电场、磁场及复合场大题 高考复习

合集下载

专题18 电场磁场和重力场复合场模型-2023年高考物理磁场常用模型精练(解析版)

专题18  电场磁场和重力场复合场模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题18.电场磁场和重力场复合场模型1.(2022山东聊城重点高中质检)如图所示,空间存在水平向右的匀强电场和垂直于纸面向里的匀强磁场,一质量为m 、带电量大小为q 的小球,以初速度v 0沿与电场方向成45°夹角射入场区,能沿直线运动。

经过时间t ,小球到达C 点(图中没标出),电场方向突然变为竖直向上,电场强度大小不变。

已知重力加速度为g ,则()A.小球一定带负电B.时间t 内小球做匀速直线运动C.匀强磁场的磁感应强度为2mgqv D.电场方向突然变为竖直向上,则小球做匀加速直线运动【参考答案】BC 【名师解析】假设小球做变速直线运动,小球所受重力与电场力不变,而洛伦兹力随速度的变化而变化,则小球将不可能沿直线运动,故假设不成立,所以小球一定受力平衡做匀速直线运动,故B 正确;小球做匀速直线运动,根据平衡条件可以判断,小球所受合力方向必然与速度方向在一条直线上,故电场力水平向右,洛伦兹力垂直直线斜向左上方,故小球一定带正电,故A 错误;根据平衡条件,得0cos 45mg qv B =︒解得02mgB qv =,故C 正确;根据平衡条件可知tan 45mg qE =︒电场方向突然变为竖直向上,则电场力竖直向上,与重力恰好平衡,洛伦兹力提供向心力,小球将做匀速圆周运动,故D 错误。

二、计算题1.(2022山东四县区质检)如图所示,在xOy 坐标系内,圆心角为120°内壁光滑、绝缘的圆管ab ,圆心位于原点O 处,Oa 连线与x 轴重合,bc 段为沿b 点切线延伸的直管,c 点恰在x 轴上。

坐标系内第三、四象限内有水平向左的匀强电场,场强为E 1(未知);在第二象限内有竖直向上的匀强电场,场强为E 2(未知)。

在第二、三象限内有垂直于纸面向外的匀强磁场,磁感应强度大小均为B 。

现将一质量为m 、带电量为+q 的小球从圆管的a 端无初速度释放,小球到达圆管的b 端后沿直线运动到x 轴,在bc 段运动时与管壁恰无作用力,从圆管c 端飞出后在第二象限内恰好做匀速圆周运动。

高考物理二轮总复习课后习题专题3 电场与磁场 专题分层突破练9 带电粒子在复合场中的运动 (4)

高考物理二轮总复习课后习题专题3 电场与磁场 专题分层突破练9 带电粒子在复合场中的运动 (4)

专题分层突破练9 带电粒子在复合场中的运动A组1.(多选)如图所示为一磁流体发电机的原理示意图,上、下两块金属板M、N水平放置且浸没在海水里,金属板面积均为S=1×103m2,板间距离d=100 m,海水的电阻率ρ=0.25 Ω·m。

在金属板之间加一匀强磁场,磁感应强度B=0.1 T,方向由南向北,海水从东向西以速度v=5 m/s流过两金属板之间,将在两板之间形成电势差。

下列说法正确的是( )A.达到稳定状态时,金属板M的电势较高B.由金属板和流动海水所构成的电源的电动势E=25 V,内阻r=0.025 ΩC.若用此发电装置给一电阻为20 Ω的航标灯供电,则在8 h内航标灯所消耗的电能约为3.6×106JD.若磁流体发电机对外供电的电流恒为I,则Δt时间内磁流体发电机内部有电荷量为IΔt的正、负离子偏转到极板2.(重庆八中模拟)质谱仪可用于分析同位素,其结构示意图如图所示。

一群质量数分别为40和46的正二价钙离子经电场加速后(初速度忽略不计),接着进入匀强磁场中,最后打在底片上,实际加速电压U通常不是恒定值,而是有一定范围,若加速电压取值范围是(U-ΔU,U+ΔU),两种离子打在底片上的区域恰好不重叠,不计离子的重力和相互作用,则ΔUU的值约为( )A.0.07B.0.10C.0.14D.0.173.在第一象限(含坐标轴)内有垂直xOy平面周期性变化的均匀磁场,规定垂直xOy平面向里的磁场方向为正方向,磁场变化规律如图所示,磁感应强度的大小为B0,变化周期为T0。

某一带正电的粒子质量为m、电荷量为q,在t=0时从O点沿x轴正方向射入磁场中并只在第一象限内运动,若要求粒子在t=T0时距 B.2πmqT0C.3πm2qT0D.5πm3qT04.(福建龙岩一模)如图所示,在xOy平面(纸面)内,x>0区域存在方向垂直纸面向外的匀强磁场,第三象限存在方向沿、电荷量为q的带正电粒子(不计重力),以大小为v、方向与y轴正方向夹角θ=60°的速度沿纸面从坐标为(0,√3L)的P1点进入磁场中,然后从坐标为(0,-√3L)的P2点进入电场区域,最后从x轴上的P3点(图中未画出)垂直于x轴射出电场。

带电粒子在组合场、复合场、叠加场、交变电磁场中的运动(原卷版)25年高考物理一轮复习考点(新高考)

带电粒子在组合场、复合场、叠加场、交变电磁场中的运动(原卷版)25年高考物理一轮复习考点(新高考)

带电粒子在组合场、复合场、叠加场、交变电磁场中的运动60分钟带电粒子在组合场、复合场、叠加场、交变电磁场中A.从A点到Q点的过程小球的机械能守恒C.小球在第IV象限运动的时间为2.(2024·黑龙江大庆·模拟预测)如图所示,两平行极板水平放置,两板间有垂直纸面向里的匀强磁场和竖A.两板间电场强度的大小为B vB.乙粒子偏离中轴线的最远距离为mv qBC.乙粒子的运动轨迹在A处对应的曲率圆半径为D.乙粒子从进入板间运动至A位置的过程中,在水平方向上做匀速运动A.OAB轨迹为半圆B.磁场垂直于纸面向里C.小球运动至最低点A.从上面俯视小球沿顺时针方向运转B.球面对小球的弹力大小为C.小球的速率越大,则小球受到的洛伦兹力越大A.a粒子的电势能大于b粒子的电势能B.a粒子的速度大于b粒子的速度C.a粒子的角速度大于b粒子的角速度D.若再加一个垂直运动平面向里的匀强磁场,粒子做离心运动A.2v B7.(2024·湖南衡阳·模拟预测)在地面上方空间存在方向垂直纸面向外、磁感应强度大小为强磁场,与竖直方向的匀强电场(图中未画出)A.电场方向竖直向上B.带电粒子运动到轨迹的最低点时的速度大小为C.带电粒子水平射出时的加速度大小为A .粒子做圆周运动时的半径始终为RB .每次粒子在电场中运动时,两端点的水平距离均为Rp C .若粒子运动轨迹的最左端记为A 点,则A 点坐标为(2112R R p p --+,4R -)D .02024t 时刻粒子所处位置的坐标是(2024Rp ,2024R -)A .油滴的运动方向一定由C .油滴可能受到水平向右的电场力A.小球在A点的速度大小为5m/s B.C.小球运动至C点的速度大小为4m/s D.轨道半径11.(2024·河南·一模)如图所示,绝缘中空轨道竖直固定,圆弧段两端等高,O为最低点,圆弧圆心为O¢,半径为段分别在C、D端相切,整个装置处于方向垂直于轨道所在平面向里、磁感应强度大小为A.小球在轨道AC上下滑的最大速度为B.小球第一次沿轨道AC下滑的过程中速度一直在增大C.经过足够长时间,小球克服摩擦力做的总功是A.离子受到的洛伦兹力大小不变C.电场力的瞬时功率不变13.(2024·广东江门·模拟预测)如图所示,两水平虚线之间的空间内存在着相互垂直的匀强电场磁场B(如图甲示),有一个带正电的油滴(电荷量为落恰好做匀速圆周运动;现保持电场大小方向和磁场大小不变,磁场方向变为垂直于纸面向里(如图乙(1)求带电油滴第n次穿出磁场的位置与O点的距离和带电油滴在电磁场中运动的时间n t。

高中物理 带电粒子在磁场电场复合场计算题 专题(2017-2019)近三年高考真题物理分类汇编 (解析版)

高中物理 带电粒子在磁场电场复合场计算题 专题(2017-2019)近三年高考真题物理分类汇编 (解析版)

专题21 带电粒子电场磁场复合场中计算题1.(2019·新课标全国Ⅰ卷)如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。

一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出。

已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力。

求 (1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间。

【答案】(1)224q U m B d = (2)2π(42Bd t U =【解析】(1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v 。

由动能定理有212qU mv =①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 2v qvB m r=②由几何关系知d ③ 联立①②③式得 224q Um B d=④ (2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为πtan302rs r =+︒⑤ 带电粒子从射入磁场到运动至x 轴的时间为s t v=⑥ 联立②④⑤⑥式得2π(42Bd t U =⑦2.(2019·新课标全国Ⅱ卷)如图,两金属板P 、Q 水平放置,间距为d 。

两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同。

G 接地,P 、Q 的电势均为ϕ(ϕ>0)。

质量为m ,电荷量为q (q >0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计。

(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少?【答案】(1)l v = (2)2v 【解析】(1)PG 、QG 间场强大小相等,均为E ,粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有2E dϕ=① F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有2k 012qEh E mv =-③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有212h at =④ l =v 0t ⑤联立①②③④⑤式解得2k 012=2E mv qh dϕ+⑥l v = (2)设粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短,由对称性知,此时金属板的长度L 为=22L l v = 3.(2019·新课标全国Ⅲ卷)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点。

电场磁场复合场 经典题选(有详细解答).

