧拉法中有哪两种加速度它与速度场的定常与否及均匀与否有什么关系如何理解欧拉法求质点加速度时,其表达式中空间位置(x,y,z)是时间的函数陨星下坠时在天空中划过的白线是什么线流线与轨迹线有何区别在如何判断流线方向流线有什么基本性质同一时刻不同流体质点组成的曲线是否都是流线同一流场中,那么是否一定有和, ,每一流体质点的密度都保持不变如果在运动过程中观察者在什么坐标系下可以观察到定常运动一条船在静水中作等速直线运动,则是船而船模在水槽中试验船模在水池中试验,拖车拖带船模在静水中作等速直线运动 . ,试讨论这两种流动坐标系的相对于地球),水槽中的水以均匀来流绕船模流动, (模固定不动选择及流动的定常或非定常性流体微团一定做直线运无旋运动时流场为有旋运动时,流体微团一定做圆周运动吗,动吗流体微团的旋转角速度与刚体的旋转角速度有什么本质差别11.题习:求,已知流场的速度分布为 1.流体的剪切变形角速度;(1)点(3,1)处流体质点的加速度 .(2)给定速度场,,vz=0 且令t=0 时,r=a, θ=b, τ=c.2.求流场的加速度 .3.已知平面流速度场为vx=1+2t,vy=3+4t, 求: (1)流线方程;(2)t=0 时经过点(0,0),(0,1),(0,-1) 的三条流线方程; (3)t=0 时经过点(0,0)的流体质点的迹线方程 . 4.已知平面流动的速度分布为式中Γ为常数,求流线方程 .5.给定速度场vx=-ky,vy=kx,vz=w0. 式中k,w0 是常数 .求通过x=a,y=b,z=c 的流线 .已知不可压缩液体平面流动的流速场为6.vx=xt+2y vy=xt2-yt处液体质点的加速度A(1,2)求当t=1s 时,点:m/s2).单位(7.已知流体中任一点的速度分量,由欧拉变数给出为vx=x+tvy=-y+t vz=0试求t=0 时,通过点(-1,1)的流线 .8.已知流体的速度分布为vx=1-y,vy=t, 求:t=1 时过(0,0)点的流线及t=0 时位于(0,0)点的质点轨迹 . . t=1 时的加速度(3,0,2)求:空间点在9.给出流速场为,已知空间不可压缩液体运动的两个流速分量为10. :试求vx=10x,vy=-6y,方向上的流速分量的表达式z流动是否为有旋运动,哪些满足连续性方程11.试证明下列不可压缩均质流体运动中,哪些不满足连续性方.程vx=-ky vy=kx vz=0 (1)vx=kx vy=-ky vz=0 (2) (3)(4) vx=ay vy=v vz=0vx=4 vy=vz=0 (5)vx=1 vy=2(6)=0 是不为零的常数) v θ(7)vr=k/r(k 在柱坐标系中提示: ,连续性微分方程为) 是不为零的常数=k/r(k(8)vr=0 v θvx=4x vy=c (9) vx=4xy vy=0(10):为常数式中给定速度场12. vx=ax,vy=ay,vz=-2az, a ,求;体积膨胀率剪切角速度分量线变形速率分量(1) , ,., 该流场是否为无旋场(2)若无旋写出其速度势函数,试证明通过圆心为原点的所有设有从坐标原点引出的径向线上流速分布为13.vr=4/r,圆周上的流量都相等 .14.已知流场的速度分布为,该流场是否满足不可压缩流体的连续性方程15.在不可压缩流体的三元流场中,已知速度场vx=x2+y2+x+y+2和vy=y2+2yz,试求vz 的表达式 .16.下列各流场中哪几个满足连续性条件,它们是有旋流动还是无旋流动其中k为常.数(1)vx=k vy=0(2)vx= vy=(3)vx=x2+2xyvy=y2+2xy(4)vx=y+z vy=z+x vz=x+y确定下列各流场是否连续17.k 为常数是否有旋式中(1)vr=0 v=krθ(2)vr=- k/r vθ=0(3)vr= v θ=-2r.vx=x+y,vy=y+z,vz=x2+y2+z2, 求过点(2,2,2)18.