电场磁场复合场  经典题选(有详细解答).

培优练习7 25.(15分)如图所示,MN 为一竖直放置足够大的荧光屏,距荧光屏左边l 的空间存在着一宽度也为l 、方向垂直纸面向里的匀强磁强。

O ′为荧光屏上的一点,OO ′与荧光屏垂直,一质量为m 、电荷量为q 的带正电的粒子(重力不计)以初速度v0从O 点沿OO ′方向射入磁场区域。

粒子离开磁场后打到荧光屏上时,速度方向与竖直方向成30°角。

(1)求匀强磁场磁感应强度的大小和粒子打在荧光屏上时偏离O ′点的距离; (2)若开始时在磁场区域再加上与磁场方向相反的匀强电场(图中未画出),场强大小为E , 则该粒子打在荧光屏上时的动能为多少? 25.解:(1)粒子从O 点射入,P 点射出,沿直线运动到荧光屏上的S 点,如图所示,由几何关系可知,粒子在磁场中作匀速圆周运动转过的圆心角60=θ ① 运动轨道半径为:60sin lR =②而 rv m qvB 2= ③由②、③解得:B=qlmv 230④ 根据几何关系可知: 30cot ⋅=l SQ ⑤ O ′Q=R -Rcos60° ⑥ 由②、⑤、⑥解得334l SQ Q O S O =+'=' ⑦(2)再加上电场后,根据运动的独立性,带电粒子沿电场方向匀加速运动,运动加速度mqEa =⑧ 粒子在磁场中运动时间为:09323v d v R t ππ== ⑨则粒子离开复合场时沿电场方向运动速度为 0932mv qEl at v Eπ== ⑩粒子打在荧光屏上时的动能为:222022027)(2212121mv lqE mv mv mv E E k π+=+= ○11 25、如图所示,涂有特殊材料的阴极K ,在灯丝加热时会逸出电子,电子的初速度可视为零,质量为m 、电量为e .逸出的电子经过加速电压为U 的电场加速后,与磁场垂直的方向射入半径为R 的圆形匀强磁场区域.已知磁场的磁感强度为B ,方向垂直纸面向里,电子在磁场中运动的轨道半径大于R .试求:(1)电子进入磁场时的速度大小; (2)电子运动轨迹的半径r 的大小;(3)电子从圆形磁场区边界的不同位置入射, 它在磁场区内运动的时间就不相同.求电子在磁场区内运动时间的最大值.、如图所示,匀强电场区域和匀强磁场区域是紧邻的且宽度相等均为d ,电场方向在纸平面内,而磁场方向垂直纸面向里,一带正电粒子从O 点以速度V 0沿垂直电场方向进入电场,在电场力的作用下发生偏转,从A 点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C 点穿出磁场时速度方向与进入电场O 点时的速度方向一致,(带电粒子重力不计)求:(1)粒子从C 点穿出磁场时的速度v ;(2)电场强度E 和磁感应强度B 的比值E/B; (3)粒子在电、磁场中运动的总时间。

高考物理二轮复习专题四电磁场类问题电磁复合场练习

高考物理二轮复习专题四电磁场类问题电磁复合场练习

专题四电磁场类问题(电、磁、复合场)一、单选题1.如图所示,平行板电容器充电后形成一个匀强电场,大小保持不变。

让不计重力的相同带电粒子a、b,以不同初速度先、后垂直电场射入,a、b分别落到负极板的中央和边缘,则( )A.b粒子加速度较大B.b粒子的电势能变化量较大C.若仅使a粒子初动能增大到原来的2倍,则恰能打在负极板的边缘D.若仅使a粒子初速度增大到原来的2倍,则恰能打在负极板的边缘2.如图甲所示,两平行正对的金属板A、B间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处。

若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上。

则t0可能属于的时间段是( )A.0<t0<T4B.T2<t0<3T4C.3T4<t0<T D.T<t0<9T83.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab是圆的直径。

一带电粒子从a点射入磁场,速度大小为v、方向与ab成30°角时,恰好从b点飞出磁场,且粒子在磁场中运动的时间为t;若同一带电粒子从a点沿ab方向射入磁场,也经时间t飞出磁场,则其速度大小为( )A.12v B.23vC.32v D.32v4.自行车速度计利用霍尔效应传感器获知自行车的运动速率。

如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。

图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。

下列说法正确的是( )A.根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B.自行车的车速越大,霍尔电势差越高C.图乙中霍尔元件的电流I是由正电荷定向移动形成的D.如果长时间不更换传感器的电源,霍尔电势差将增大5.科研人员常用磁场来约束运动的带电粒子,如图所示,粒子源位于纸面内一边长为a的正方形中心O处,可以沿纸面向各个方向发射速度不同的粒子,粒子质量为m、电荷量为q、最大速度为v,忽略粒子重力及粒子间相互作用,要使粒子均不能射出正方形区域,可在此区域加一垂直纸面的匀强磁场,则磁感应强度B的最小值为( )A.2mvqaB.22mvqaC.4mvqaD.42mvqa二、多选题6.如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂线上某一点,O为AB连线的中点,且AO=OF,E和φ分别表示F处的场强大小和电势。

新教材适用2024版高考物理二轮总复习第1部分核心主干复习专题专题3电场与磁场微专题4带电粒子在复合

新教材适用2024版高考物理二轮总复习第1部分核心主干复习专题专题3电场与磁场微专题4带电粒子在复合

微专题4 带电粒子在复合场中的运动题型1 带电体在电场和重力场中的运动1.带电体在电场、重力场中运动的分析方法(1)对带电体的受力情况和运动情况进行分析,综合运用牛顿运动定律和匀变速直线运动的规律解决问题。

(2)根据功能关系或能量守恒的观点,分析带电体的运动时,往往涉及重力势能、电势能以及动能的相互转化,总的能量保持不变。

2.带电体在电场和重力场的叠加场中的圆周运动(1)等效重力法将重力与静电力进行合成,如图所示,则F合为等效重力场中的“重力”,g ′=F合m为等效重力场中的“等效重力加速度”,F合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向。

(2)等效最高点和最低点:在“等效重力场”中做圆周运动的小球,过圆心作合力的平行线,交于圆周上的两点即为等效最高点和最低点。

〔真题研究1〕(多选)(2022·全国甲卷,21,6分)地面上方某区域存在方向水平向右的匀强电场,将一带正电荷的小球自电场中P点水平向左射出。

小球所受的重力和静电力的大小相等,重力势能和电势能的零点均取在P点。

则射出后( BD )A.小球的动能最小时,其电势能最大B.小球的动能等于初始动能时,其电势能最大C.小球速度的水平分量和竖直分量大小相等时,其动能最大D.从射出时刻到小球速度的水平分量为零时,重力做的功等于小球电势能的增加量【审题指导】研究对象、物理过程物理模型带正电的小球同时受向下的重力和向右的静电力将电场和重力场合成为一个等效场合场力大小F=2mg,方向与水平方向成45°角带正电荷的小球自电场中P 点水平向左射出后的运动小球初速度与合场力方向成135°角,在等效场中做类斜抛运动【解析】 由题意知,Eq =mg ,故等效重力G ′的方向与水平方向成45°(如图所示)。

当v y =0时,速度最小为v min =v 1,由于此时v 1存在水平分量,电场力还可以向左做负功,故此时电势能不是最大,故A 错误;当如图中v 所示时,在水平方向上v 2=0=v 0-Eqmt ,在竖直方向上v =gt ,由于Eq =mg ,得v =v 0,故小球的动能等于初始动能。

高考物理二轮复习考点第九章磁场专题复合场问题

高考物理二轮复习考点第九章磁场专题复合场问题

专题9.13 复合场问题一.选择题1.(2020兰州模拟)如图所示,粗糙的足够长直绝缘杆上套有一带电小球,整个装置处在由水平向右匀强电场和垂直于纸面向外的匀强磁场组成的足够大复合场中,小球由静止开始下滑,则下列说法正确的是A.小球的加速度先增大后减小B.小球的加速度一直减小C.小球的速度先增大后减小D.小球的速度一直增大,最后保持不变【参考答案】AD【命题意图】本题考查了复合场中受约束小球的运动及其相关的知识点。

2.(多选)(2020·长春调研)如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g。

空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面且向里的匀强磁场。

某时刻,给小球一方向水平向右,大小为v0=5gR的初速度,则以下判断正确的是( )A.无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B.无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球在最高点一定受到管壁的弹力作用C.无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球到达最高点时的速度大小都相同D.小球在从环形细圆管的最低点运动到所能到达的最高点的过程中,水平方向分速度的大小一直减小【参考答案】BC3.(多选)如图甲所示,绝缘轻质细绳一端固定在方向相互垂直的匀强电场和匀强磁场中的O点,另一端连接带正电的小球,小球电荷量q=6×10-7C,在图示坐标中,电场方向沿竖直方向,坐标原点O的电势为零。

当小球以2 m/s的速率绕O点在竖直平面内做匀速圆周运动时,细绳上的拉力刚好为零。

在小球从最低点运动到最高点的过程中,轨迹上每点的电势φ随纵坐标y的变化关系如图乙所示,重力加速度g=10 m/s2。

高考题(复合场专题)

高考题(复合场专题)

30oy xOE Br如图所示,真空中有以(r ,0)为圆心,半径为 r 的圆形匀强磁场区域,磁场的磁感应强度大小为 B ,方向垂直于纸面向里,在 y = r 的虚线上方足够大的范围内,有水平向左的匀强电场,电场强度的大小为 E ,现在有一质子从O 点沿与 x 轴正方向斜向下成 30o方向(如图中所示)射入磁场,经过一段时间后由M 点(图中没有标出)穿过y 轴。

已知质子在磁场中做匀速圆周运动的半径为 r ,质子的电荷量为 e ,质量为 m ,不计重力 、阻力。

求:(1)质子运动的初速度大小.(2)M 点的坐标.(3)质子由O 点运动到M 点所用时间.25.(18分)解: (1)evB=r v m 2 v=meBr(4分)(2)如图,由几何关系知,P 点到y 轴距离x 2=r+rsin30°=1.5r (2分) Ee=ma x 2=2321at (2分) 解得:eErmt 33=(2分) M 点的纵坐标y=r+vt 3=r+BrmEre3 M 点的坐标(0, r+BrmEre3)(2分) (3)质点在磁场中运动时间t 1=T 31=Bem32π(2分) 由几何关系知,P 点纵坐标y 2=23r 所以质子匀速运动时间22(23)2r y mt v Be--==(2分) 质子由O 点运动到M 点所用时间1232(23)332m m rmt t t t Be Be eEπ-=++=++(2分) 35.[物理-----选修3--5 ](15分)25.(18分)如图所示,光滑水平面内有一匀强电场,电场中有一半 径为r 的光滑绝缘圆轨道,轨道平面与电场方向平行,a 、b 为直径的两端,该直径与电场方向平行,一带电量为q 的正 电荷沿轨道内侧运动,经过a 点和b 点时对轨道压力的大小 分别为N a 和N b 。

不计重力.(1)求电场强度的大小E ;(2)求质点经过a 点和b 点时的动能。

25.(18分)如图,在平面直角坐标系xOy 内,第I 象限存在沿y 轴负方向的匀强电场,第IV 象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B. 一质量为m ,电荷量为q 的带正电粒子,从y 轴正半轴上y = h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x = 2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场. 不计粒子重力. 求: (1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径r ; (3)粒子从进入电场到离开磁场经历的总时间t. 25.解:粒子运动轨迹如图所示 (1)设粒子在电场中运动的时间为t 1y :2121at h =1分x ; 2h = v 0t 11分根据牛顿第二定律 Eq = ma 2分得:qhmv E 220=2分(2)设粒子进入磁场时速度为v根据动能定理 2022121mv mv Eqh -=2分 得:02v v =1分 在磁场中2rqv mvB = 2分 Bqmv r 02=1分 (3)粒子在电场中运动的时间 012v ht =1分rab E粒子在磁场中运动的周期 Bqmv r T ππ22==1分 设粒子在磁场中运动的时间为t 2 T t 832=2分 得: Bqm v h t t t 432021π+=+= 2分25.(18分)如图所示,在x 轴下方的区域内存在方向与y 轴相同的匀强电场,电场强度为E .在x 轴上方以原点O 为圆心、半径为R 的半圆形区域内存在匀强磁场,磁场的方向垂直于xy 平面并指向纸面外,磁感应强度为B .y 轴下方的A 点与O 点的距离为d .一质量为m 、电荷量为q 的带正电粒子从A 点由静止释放,经电场加速后从O 点射入磁场.不计粒子的重力作用.(1)求粒子在磁场中运动的轨道半径r .(2)要使粒子进入磁场之后不再经过x 轴,电场强度需大于或等于某个值E 0.求E 0.(3)若电场强度E 等于第(2)问E 0中的32,求粒子经过x 轴时距坐标原点O 的距离。

高考物理总复习重要考点专项强化(含详解):带电粒子在电场磁场复合场中的运动

高考物理总复习重要考点专项强化(含详解):带电粒子在电场磁场复合场中的运动

带电粒子在电场磁场复合场中的运动1. 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里 ,三个带正电的微粒a ,b ,c 电荷量相等,质量分别为m a ,m b ,m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。

下列选项正确的是A .a b c m m m >>B .b a c m m m >>C .a c bm m m >>D .c b am m m >>2. 平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现象存在沿y 轴负方向的匀强电场,如图所示。

一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动,Q 点到y 轴的距离为到x 轴距离的2倍。

粒子从坐标原点O 离开电场进入电场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等。

不计粒子重力,为:(1)粒子到达O 点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比。

3. 如图所示,在水平线ab 下方有一匀强电场,电场强度为E ,方向竖直向下,ab 的上方存在匀强磁场,磁感应强度为B ,方向垂直纸面向里,磁场中有一内、外半径分别为R 的半圆环形区域,外圆与ab 的交点分别为M 、N 。

一质量为m 、电荷量为q 的带负电粒子在电场中P 点静止释放,由M 进入磁场,从N 射出,不计粒子重力。

(1)求粒子从P到M所用的时间t;(2)若粒子从与P同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出,粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度0v的大小。

4.如图所示,在x轴上方存在匀强磁场,磁感应强度为B,方向垂直纸面向里.在x轴下方存在匀强电场,方向竖直向上.一个质量为m,电荷量为q,重力不计的带正电粒子从y轴上的a(h,0)点沿y轴正方向以某一初速度开始运动,经过一段时间后,粒子与x轴正方向成45°进入电场,当粒子经过y轴的b点时速度方向恰好与y轴垂直.求:(1)粒子在磁场中运动的轨道半径和速度大小v;(2)匀强电场的电场强度大小E;(3)粒子从开始运动到第三次经过x轴的时间t.5.如图所示,空间以AOB为界,上方有方向竖直向下的匀强电场,下方有垂直于纸面向里的匀强磁场,以过O点的竖直虚线OC为界,∠AOC=∠BOC=60°。

电场与磁场专题(2024高考真题及解析)

电场与磁场专题(2024高考真题及解析)