已知有旋流动的速度场为的角速度分.量19.已知速度场vx=2y+3z,vy=2z+3x,vz=2x+3y, 求流体微团的角速度 .20.证明平面不可压缩流场vx=2xy+x, 和vy=x2-y2-y 满足连续性方程,是有势流并求出速度势函数 .其它U, 所示,求孔口处出流的平均速度在管道壁上有一面积为1m2 的孔口,如图3-25 21. .数据如图所示.=,试验证该函数在二维和三维流动中是否满足拉普拉斯方程22.已知流场中势函数φ.求速度场φ=ln(x2+y2)1/2除原点外处处无旋,23.已知势函数第四章思考题欧拉平衡微分方程与欧拉运动微分方程有何关系1.2.拉格朗日积分和伯努利积分各自适用什么条件3.拉格朗日积分中的通用常数与柏努利方程中的流线常数有何差别4.叙述柏努利方程的几何意义和物理意义.5.说明柏努利方程反映了能量的何种关系6.为什么应用柏努利方程时,其中的位置水头可以任意选取基准面来计算7.在推导柏努利方程时,没有考虑外界对流线上的流体质点做功或输入(出)能量,若实际解柏努利方程时将如何处理出),问题中有能量的输入(动压力以及伯努利常数的含义是什么,静压力,8.总压力,驻点压力在不同液体或气体的界面上是否可将压力视为常数9.为什么,出口处的压力怎管道出口流入大气中或者流入静止流体中10.在求解柏努利方程时, 样确而静止流体流入管道时定管道进口处的压力一般是否为已知量,11.如图4-20 所示虹吸管,不计损失,流动定常 .问:(1)管子出口处(2-2 截面)的静压为多少(2)哪段管路为低压向高压的流动此时伯努利方程中的三项能头是如何变化的(3)S 处的压力是高于大气压力还是低于大气压力若S处管子破裂流动将如何12.应用积分形式动量方程时,因动量是矢量,其方向如何确定在计算合外力时,为什么通常压力项只计相对压力而不计绝对压力13.积分形式动量方程是适合于控制体的,其控制体内流场是否要求流动无旋无粘习题v.直径,如图1.求管内流速所示的管流d=30cm,4-21 如图2.所示的水银比压计与一水平放置的流量计相连接4-22 现读得比压计中水银面.求通过的体积流量,流动定常,不计损失h=800mm已.知d1=250mm,d2=100mm,高差(管内流体为水).3.用图4-23 所示的水银比压计测油速 .已知油的比重为0.8,水银比重为13.6,h=60mm, 求管内油的流动速度 .设流动定常,不计粘性影响 .将液体吸入然后向大, ,喉部处空气造成低压所示的喷雾器,活塞以v 等速运动4-24 4.如图求能喷,理想定常流动ρ′,假定流动为不可压缩,气喷雾 .若空气密度为ρ,液体密度为h.雾的吸入高度处横断面上的入口处即截面 1 4-25 所示的不可压缩流体在半径为R 的管中流动,5.如图,假定是使截面,流动为u=umax 表示的速度分布流速是均匀的,其值为v,下游截面2 处 .,L,R和表示的压力降 .试求以umax,ρ1-2 之间流动减速的平均壁面剪应力. ,设宽度为b=5cm,厚度为单位厚度的水平射流射向直立固定的平板如图6. 4-26 所示. .求平板所受射流的冲击力已知v0=20m/s,不计摩擦,流动定常,周围都是大气压力所示的设喷流方向如图4-27 7.有一股射流以速度20m/s从直径为5cm 的喷嘴向外喷水. .使船保持稳定的力,流体密度为ρ=1000kg/m3求.水平面位置河中水流速度为的速度(相对岸边)逆流而上 .摩托艇在河中以8.如图4-28 所示, 9m/s流18m/s, 船尾排水 . .若射流相对艇的速度为6.5m/s.该艇用的喷水推进装置,由船首进水问产生的推力为多少0.15m3/s,量为Q=16m3/h,d1=50mm,d2=100mm,所通过的流量9.如图4-29 所示为一突然扩大的管道其中充满,的水 .