电场与磁场专题1.(多选)[2024·安徽卷] 空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E ,磁感应强度大小为B.一质量为m 的带电油滴a ,在纸面内做半径为R 的圆周运动,轨迹如图所示.当a 运动到最低点P 时,瞬间分成两个小油滴Ⅰ、Ⅰ,二者带电荷量、质量均相同.Ⅰ在P 点时与a 的速度方向相同,并做半径为3R 的圆周运动,轨迹如图所示.Ⅰ的轨迹未画出.已知重力加速度大小为g ,不计空气浮力与阻力以及Ⅰ、Ⅰ分开后的相互作用,则 ( )A .油滴a 带负电,所带电荷量的大小为mgE B .油滴a 做圆周运动的速度大小为gBREC .小油滴Ⅰ做圆周运动的速度大小为3gBRE ,周期为4πEgB D .小油滴Ⅰ沿顺时针方向做圆周运动1.ABD [解析] 油滴a 做圆周运动,故重力与电场力平衡,可知带负电,有mg =Eq ,解得q =mgE ,故A 正确;根据洛伦兹力提供向心力有Bqv =m v 2R ,得R =mvBq ,解得油滴a 做圆周运动的速度大小为v =gBR E ,故B 正确;设小油滴Ⅰ的速度大小为v 1,得3R =m 2v 1B q 2,解得v 1=3BqR m =3gBRE ,周期为T =2π·3R v 1=2πEgB ,故C 错误;带电油滴a 分离前后动量守恒,设分离后小油滴Ⅰ的速度为v 2,取油滴a分离前瞬间的速度方向为正方向,得mv =m 2v 1+m 2v 2,解得v 2=-gBRE,由于分离后的小油滴受到的电场力和重力仍然平衡,分离后小油滴Ⅰ的速度方向与正方向相反,根据左手定则可知小油滴Ⅰ沿顺时针方向做圆周运动,故D 正确.2.[2024·北京卷] 如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP=QN.下列说法正确的是()A.P点电场强度比Q点电场强度大B.P点电势与Q点电势相等C.若两点电荷的电荷量均变为原来的2倍,P点电场强度大小也变为原来的2倍D.若两点电荷的电荷量均变为原来的2倍,P、Q两点间电势差不变2.C[解析] 由等量异种点电荷的电场线分布特点知,P、Q两点电场强度相等,A错误;由沿电场线方向电势越来越低知,P点电势高于Q点电势,B错误;由电场叠加得P点电场强度E=k QMP2+k QNP2,若仅两点电荷的电荷量均变为原来的2倍,则P点电场强度大小也变为原来的2倍,同理Q点电场强度大小也变为原来的2倍,而P、Q间距不变,根据U=Ed定性分析可知P、Q两点间电势差变大,C正确,D错误.3.[2024·北京卷] 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e,初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.已知电子的质量为m、电荷量为-e;对于氙离子,仅考虑电场的作用.(1)求氙离子在放电室内运动的加速度大小a;(2)求径向磁场的磁感应强度大小B2;(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.3.(1)eEM (2)mEB1eR(3)nk√2eEMd1+k[解析] (1)氙离子在放电室时只受电场力作用,由牛顿第二定律有eE=Ma解得a=eEM(2)电子处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动,沿轴向向右的匀强磁场的洛伦兹力提供向心力,则有B1ev=m v 2R可得v=B1eRm轴线方向上所受电场力(水平向左)与径向磁场的洛伦兹力(水平向右)平衡,即Ee=evB2解得B2=mEB1eR(3)单位时间内阴极发射的电子总数为n,设单位时间内被电离的氙原子数为N,根据被电离的氙原子数和进入放电室的电子数之比为常数k,可知进入放电室的电子数为Nk又由于这些电离氙原子数与未进入放电室的电子刚好完全中和,说明未进入放电室的电子数也为N即有n=N+Nk则单位时间内被电离的氙离子数N=nk1+k氙离子经电场加速,有eEd=12M v12-0可得v1=√2eEdM设时间Δt内氙离子所受到的作用力为F',由动量定理有F'·Δt=N·Δt·Mv1解得F'=nk√2eEMd1+k由牛顿第三定律可知,霍尔推进器获得的推力大小F=F'则F=nk√2eEMd1+k4.[2024·福建卷] 以O点为圆心,半径为R的圆上八等分放置电荷,除G为-Q,其他为+Q,M、N为半径上的点,OM=ON,已知静电力常量为k,则O点场强大小为,M点电势(选填“大于”“等于”或“小于”)N点电势.将+q点电荷从M沿MN移动到N点,电场力(选填“做正功”“做负功”或“不做功”).4.2kQR2大于做正功[解析] 根据点电荷的场强特点可知,除了MN连线上的正负电荷外,其余的6个电荷形成的电场在O点处相互抵消,故O点场强大小为E O=kQR2+kQR2=2kQR2;根据对称性可知,若没有沿水平直径方向上的正电荷和负电荷,则M和N点的电势相等,由于M点靠近最左边的正电荷,N点靠近最右边的负电荷,故M点电势大于N点电势;将+q点电荷从M沿MN移动到N点,由于电势降低,故电场力做正功.5.[2024·甘肃卷] 一平行板电容器充放电电路如图所示.开关S接1,电源E给电容器C充电;开关S接2,电容器C对电阻R放电.下列说法正确的是()A.充电过程中,电容器两极板间电势差增加,充电电流增加B.充电过程中,电容器的上极板带正电荷、流过电阻R的电流由M点流向N点C.放电过程中,电容器两极板间电势差减小,放电电流减小D.放电过程中,电容器的上极板带负电荷,流过电阻R的电流由N点流向M点5.C[解析] 充电过程中,随着电容器带电荷量的增加,电容器两极板间电势差增加,充电电流在减小,故A错误;根据电路图可知,充电过程中,电容器的上极板带正电荷,流过电阻R的电流由N点流向M点,故B错误;放电过程中,随着电容器带电荷量的减小,电容器两极板间电势差减小,放电电流在减小,故C正确;根据电路图可知,放电过程中,电容器的上极板带正电荷,流过电阻R的电流由M点流向N点,故D错误.6.(多选)[2024·甘肃卷] 某带电体产生电场的等势面分布如图中实线所示,虚线是一带电粒子仅在此电场作用下的运动轨迹,M、N分别是运动轨迹与等势面b、a的交点,下列说法正确的是 ( )A .粒子带负电荷B .M 点的电场强度比N 点的小C .粒子在运动轨迹上存在动能最小的点D .粒子在M 点的电势能大于在N 点的电势能6.BCD [解析] 根据粒子所受电场力指向曲线轨迹的凹侧可知,带电粒子带正电荷,故A 错误;等差等势面越密集的地方场强越大,故M 点的电场强度比N 点的小,故B 正确;粒子带正电,因为M 点的电势大于N 点的电势,故粒子在M 点的电势能大于在N 点的电势能,故D 正确;由于带电粒子仅在电场作用下运动,电势能与动能总和不变,故可知当电势能最大时动能最小,故粒子在运动轨迹上到达最大电势处时动能最小,故C 正确.7.[2024·甘肃卷] 质谱仪是科学研究中的重要仪器,其原理如图所示.Ⅰ为粒子加速器,加速电压为U ;Ⅰ为速度选择器,匀强电场的电场强度大小为E 1,方向沿纸面向下,匀强磁场的磁感应强度大小为B 1,方向垂直纸面向里;Ⅰ为偏转分离器,匀强磁场的磁感应强度大小为B 2,方向垂直纸面向里.从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动,再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示. (1)粒子带正电还是负电?求粒子的比荷. (2)求O 点到P 点的距离.(3)若速度选择器Ⅰ中匀强电场的电场强度大小变为E 2(E 2略大于E 1),方向不变,粒子恰好垂直打在速度选择器右挡板的O'点上.求粒子打在O'点的速度大小.7.(1)正电E 122UB 12(2)4UB 1E 1B 2 (3)2E 2-E1B 1[解析] (1)由于粒子在偏转分离器Ⅰ中向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器Ⅰ时的速度为v 0,在速度选择器中粒子做匀速直线运动,由平衡条件有qv 0B 1=qE 1在粒子加速器Ⅰ中,由动能定理有 qU =12m v 02联立解得粒子的比荷为q m =E 122UB 12(2)在偏转分离器Ⅰ中,洛伦兹力提供向心力,有qv 0B 2=m v 02r可得O点到P点的距离为OP=2r=4UB1E1B2(3)粒子进入速度选择器Ⅰ瞬间,粒子受到向上的洛伦兹力F洛=qv0B1向下的电场力F=qE2由于E2>E1,且qv0B1=qE1所以通过配速法,如图所示其中满足qE2=q(v0+v1)B1则粒子在速度选择器中水平向右以速度v0+v1做匀速运动的同时,在竖直面内以速度v1做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O'点的要求,故此时粒子打在O'点的速度大小为v'=v0+v1+v1=2E2-E1B18.(多选)[2024·广东卷] 污水中的污泥絮体经处理后带负电,可利用电泳技术对其进行沉淀去污,基本原理如图所示.涂有绝缘层的金属圆盘和金属棒分别接电源正、负极,金属圆盘置于容器底部,金属棒插入污水中,形成如图所示的电场分布,其中实线为电场线,虚线为等势面.M点和N点在同一电场线上,M点和P点在同一等势面上.下列说法正确的有()A.M点的电势比N点的低B.N点的电场强度比P点的大C.污泥絮体从M点移到N点,电场力对其做正功D.污泥絮体在N点的电势能比其在P点的大8.AC[解析] 电场线的疏密程度反映电场强度大小,电场线越密则电场强度越大,由于N点附近的电场线比P点附近的稀疏,故N点的电场强度比P点的小,B错误;沿电场线方向电势逐渐降低,故M点的电势比N点的低,污泥絮体带负电,故其受到的电场力方向与电场强度方向相反,若从M点移到N点,则电场力对其做正功,A、C正确;由于M点和P点在同一等势面上,故M点电势等于P点电势,则N点电势高于P点电势,污泥絮体带负电,即q<0,根据电势能E p=qφ可知,污泥絮体在N点的电势能比其在P点的小,D错误.9.[2024·广东卷] 如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为U0、周期为t0的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场,磁感应强度大小为B.一带电粒子在t=0时刻从左侧电场某处由静止释放,在t=t0时刻从下板左端边缘位置水平向右进入金属板间的电场内,在t=2t0时刻第一次离开金属板间的电场、水平向右进入磁场,并在t=3t0时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的π3倍,粒子质量为m.忽略粒子所受的重力和场的边缘效应.(1)判断带电粒子的电性并求其所带的电荷量q;(2)求金属板的板间距离D和带电粒子在t=t0时刻的速度大小v;(3)求从t=0时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W.9.(1)带正电πmBt0(2)√3πU0t08B√π3U024Bt0(3)(π3+16π)mU048Bt0[解析] (1)由带电粒子在左侧电场中由静止释放后加速运动的方向可知粒子带正电(或由带电粒子在磁场中做圆周运动的方向结合左手定则可知粒子带正电).设粒子在磁场内做圆周运动的速度为v,半径为r,根据洛伦兹力提供向心力有qvB=m v 2r粒子在磁场中运动半个圆周所用的时间Δt=3t0-2t0粒子在磁场中做圆周运动的周期为T=2Δt又知T=2πrv联立解得q=πmBt0(2)设金属板间的电场强度为E,粒子在金属板间运动的加速度为a,则有E=U0Da=qEmt 0~2t 0内,粒子在金属板间的电场内做两个对称的类平抛运动,在垂直于金属板方向的位移等于在磁场中做圆周运动的直径,即y =2r 在垂直于金属板方向有y =2×12a (t 02)2在沿金属板方向有π3D =vt 0 联立解得D =√3πU 0t 08B ,v =√π3U 024Bt 0(3)由(1)(2)可知y =2D3由对称性可知,3t 0~4t 0内,粒子第二次进入金属板间的电场内,粒子在竖直方向的位移仍为y ,由于y <D ,故粒子不会碰到金属板.t =4t 0后,粒子进入左侧电场,先减速到速度为零,后反向加速,并在t =6t 0时刻第三次进入金属板间的电场内,此时粒子距上板的距离为h =D -y =D3,注意到h =y2,故粒子恰在加速阶段结束时碰到金属板.粒子第一次、第二次进出金属板间的电场过程中,电场力做功为0,粒子第三次进入金属板间的电场后,电场力做功为qEh ,设粒子在左侧电场中运动时电场力做功为W 左,根据动能定理有 W 左=12mv 2电场力对粒子做的总功为W =W 左+qEh联立解得W =(π3+16π)mU 048Bt 010.[2024·广西卷] xOy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里.质量为m ,电荷量为+q 的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P .不计粒子重力,则P 点至O 点的距离为 ( )A .mv qBB .3mv2qBC .(1+√2)mvqB D .(1+√22)mvqB10.C [解析] 粒子运动轨迹如图所示,在磁场中,根据洛伦兹力提供向心力有qvB =m v 2r ,可得粒子做圆周运动的半径为r =mvqB ,根据几何关系可得P 点至O 点的距离为L PO =r +r sin45°=(1+√2)mvqB ,故选C .11.[2024·广西卷] 如图所示,将不计重力、电荷量为q 的带负电的小圆环套在半径为R 的光滑绝缘半圆弧上,半圆弧直径两端的M 点和N 点分别固定电荷量为27Q 和64Q 的负点电荷.将小圆环从靠近N 点处静止释放,小圆环先后经过图上P 1点和P 2点,己知sin θ=35,则小圆环从P 1点运动到P 2点的过程中 ( )A .静电力做正功B .静电力做负功C .静电力先做正功再做负功D .静电力先做负功再做正功11.A [解析] 沿电场线越靠近负电荷则电势越低,画出两个不等量负点电荷的电场线分布如图甲所示,半圆与电场线的交点中其电场强度沿半径方向时,该点对应的电势最高,设该点为P ,如图乙所示,设连线PM 与直径MN 的夹角为α,则P 点到M 点的距离d M =2R cos α,P 点到N 点的距离为d N =2R sin α,M 点处点电荷在P 点产生的电场强度为E M =k 27Q d M2,N点处点电荷在P点产生的电场强度为E N =k64Qd N 2,P 点的电场强度沿着圆半径方向,由电场叠加原理可知E NE M=tan α,联立解得α=53°,已知P 2点和N 点连线与直径MN 的夹角恰好为37°,则P 2点和M 点连线与直径MN 的夹角恰好为53°,故半圆上P 2点的电势最高,因此带负电的圆环从P 1点运动到P 2点的过程中,电势一直升高,静电力一直做正功,选项A 正确.12.(多选)[2024·海南卷] 真空中有两个点电荷,电荷量均为-q (q ≥0),固定于相距为2r 的P 1、P 2两点,O 是P 1P 2连线的中点,M 点在P 1P 2连线的中垂线上,距离O 点为r ,N 点在P 1P 2连线上,距离O 点为x (x ≪r ),已知静电力常量为k ,则下列说法正确的是 ( )A .P 1P 2中垂线上电场强度最大的点到O 点的距离为√33rB .P 1P 2中垂线上电场强度的最大值为4√3kq9r 2C .在M 点放入一电子,从静止释放,电子的加速度一直减小D .在N 点放入一电子,从静止释放,电子的运动可视为简谐运动12.BCD [解析] 设P 1处的点电荷在P 1P 2中垂线上某点A 处产生的场强与竖直方向的夹角为θ,则根据场强的叠加原理可知,A 点的合场强为E =k 2qr 2sin 2 θcos θ,根据均值不等式可知当cos θ=√33时E 有最大值,且最大值为E m =4√3kq9r 2,此时A 点到O 点的距离为y =√22r ,故A 错误,B 正确;在M 点放入一电子,从静止释放,由于r >y =√22r ,可知电子向上运动的过程中所受电场力一直减小,则电子的加速度一直减小,故C 正确;根据等量同种电荷的电场线分布可知,电子运动过程中,O 点为平衡位置,可知当发生的位移为x 时,粒子受到的电场力为F =keq ·4rx(r -x )2(r+x )2,由于x ≪r ,整理后有F =4keqr 3·x ,在N 点放入一电子,从静止释放,电子的运动可视为以O 点为平衡位置的简谐运动,故D 正确.13.[2024·海南卷] 如图,在xOy 坐标系中有三个区域,圆形区域Ⅰ分别与x 轴和y 轴相切于P 点和S 点.半圆形区域Ⅰ的半径是区域Ⅰ半径的2倍.区域Ⅰ、Ⅰ的圆心O 1、O 2连线与x 轴平行,半圆与圆相切于Q 点,QF 垂直于x 轴,半圆的直径MN 所在的直线右侧为区域Ⅰ.区域Ⅰ、Ⅰ分别有磁感应强度大小为B 、B 2的匀强磁场,磁场方向均垂直纸面向外.区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m 、电荷量为q 的粒子由电场加速到v 0.改变发射器的位置,使带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ.已知某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ.(不计粒子的重力和粒子之间的影响) (1)求加速电场两板间的电压U 和区域Ⅰ的半径R.(2)在能射入区域Ⅰ的粒子中,某粒子在区域Ⅰ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅰ中运动的总时间t.(3)在区域Ⅰ加入匀强磁场和匀强电场,磁感应强度大小为B ,方向垂直纸面向里,电场强度的大小E =Bv 0,方向沿x 轴正方向.此后,粒子源中某粒子经区域Ⅰ、Ⅰ射入区域Ⅰ,进入区域Ⅰ时速度方向与y 轴负方向成74°角.当粒子动能最大时,求粒子的速度大小及所在的位置到y 轴的距离(sin37°=35,sin53°=45).13.(1)mv 022qmv 0qB (2)πmqB(3)2.6v 0172mv 025qB[解析] (1)根据动能定理得qU =12m v 02解得U =mv 022q粒子进入区域Ⅰ做匀速圆周运动,根据题意某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R 相等,粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力qBv 0=m v 02R 解得R =mv0qB(2)带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ,由(1)可得,粒子在区域Ⅰ中做匀速圆周运动,轨迹半径为R ,因为在区域Ⅰ中的磁场半径和轨迹半径相等,所以粒子射入点、区域Ⅰ圆心O 1、粒子出射点、轨迹圆心O'四点构成一个菱形,由几何关系可得,区域Ⅰ圆心O 1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O 1和粒子出射点连线水平,根据磁聚焦原理可知粒子都从Q 点射出,粒子射入区域Ⅰ,仍做匀速圆周运动,由洛伦兹力提供向心力q B2v 0=m v 02R '解得R'=2R如图甲所示,要使粒子在区域Ⅰ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅰ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅰ的磁场圆半径2R ,根据几何知识可得此时在区域Ⅰ和区域Ⅰ中运动的轨迹所对应的圆心角都为60°,粒子在两区域磁场中运动周期分别为 T 1=2πR v 0=2πmqBT 2=2π·2R v 0=4πmqB 故可得该粒子在区域Ⅰ和区域Ⅰ中运动的总时间为 t =60°360°T 1+60°360°T 2=πmqB甲(3)如图乙所示,将速度v 0分解为沿y 轴正方向的速度v 0及速度v',因为E =Bv 0,可得qE =qBv 0,故可知沿y 轴正方向的速度v 0产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力qBv',故粒子沿y 轴正方向做旋进运动,根据几何关系可知 v'=2v 0sin 53°=1.6v 0故当v'方向为竖直向上时粒子速度最大,最大速度为 v m =v 0+1.6v 0=2.6v 0根据几何关系可知此时所在的位置到y 轴的距离为 L =R'+R'sin 53°+2R +2R =6.88R =172mv 025qB乙14.[2024·河北卷] 我国古人最早发现了尖端放电现象,并将其用于生产生活,如许多古塔的顶端采用“伞状”金属饰物在雷雨天时保护古塔.雷雨中某时刻,一古塔顶端附近等势线分布如图所示,相邻等势线电势差相等,则a 、b 、c 、d 四点中电场强度最大的是 ( )A .a 点B .b 点C .c 点D .d 点14.C [解析] 在静电场中,等差等势线的疏密程度反映电场强度的大小,等差势线越密,则电场强度越大.由题图可知,c 点等差等势线最密集,故c 点电场强度最大,C 正确.15.[2024·河北卷] 如图所示,真空中有两个电荷量均为q (q >0)的点电荷,分别固定在正三角形ABC 的顶点B 、C.M 为三角形ABC 的中心,沿AM 的中垂线对称放置一根与三角形共面的均匀带电细杆,电荷量为q2.已知正三角形ABC 的边长为a ,M 点的电场强度为0,静电力常量为k.顶点A 处的电场强度大小为( )A .2√3kq a 2B .kq a 2(6+√3)C .kq a 2(3√3+1)D .kqa2(3+√3)15.D [解析] 如图所示,B 、C 两处点电荷在M 处产生的电场强度大小E 1=E 2=kq(√33a )2=3kqa 2,由于M 点的电场强度为0,故带电细杆在M 点产生的电场强度大小E 3=E 1cos 60°+E 2cos 60°=3kq a 2,B 、C 两处点电荷在A 处产生的电场强度大小E 4=E 5=kqq 2,合场强E 合'=E 4cos 30°+E 5cos 30°=√3kqa 2,方向向上,由于M 点与A 点关于带电细杆对称,故细杆在A 处产生的电场强度大小E 6=E 3=3kqa 2,方向向上,因此A 点的电场强度大小E =E 合'+E 6=kqa 2(√3+3),D 正确.16.(多选)[2024·河北卷] 如图所示,真空区域有同心正方形ABCD 和abcd ,其各对应边平行,ABCD 的边长一定,abcd 的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场.调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出.对满足前述条件的粒子,下列说法正确的是()A.若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B.若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C.若粒子经cd边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为45°D.若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°16.ACD[解析] 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示,由对称性可知,粒子从C点垂直于BC射出,A、C正确;若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子可能从cd边再次进磁场,作出粒子运动轨迹如图乙所示,此时粒子不能垂直BC射出,粒子也可能经bc边再次进入磁场,作出粒子运动轨迹如图丙所示,此时粒子垂直BC边射出,B错误,D正确.17.[2024·河北卷] 如图所示,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动.图中A、B为圆周上的两点,A点为最低点,B点与O点等高.当小球运动到A 点时,细线对小球的拉力恰好为0,已知小球的电荷量为q (q >0),质量为m ,A 、B 两点间的电势差为U ,重力加速度大小为g ,求: (1)电场强度E 的大小.(2)小球在A 、B 两点的速度大小.17.(1)U L(2)√Uq -mgLm√3(Uq -mgL )m[解析] (1)A 、B 两点沿电场线方向的距离为L ,在匀强电场中,由电场强度与电势差的关系可知E =U L(2)当小球运动到A 点时,细线对小球的拉力为0,由牛顿第二定律得Eq -mg =mv A 2L解得v A =√Uq -mgLm小球由A 点运动到B 点,由动能定理得 Uq -mgL =12m v B 2-12m v A 2 解得v B =√3(Uq -mgL )m18.[2024·湖北卷] 如图所示,在以O 点为圆心、半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.圆形区域外有大小相等、方向相反、范围足够大的匀强磁场.一质量为m 、电荷量为q (q >0)的带电粒子沿直径AC 方向从A 点射入圆形区域.不计重力,下列说法正确的是 ( )A .粒子的运动轨迹可能经过O 点B .粒子射出圆形区域时的速度方向不一定沿该区域的半径方向C .粒子连续两次由A 点沿AC 方向射入圆形区域的最小时间间隔为7πm3qBD.若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为√3qBR3m18.D[解析] 根据磁场圆和轨迹圆相交形成的圆形具有对称性可知,在圆形匀强磁场区域内,沿着径向射入的粒子总是沿径向射出,所以粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域的时间间隔最短对应的轨迹如图甲所示,则最小时间间隔为Δt=2T=4πmqB,故C错误;粒子从A点射入到从C点射出圆形区域用时最短对应的轨迹如图乙所示,设粒子在磁场中运动的半径为r,根据几何关系可知r=√33R,根据洛伦兹力提供向心力有qvB=m v 2r ,解得v=√3qBR3m,故D正确.19.(多选)[2024·湖北卷] 关于电荷和静电场,下列说法正确的是()A.一个与外界没有电荷交换的系统,电荷的代数和保持不变B.电场线与等势面垂直,且由电势低的等势面指向电势高的等势面C.点电荷仅在电场力作用下从静止释放,该点电荷的电势能将减小D.点电荷仅在电场力作用下从静止释放,将从高电势的地方向低电势的地方运动19.AC[解析] 根据电荷守恒定律可知,一个与外界没有电荷交换的系统,电荷的代数和保持不变,故A正确;根据电场线和等势面的关系可知,电场线与等势面垂直,且由电势高的等势面指向电势低的等势面,故B错误;点电荷仅在电场力作用下从静止释放,则电场力做正功,该点电荷的电势能将减小,根据φ=E pq可知,正电荷将从电势高的地方向电势低的地方运动,负电荷将从电势低的地方向电势高的地方运动,故C正确,D错误.20.[2024·湖南卷] 真空中有电荷量为+4q和-q的两个点电荷,分别固定在x轴上-1和0处.设无限远处电势为0,x正半轴上各点电势φ随x变化的图像正确的是()。