在截面突变处置一差压计读得液面高差γ=15689N/m3的液体,. h=173mm,试求管径突然扩大的阻力系数流体从无, , 50km/h 的速度运动,据相对性原理可认为鱼雷不动10.鱼雷在水下5m 深处以 .流过鱼雷穷远处以流速50km/h点A 4-30 所示的如图(1)若流体流过鱼雷表面时,其最大速度为无穷远处速度的 1.5 倍( . A 求鱼雷点处的压力处),. ,(2)设水温为15℃产生空泡的压力为2.33kN/m2, 求鱼雷产生空泡时,鱼雷的速度,此时上游水位升高为开启状态为关闭状态,图(a) ,图(b)所示的圆柱形闸门11.如图4-31两种情况下的合力都,0.6m.计算作用在闸门上水平方向的分力,并比较两垂直分力的大小通过圆心吗第五章思考题能否用斯托克斯定,1.速度环量是否一定存在于闭曲线情况下对于非闭曲线的速度环量 .理来计算试归纳一下环量的几种计算法如何理解流体涡线与流线的差别2.求压力时要用, (rR 3.在涡核区的范围内,求压力分布时用拉格郎日方程而在的范围内,欧拉方程直接积分呢求这两直线涡, r>R ,8.在求解兰金组合涡流场时为什么须先解的外部流场再解2>0, r Γ .的运动轨迹 .vx=-,vy, 已知速度场为4.其中 .为大于零的常数k 求沿周线x2+y2=32 的速度环量5.流体在平面环形区域a1<="" p="" ω为常数,k="" 为柱坐标系中z="" 方向的单位矢量,设速度分布是轴对称的,="" 求此速度分布="">15.已知流线为同心圆族,其速度分别为()(r>5)试求:沿圆周x2+y2=R2 的速度环流,其中圆的半径分别为R=3,R=5 和R=10.16.给定柱坐标内平面流动vr=(1- )cos θ其中,k,a 均为常数,求包含r=a 圆周在内的任意封闭曲线的速度环量 ..的速度环量求:沿圆x2+y2=1 17.已知速度场为, .的速度环量求:沿椭圆4x2+9y2=36 18.已知速度场为,, 等于常数的点涡上分别有环量Γ(0,-1)如图5-26 所示,初瞬时在(1,0),(-1,0),(0,1)和19. .求其运动轨迹第六章思考题1.举例说明势流理论解决流体力学问题的思路.2.速度势和流函数同时存在的条件是什么各自具有什么样的性质3.举例说明用保角变换解决势流问题的思路.4.举例说明附加质量和附加惯性力的概念.5.均质不可压缩理想流体绕物体的定常,三维流动,若物体有升力,问物体是否有阻力习题1试确定下列流函数所描述的流场是否为势流.a) ψ=kxy, c)ψ=klnxy2=x2-y2, d)b) ψ=k(1-1/r2)rsinψθ式中k 为常数 .2.已知不可压缩流体平面流动的速度势为φ=x2-y2+x求其流动的流函数 .给定速度场3.:问vx=x2y+y2,vy=x2-y2x,vz=0,是否同时存在流函数和势函数(1).求出其具体形式如存在,(2):问已知4. vx=2xy+x,vy=x2-y2-y,vz=0, .是否存在势函数如存在,试求出其具体形式.求流函数及速度分布已知不可压缩平面流动的势函数φ=xy,5.. C 为常数6.下列流函数描述的流场是否为有势流,式中=2y-52y2+52x2-3x+C (1)ψ=x+x2-y2ψ(2)已知速度势7..为常数对应的流函数=Ccosψθ求r,.式中C.求流函数8. ψ=x+x2-y2 和点(-2,4) (3,5)之间的压力差并求点的速度势,: , y , (a,0)Γ一强度为9. 的平面点涡位于点若轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后习题第一章1.计算流体动力学的基本任务是什么计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。