高考必做大题03:带电粒子与复合场

高考必做大题03:带电粒子与复合场

高考必做大题03:带电粒子与复合场一、综合题1.如图所示,大量的同种粒子从静止经电压U1加速后。

沿虚线方向射入正交的电磁场之中,恰好做直线运动,电场强度方向竖直向下,磁感应强度B1=0.2T。

方向垂直纸面向里,两平行板之间的距离d=6cm。

平行板右侧有一圆形磁场区域,圆心O在虚线上、半径r=10cm,圆内有垂直纸面向里的磁场B,B的大小可以调控。

边界上有磁场。

圆形区域的上方安装有荧光屏,荧光屏与虚线平行。

与O的距离l=20√3cm,M、N是荧光屏上两点,MO连线与屏垂直,N到M点之间的距离L=20cm。

已知加在平行板间的电压U2=1.2×104V,粒子的比荷为q m=108C/kg。

不计重力的影响,求:(1)加速电场U1大小;(2)要使粒子打到荧光屏上MN之间,圆形区域内的磁场B范围。

2.如图,在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形,图中OEFG区域也为边长为L的正方形且无电场。

已知电子的质量为m,电荷量为e,不计电子所受重力。

求:(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标(x,y);(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置坐标x、y间满足的关系;(3)若将左侧电场Ⅱ整体水平向右移动L3,仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置x、y满足的关系。

3.如图所示,一水平分界线KL把足够长的竖直边界NS和MT之间的空间分为上下两部分,KL上方区域存在竖直向下的匀强电场,KL下方区域存在垂直纸面向外的匀强磁场。

在NS和MT边界上,距KL高ℎ处分别有P、Q两点。

一电荷量为q、质量为m的带正电的粒子(重力不计)以初速度v0从P点垂直于边界NS进入匀强电场,经偏转后从边界KL进入匀强磁场,并恰好不从边界NS射出。

高三物理复合场练习题

高三物理复合场练习题

高三物理复合场练习题1. 题目描述:一个质点受到一个复合场的影响,该复合场由均匀磁场和均匀电场组成。

假设质点带电量为q,质量为m,在磁场的作用下,质点受到的磁力为Fm,电场的作用下受到的电力为Fe。

在该复合场中,质点受到的合力为F,合力的方向与合力的大小有关的变量为x。

2. 题目一:若磁场B与电场E垂直且大小相等,推导出合力F与x的关系式。

解答:由磁场B与电场E垂直且大小相等可得:Fm=qvBsinθ=qvBFe=qE其中,v为质点的速度,θ为速度与磁场方向的夹角。

根据合力的定义,有:F= Fm+Fe=qvB+qE根据叉乘向量性质,可将合力F写成向量形式:F=q(vBsinθ+E)由此可得合力F与变量x的关系式为:F=q(vBsinθ+E)x3. 题目二:若磁场B与电场E的方向相同,推导出合力F与x的关系式。

解答:由磁场B与电场E的方向相同可得:Fm=qvBsinθ=qvBFe=qE根据合力的定义,有:F= Fm+Fe=qvB+qE根据变量x的定义,有:x=vt其中,t为质点运动时间。

代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+Et)综上所述,当磁场B与电场E的方向相同时,合力F与变量x的关系式为:F=q(vBsinθ+Et)4. 题目三:若质点的速度v与弦的夹角θ随时间t的变化规律为:v=a+bt,θ=ωt,推导出合力F与x的关系式。

解答:由题可知:v=a+bt,θ=ωt其中,a和b为常量,ω为角速度。

根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据变量x的定义,有:x=vt即x=(a+bt)t=at+bt²代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+E)(at+bt²)综上所述,当质点的速度v与弦的夹角θ随时间t的变化规律为v=a+bt、θ=ωt时,合力F与变量x的关系式为:F=q(vBsinθ+E)(at+bt²)通过以上练习题,我们能够更好地理解复合场的概念和其对质点受力的影响。

高考物理 磁场精讲精练 组合场复合场叠加场典型习题

高考物理 磁场精讲精练 组合场复合场叠加场典型习题

组合场复合场叠加场典型习题1.如图所示,匀强电场方向水平向右,匀强磁场方向垂直纸面向里,将带正电的小球在场中静止释放,最后落到地面上.关于该过程,下述说法正确的是( )A.小球做匀变速曲线运动B.小球减少的电势能等于增加的动能C.电场力和重力做的功等于小球增加的动能D.若保持其他条件不变,只减小磁感应强度,小球着地时动能不变解析:选C.重力和电场力是恒力,但洛伦兹力是变力,因此合外力是变化的,由牛顿第二定律知其加速度也是变化的,选项A错误;由动能定理和功能关系知,选项B错误,选项C正确;磁感应强度减小时,小球落地时的水平位移会发生变化,则电场力所做的功也会随之发生变化,选项D错误.2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动解析:选C.带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确.3.(多选)质量为m、电荷量为q的微粒以速度v与水平方向成θ角从O点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A,下列说法中正确的是( )A.该微粒一定带负电荷B .微粒从O 到A 的运动可能是匀变速运动C .该磁场的磁感应强度大小为mgqv cos θD .该电场的场强为Bv cos θ解析:选AC.若微粒带正电荷,它受竖直向下的重力mg 、水平向左的电场力qE 和斜向右下方的洛伦兹力qvB ,知微粒不能做直线运动,据此可知微粒应带负电荷,它受竖直向下的重力mg 、水平向右的电场力qE 和斜向左上方的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有:qvB cos θ=mg ,qvB sin θ=qE ,得磁场的磁感应强度B =mgqv cos θ,电场的场强E =Bv sin θ,故选项C 正确,D 错误.4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UEgC .小球做匀速圆周运动的周期为T =2πEBgD .若电压U 增大,则小球做匀速圆周运动的周期增加解析:选BC.小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿第二定律和动能定理可得:Bqv =mv 2r ,Uq =12mv 2,联立两式可得:小球做匀速圆周运动的半径r =1B2UE g ,由T =2πr v 可以得出T =2πE Bg,与电压U 无关,所以B 、C 正确,D 错误.5.(多选)如图所示,在第二象限中有水平向右的匀强电场,在第一象限内存在垂直纸面向外的匀强磁场.有一重力不计的带电粒子(电荷量为q ,质量为m )以垂直于x 轴的速度v 0从x 轴上的P 点进入匀强电场,恰好与y 轴正方向成45°角射出电场,再经过一段时间又恰好垂直于x 轴进入第四象限.已知OP 之间的距离为d ,则( )3A .带电粒子通过y 轴时的坐标为(0,d )B .电场强度的大小为mv 202qdC .带电粒子在电场和磁场中运动的总时间为(3π+4)d2v 0D .磁感应强度的大小为2mv 04qd解析:选BC. 粒子在电场中做类平抛运动,因为进入磁场时速度方向与y 轴正方向成45°角,所以沿x 轴正方向的分速度v x =v 0,在x 轴正方向做匀加速运动,有d =0+v 02t ,沿y 轴正方向做匀速运动,有s =v 0t =2d ,故选项A 错误.沿x 轴正方向做匀加速运动,根据v x =v 0=Eq m ×2d v 0=2Eqd mv 0,解得E =mv 202qd,故选项B 正确.粒子进入磁场后做匀速圆周运动,轨迹如图所示,由图可知粒子在磁场中运动的半径R =22d ,圆心角θ=135°=34π,所以在磁场中的运动时间为t 1=2πR ×1353602v 0=3π×22d 42v 0=3πd2v 0;在电场中的运动时间为t 2=2d v 0,所以总时间为t =t 1+t 2=(3π+4)d 2v 0,故选项C 正确.由qvB =mv2R 可知,磁感应强度B =m ×2v 0q ×22d =mv 02qd,故选项D 错误.6.在某空间存在着水平向右的匀强电场E 和垂直于纸面向里的匀强磁场B ,如图所示,一段光滑且绝缘的圆弧轨道AC 固定在纸面内,其圆心为O 点,半径R =1.8 m ,OA 连线在竖直方向上,AC 弧对应的圆心角θ=37°.今有一质量m =3.6×10-4kg 、带电荷量q =+9.0×10-4C 的带电小球(可视为质点),以v 0=4.0 m/s 的初速度沿水平方向从A 点射入圆弧轨道内,一段时间后从C 点离开,小球离开C 点后做匀速直线运动.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)匀强电场的场强E ;(2)小球刚离开C 点时的速度大小;(3)小球刚射入圆弧轨道时,轨道对小球的瞬间支持力.解析:(1)当小球离开圆弧轨道后,对其受力分析如图甲所示,由平衡条件得F 电=qE=mg tan θ,代入数据解得E =3 N/C.(2)小球从进入圆弧轨道到离开圆弧轨道的过程中,由动能定理得F 电R sin θ-mgR (1-cos θ)=mv 22-mv 22,代入数据得v =5 m/s.(3)由(1)可知F 洛=qvB =mgcos θ, 解得B =1 T ,小球射入圆弧轨道瞬间竖直方向的受力情况如图乙所示,由牛顿第二定律得F N +Bqv 0-mg =mv 20R,代入数据得F N =3.2×10-3N.答案:(1)3 N/C (2)5 m/s (3)3.2×10-3N7. 如图所示,在直角坐标系xOy 平面内,虚线MN 平行于y 轴,N 点坐标为(-L,0),MN 与y 轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的矩形有界匀强磁场(图中未画出).现有一质量为m 、电荷量为-e 的电子,从虚线MN 上的P 点,以平行于x 轴正方向的初速度v 0射入电场,并从y 轴上点A ()0,0.5L 射出电场,射出时速度方向与y 轴负方向成30°角,进入第四象限后,经过矩形磁场区域,电子过点Q ⎝⎛⎭⎪⎫36L ,-L ,不计电子重力,求:5(1)匀强电场的电场强度E 的大小;(2)匀强磁场的磁感应强度B 的大小和电子在磁场中运动的时间t ; (3)矩形有界匀强磁场区域的最小面积S min .解析:(1)设电子在电场中运动的加速度为a ,时间为t ,离开电场时,沿y 轴方向的速度大小为v y ,则L =v 0ta =eE mv y =at v y =v 0tan 30°解得:E =3mv 2eL(2) 设轨迹与x 轴的交点为D ,OD 距离为x D ,则x D =0.5L tan 30°=36L 所以,DQ 平行于y 轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ 上,电子运动轨迹如图所示.设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r ,则evB =m v 2rv =v 0sin 30°由几何关系有 r +r sin 30°=L ,即r =L3联立以上各式解得 B =6mv 0eL电子转过的圆心角为120°,则得 t =T3T =2πm eB ⎝⎛⎭⎪⎫或T =2πr v =πL 3v 0 得t =πL9v 0(3)以切点F 、Q 的连线长为矩形的一条边,与电子的运动轨迹相切的另一边作为其FQ 的对边,有界匀强磁场区域面积为最小.S min =3r ×r2得S min =3L218答案:(1)3mv 2eL (2)6mv 0eL πL 9v 0 (3)3L2188.如图所示,圆柱形区域的半径为R ,在区域内有垂直于纸面向里、磁感应强度大小为B 的匀强磁场;对称放置的三个相同的电容器,极板间距为d ,板间电压为U ,与磁场相切的极板,在切点处均有一小孔,一带电粒子,质量为m ,带电荷量为+q ,自某电容器极板上的M 点由静止释放,M 点在小孔a 的正上方,若经过一段时间后,带电粒子又恰好返回M 点,不计带电粒子所受重力.求:(1)带电粒子在磁场中运动的轨道半径; (2)U 与B 所满足的关系式;(3)带电粒子由静止释放到再次返回M 点所经历的时间. 解析:(1)由几何关系解得r =3R . (2)设粒子加速后获得的速度为v , 由动能定理得qU =12mv 2-0,由洛伦兹力提供向心力,得qvB =m v 2r,7联立解得B =1R2mU 3q. (3)根据运动电荷在磁场中做匀速圆周运动的周期T =2πmqB=2πR3m 2qU, 依题意分析可知粒子在磁场中运动一次所经历的时间为16T ,故粒子在磁场中运动的总时间t 1=3×16T =πR3m 2qU, 而粒子在匀强电场中所做运动类似竖直上抛运动,设每次上升或下降过程经历的时间为t 2,则有d =12at 22, a =qU md, 解得t 2=d2m qU,粒子在电场中运动的总时间为t 3=6t 2=6d2m qU.带电粒子由静止释放到再次返回M 点所经历的时间为t =t 1+t 3=πR3m2qU+6d 2mqU.答案:(1)3R (2)B =1R2mU 3q(3)πR3m2qU+6d 2mqU9.如图所示,在xOy 平面第一象限内有平行于y 轴的匀强电场和垂直于xOy 平面的匀强磁场,匀强电场电场强度为E .一带电荷量为+q 的小球从y 轴上离坐标原点距离为L 的A 点处,以沿x 正向的初速度进入第一象限,如果电场和磁场同时存在,小球将做匀速圆周运动,并从x 轴上距坐标原点L2的C 点离开磁场.如果只撤去磁场,并且将电场反向,带电小球以相同的初速度从A 点进入第一象限,仍然从x 轴上距坐标原点L2的C 点离开电场.求:(1)小球从A 点出发时的初速度大小; (2)磁感应强度B 的大小和方向.解析:(1)由带电小球做匀速圆周运动知mg =Eq 所以电场反向后竖直方向受力Eq +mg =ma 得a =2g小球做类平抛运动,有L 2=v 0t ,L =12at 2得v 0=12gL(2)带电小球做匀速圆周运动时,洛伦兹力提供向心力,有qv 0B =mv 20R 得B =mv 0qR由圆周运动轨迹分析得(L -R )2+⎝ ⎛⎭⎪⎫L 22=R 2R =5L 8代入得B =4E gL5gL由左手定则得,磁感应强度垂直于xOy 平面向外. 答案:(1)12gL (2)4E gL5gL,垂直于xOy 平面向外10.如图甲所示,建立Oxy 坐标系.两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极9板长度和板间距均为l .在第一、四象限有磁感应强度为B 的匀强磁场,方向垂直于Oxy 平面向里.位于极板左侧的粒子源沿x 轴向右连续发射质量为m 、电荷量为+q 、速度相同、重力不计的带电粒子.在0~3t 0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响).已知t =0时刻进入两板间的带电粒子恰好在t 0时刻经极板边缘射入磁场.上述m 、q 、l 、t 0、B 为已知量.(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U 0的大小;(2)求12t 0时刻进入两板间的带电粒子在磁场中做圆周运动的半径;(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.解析:(1)t =0时刻进入两板间的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为12l ,则有E =U 0l ①qE =ma ②12l =12at 20③ 联立①②③式,解得两板间偏转电压为U 0=ml 2qt 20④(2)12t 0时刻进入两板间的带电粒子,前12t 0时间在电场中偏转,后12t 0时间两板间没有电场,带电粒子做匀速直线运动.带电粒子沿x 轴方向的分速度大小为v 0=l t 0⑤带电粒子离开电场时沿y 轴负方向的分速度大小为v y =a ·12t 0⑥带电粒子离开电场时的速度大小为v =v 20+v 2y ⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有qvB =m v 2R⑧联立③⑤⑥⑦⑧式解得R =5ml 2qBt 0⑨(3)2t 0时刻进入两板间的带电粒子在磁场中运动时间最短.带电粒子离开电场时沿y 轴正方向的分速度为v y ′=at 0⑩设带电粒子离开电场时速度方向与y 轴正方向夹角为α,则tan α=v 0v y ′⑪ 联立③⑤⑩⑪式解得α=π4⑫带电粒子在磁场中运动轨迹如图所示,圆弧所对的圆心角2α=π2,所求最短时间为t min =14T ⑬带电粒子在磁场中运动的周期为T =2πmqB⑭联立⑬⑭式得t min =πm2qB答案:(1)ml 2qt 20 (2)5ml 2qBt 0 (3)2t 0 πm2qB百度文库是百度发布的供网友在线分享文档的平台。