2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合?流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。

如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。

如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。

控制方程是这些守恒定律的数学描述。

常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。

质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。

组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。

4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。

建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。

6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何?由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。

CFD商用软件的特点是功能比较全面、适用性强。

具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。

具有比较完备的容错机制和操作界面,稳定性高。

可在多种计算机、多种操作系统,包括并行环境下运行。

常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。

PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。

CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。

用于模拟流体流动、传热、多相流、化学反应、燃烧问题。

其优势在于处理流动物理现象简单而几何形状复杂的问题。

SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。

它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

FIDAP完全基于有限元方法。

可用于求解聚合物、薄膜涂镀、生物医学、半导体晶体生长其他领域中出现的各种层流和湍流的问题。

对涉及流体流动、传热、传质、离散相流动、自由表面液固相面等问题都提供了精确而有效的解决方案。

FLUENT是一个用于模拟和分析在复杂几何区域内的流体流动与热交换问题的专用CFD软件。

网格划分灵活,FLUENT使用C语言开发完成,可实现动态内存分配及高效数据结构,具有很大的灵活性与很强的处理能力。

FLUENT中,解的计算与显示可以通过交互式的用户界面来完成。

第二章1.什么叫离散化?意义是什么?离散化,即对空间上连续的计算区域进行划分,把它划分成多个子区域,并确定每个区域中的节点,从而生成网格。

然后,将控制方程在网格上离散,即将偏微分格式的控制方程转化为各个节点上的代数方程组。

对于在求解域内所建立的偏微分方程,理论上是有真解(或称精确解或解析解)的。

但由于所处理的问题自身的复杂性,一般很难获得方程的真解。

因此,就需要通过数值方法把计算域内有限数量位置(网格节点或网格中心点)上的因变量值当作基本未知量来处理,从而建立一组关于这些未知量的代数方程组,然后通过求解代数方程组来得到这些节点值,而计算域内其他位置上的值则根据节点位置上的值来确定。

这样,用变量的离散分布近似解代替了定解问题精确解的连续数据,当网格节点很密时,离散方程的解将趋近于相应微分方程的精确解。

3.简述有限体积法的基本思想,说明其使用的网格有何特点?有限体积法的基本思想,将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积;将待解微分方程对每个控制体积积分,从而得出一组离散方程。

节点排列有序,即当给出了一个节点的编号后,立即可以得出其相邻节点的编号。

称为结构网格,是一种传统的网格形式,网格自身利用了几何体的规则形状。

非结构网格的节点以一种不规则的方式布置在流场中,网格生成复杂,但却有着极大地适应性,尤其对具有复杂便捷的流场计算问题特别有效。

4.简述在空间域上离散控制方程的基本做法,说明对流项及扩散项在离散处理时的异同,给出所生成的二维稳态对流-扩散问题的离散方程的形式。

生成计算网格,包括节点、控制体积;将守恒型控制方程在每个控制体积上作积分,得到关于节点未知量的代数方程组;求解代数方程组,得到个计算节点的未知量值。

对流项与扩散项而言,则通过采用控制节点上的值选取合适的插值函数来表示,其中扩散项通常采用中心差分格式来表示,而对流项的形式则是多种多样的。

二维稳态对流-扩散问题的离散方程6.分析比较中心差分格式、一阶迎风格式、混合格式、指数格式、二阶迎风格式、QUICK格式各自的特点及适用场合。

中心差分格式(central differencing scheme):就是界面上的物理量采用线性插值公式来计算,即取上游和下游节点的算术平均值。

它是条件稳定的,在网格Pe数小于等于2时,中心差分格式的计算结果与精确解基本吻合,在不发生振荡的参数范围内,可以获得较准确的结果。

如没有特殊声明,扩散项总是采用中心差分格式来进行离散。

但中心差分格式因为有限制而不能作为对于一般流动问题的离散格式,必须创建其他更合适的离散格式。

一阶迎风格式(first order upwind scheme):即界面上的未知量恒取上游节点(即迎风侧节点)的值。

这种迎风格式具有一阶截差,因此叫一阶迎风格式。

无论在任何计算条件下都不会引起解的振荡,是绝对稳定的。

但是当网格Pe数较大时,假扩散严重,为避免此问题,常需要加密网格。

研究表明,在对流项中心差分的数值解不出现振荡的参数范围内,在相同的网格节点数条件下,采用中心差分的计算结果要比采用一阶迎风格式的结果误差小。

因此,随着计算机处理能力的提高,在正式计算时,一阶迎风格式目前常被后续要讨论的二阶迎风格式或其他高阶格式所代替。

混合格式(hybrid scheme):综合了中心差分和迎风作用两方面的因素,当|Pe|<2时,使用具有二阶精度的中心差分格式;当|Pe|>2时,采用具有一阶精度但考虑流动方向的一阶迎风格式。

该格式综合了中心差分格式和一阶迎风格式的共同的优点,其离散系数总是正的,是无条件稳定的。

计算效率高,总能产生物理上比较真实的解,且是高度稳定的。

但缺点是只具有一阶精度。

指数格式(exponential scheme):将扩散与对流的作用合在一起来考虑,绝对稳定。

在应对于一维的稳态问题时,指数格式保证对任何的Pelclet数以及任意数量的网络点均可以得到精确解。

缺点是指数运算较为费时,对于多维问题以及源项不为零的情况此方案不准确。

乘方格式(power-law scheme):绝对稳定,与指数格式的精度较接近,但比指数格式省时。

主要适用于无源项的对流-扩散问题。

对有非常数源项的场合,当Pe数较高时有较大误差。

二阶迎风格式(second order upwind scheme):二阶迎风格式与一阶迎风格式的相同点在于,二者都通过上游单元节点的物理量来确定控制体积界面的物理量。

但二阶格式不仅要用到上游最近一个节点的值,还有用到另一个上游节点的值。

它可以看作是在一阶迎风格式的基础上,考虑了物理量在节点间分布曲线的曲率影响。

在二阶迎风格式中,实际上只有对流项采用了二阶迎风格式,而扩散项仍采用中心差分格式。

二阶迎风格式具有二阶精度的截差,但仍有假扩散的问题。

QUICK格式:是“对流项的二次迎风插值”,是一种改进离散方程截差的方法,通过提高界面上插值函数的阶数来提高格式截断误差的。

对流项的QUICK格式具有三阶精度的截差,但扩散项仍采用二阶截差的中心差分格式,QUICK格式具有守恒特性。

对于与流动方向对齐的结构网格而言,QUICK格式将可产生比二阶迎风格式等更精确的计算结果。

QUICK格式常用于六面体(二维中四边形)网格。

对于其它类型的网格,一般使用二阶迎风格式。

第三章2.可压流动与不可压流动,在数值解法上各有何特点,为何不可压流动在求解时反而比可压流动有更多的困难?如果流动是可压的,可以把密度视作连续方程中的独立变量进行求解,即以连续方程作为一个普通的关于密度的输运方程生成相对简单的离散方程组,压力根据气体状态方程得到。

对于不可压流动,密度是常数,就不可能把密度与压力相联系,因此将密度作为基本未知量的方法不可行。

7.SIMPLE算法的基本思想是什么?动量方程和连续性方程在其中是如何得到满足的?在交错网格上如何实施SIMPLE算法?SIMPLE算法的基本思想是对于给定的压力场(它可以是假定的值,或是上一次迭代计算所得到的结果),求解离散格式的动量方程,得出速度场。

因为压力场是假定的或不精确的,这样得到的速度场一般不满足连续方程,因此,必须对给定的压力场加以修正。

修正的原则是:与修正后的压力场相对应的速度场能满足这一迭代层次上的连续方程离散形式。

据此原则,我们把由动量方程的离散形式所规定的压力与速度的关系带入连续方程的离散格式,从而得到压力修正方程,由压力修正方程得出压力修正值。

接着,根据修正后的压力场,求的新的速度场。

然后检查速度场是否收敛。

若不收敛,用修正后的压力值作为给定的压力场,开始下一层次的计算。

直至获得收敛的解。

SIMPLE算法计算步骤1.假定一个速度分布,记为u0,v0,用于计算离散方程系数2.假定一个压力场p*3.依次求解两个动量方程,得到u*,v*4.求解压力修正方程,得到p’5.据p’ 得速度修正方程改进速度值6.利用改进后的速度场求解那些通过与动量方程耦合的其它变量方程,如果其它变量方程不影响动量方程,那么应该在速度场收敛后再求解7.利用改进后的速度场和改进后的压力场作为初值进行下一轮的迭代,返回3.8. SIMPLEC算法与SIMPLE算法相比有何改进?效果在哪里?请给出SIMPLEC算法的具体实施条件和步骤。

SIMPLE算法中速度修正值方程略去∑a nP u nP′,∑a nP v nP′使速度修正完全归结为压差项直接作用SIMPLEC算法没有像SIMPLE算法那样将∑a nP u nP′项忽略,因此得到的压力修正值p’一般是比较合适的,因此,在SIMPLEC算法中可不再对p’进行欠松弛处理。

与SIMPLE算法基本相同SIMPLEC算法计算步骤1.假定一个速度分布,记为u0,v0,用于计算离散方程系数2.假定一个压力场p*3.依次求解两个动量方程,得到u*,v*4.求解压力修正方程,得到p’5.据p’ 得速度修正方程改进速度值6.利用改进后的速度场求解那些通过与动量方程耦合的其它变量方程,如果其它变量方程不影响动量方程,那么应该在速度场收敛后再求解7.利用改进后的速度场和改进后的压力场作为初值进行下一轮的迭代,返回3.10.SIMPLER和PISO的主要特点是什么?与SIMPLE的区别在哪里?SIMPLE算法的各种改进算法,主要是提高了计算的收敛性,从而缩短计算时间。

相关文档
最新文档