高考物理专题 磁场、复合场练习及参考答案

高考物理专题   磁场、复合场练习及参考答案

高三物理磁场、带电粒子在磁场、复合场中的运动专题练习一、选择题。

本题共8小题。

(第1—5题在每小题给出的四个选项中,只有一项符合题目要求,第6—8题有的有多项符合题目要求。

)1、为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。

在下列四个图中,正确表示安培假设中环形电流方向的是( )2、如图所示为水平放置的两根等高固定长直细导线的截面图,O 点是两导线间距离的中点,a 、b 是过O 点的竖直线上与O 点距离相等的两点,两导线中通有大小相等、方向相反的恒定电流 下列说法正确的是( ) A.O 点的磁感应强度为零B.O 点的磁感应强度方向竖直向下C.两导线之间存在相互吸引的安培力D.a 、b 两点的磁感应强度大小相等、方向相反3、如图所示,21q q 和为两带电粒子,其中q 1带正电,q 2带负电 某时刻,它们以相同的速度垂直进入同一磁场,此时所受洛伦兹力分别为F 1、F 2则( )A. F 1、F 2的方向均向右B.F 1、F 2的方向均向左C.F 1的方向向左,F 2的方向向右D.F 1的方向向右,F 2的方向向左4、如图所示,质量m =0.1kg 的AB 杆放在倾角030=θ的光滑轨道上,轨道间距L =0.2m ,电流I =0.5A 当加上垂直于杆AB 的某一方向的匀强磁场后,杆AB 处于静止状态,则所加磁场的磁感应强度不可能为(取2/10s m g =)( )A. 4TB. 5TC. 7TD. 10T5、平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

一带电粒子的质量为m ,电荷量为q (q >0)。

粒子沿纸面以大小为v 的速度从PM 的某点向左上方射入磁场,速度与OM 成30°角。

已知粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

高考冲刺物理百题精练 专题05 电场、磁场及复合场(含解析)

高考冲刺物理百题精练 专题05 电场、磁场及复合场(含解析)

2015年高考冲刺物理百题精练 专题05 电场、磁场及复合场(含解析)1.如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E ,场区宽度为L ,在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B 未知,圆形磁场区域半径为r 。

一质量为m ,电荷量为q 的带正电的粒子从A 点由静止释放后,在M 点离开电场,并沿半径方向射入磁场区域,然后从N 点射出,O 为圆心,120MON ∠=,粒子重力可忽略不计。

求: (1)粒子在电场中加速的时间; (2)匀强磁场的磁感应强度B 的大小。

1.【答案】(1)qEmL t 2=(2)232qr mEL B =所以有Rm v Bqv 2= ⑥ 由几何关系得︒=30tan R r⑦所以232qrmEL B = ⑧ 考点:带电粒子在匀强电场及在匀强磁场中的运动.2.如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电荷量为q (q >0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002T =.mqB π设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。

(1)在t =0到t =T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t =T 0到t =1.5T 0这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。

2.【解析】试题分析:(1)小球运动时不受细管侧壁的作用力,因而小球所受洛伦兹力提供向心力rm q v B v 2000= ①3.如图,直线MN上方有平行于纸面且与MN成45°的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B。

高考物理-电磁学-复合场专题练习(含答案)(一)

高考物理-电磁学-复合场专题练习(含答案)(一)

高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。

2006年高考大雁一中专题复习电场、磁场及复合场-人教版[原创]

2006年高考大雁一中专题复习电场、磁场及复合场-人教版[原创]

电场、磁场及复合场一、 典型例题1. 空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示。

一带电粒子+q 以初速度v 0垂直于电场和磁场射入,则粒子在场中的运动情况可能是( )A 、 沿初速度方向做匀速运动B 、 在纸平面内沿逆时针方向做匀速圆周运动C 、在纸平面内做轨迹向下弯曲的匀变速曲线运动D 、初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动2、如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是( ) A.滴带负电 B.滴在C 点动能最大C.若液滴所受空气阻力不计,则机械能守恒 D 、液滴在C 点机械能最大3、如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是( )A 、 始终作匀速运动B 、先作加速运动,后作匀速运动C 、先作减速运动,后作匀速运动D 、先作减速运动,最后静止在杆上4、如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀强磁场B 中,从P 点离开该区域,此时侧向位移为s ,则( )(重力不计)A 、 粒子在P 点所受的磁场力可能比电场力大B 、粒子的加速度为(qE-qv 0B )/mC 、粒子在P 点的速率为mqsE v 220+D 、粒子在P 点的动能为mv 02/2-qsE5、如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则( )A 、物体的运动由v 减小到零所用的时间等于mv/μ(mg+qvB ) B 、物体的运动由v 减小到零所用的时间小于mv/μ(mg+qvB )C 、若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动D 、若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动6、如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电-q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五 电场、磁场及复合场
1.如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E ,场区宽度为L ,在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B 未知,圆形磁场区域半径为r 。

一质量为m ,电荷量为q 的带正电的粒子从A 点由静止释放后,在M 点离开电场,并沿半径方向射入磁场区域,然后从N 点射出,O 为圆心,120MON ∠=,粒子重力可忽略不计。

求:
(1)粒子在电场中加速的时间;
(2)匀强磁场的磁感应强度B 的大小。

2.如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电荷量为q (q >0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002T =.m qB π设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。

(1)在t =0到t =T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t =T 0到t =1.5T 0这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。

3.如图,直线MN 上方有平行于纸面且与MN 成45°的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B 。

今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R 。

若该粒子从O 点出发记为第一次经
过直线MN ,而第五次经过直线MN 时恰好又通过O 点。

不计粒子的重力。

求:
(1)电场强度的大小;
(2)该粒子再次从O 点进入磁场后,运动轨道的半径;
(3)该粒子从O 点出发到再次回到O 点所需的时间。

4.粒子扩束装置示意图如图甲所示,它是由粒子源、加速电场、偏转电场、匀强磁场和荧光屏组成。

粒子源A 产生带正电的粒子质量均为m ,电荷量均为q ,由静止开始经加速电场加速后,沿平行于两水平金属板从正中央连续不断地射入偏转电场。

偏转电场的极板间距为d ,两金属板间电压U 1随时间t 变化规律如图乙所示, 其中电压变化周期为T ,电压最大值212md U qT =。

设加速电压202
23md U qT =,匀强磁场水平宽度为23L d =,竖直长度足够长,磁场方向垂直纸面向外,竖直放置的荧光屏与磁场右边界重合。

已知粒子通过偏转电场的时间为T ,不计粒子重力和粒子间相互作用。

求:
(1)偏转电场的极板长度L 1;
(2)粒子射出偏转电场的最大侧移y 1;
(3)调整磁感应强度B 的大小,可改变粒子束打在荧光屏上形成的光带的位置。

B 取何值时,粒子束打在荧光屏上的光带位置最低?光带的最低位置离中心O 点的距离h 为多少?
5.如图所示,有一平行板电容器左边缘在y 轴上,下极板与x 轴重台,极板间匀强电场的场强为E 。

一电量为q 、质量为m 的带电粒子,从O 点与x 轴成θ角斜向上射入极板间,粒子经过K 板边缘a 点平行于x 轴飞出电容器,立即进入一磁感应强度为B 的圆形磁场(未画出),随后从c 点垂直穿过x 轴离开磁场。


知粒子在O 点的初速度大小为B E v 3=, 45=∠acO ,3
3cos =θ,磁场方向垂直于坐标平面向外,磁场与电容器不重和,带电粒子重力不计,试求:
(1)K 极板所带电荷的电性;(2)粒子经过c 点时的速度大小;(3)圆形磁场区域的最小面积。

6.如图所示,真空室内有一个点状的α粒子放射源P ,它向各个方向发射α粒子(不计重力),速率都相同。

ab 为P 点附近的一条水平直线(P 到直线ab 的距离PC =L ),Q 为直线ab 上一点,它与P 点相距PQ = L 25 (现只研究与放射源P 和直线ab 同一个平面内的α粒子的运动),当真空室内(直线ab 以上区域)只存在垂直该平面向里、磁感应强度为B 的匀强磁场时,水平向左射出的α粒子恰到达Q 点;当真空室(直线ab 以上区域)只存在平行该平面的匀强电场时,不同方向发射的α粒子若能到达ab 直线,则到达ab 直线时它们动能都相等,已知水平向左射出的α粒子也恰好到达Q 点。

(α粒子的电荷量为+q ,质量为m ;sin37°=0.6;cos37°=0.8)求:
(1)α粒子的发射速率
(2)匀强电场的场强大小和方向
(3)当仅加上述磁场时,能到达直线ab 的α粒子所用最长时间和最短时间的比值
7.如图所示,在xOy 平面内0<x <L 的区域内有一方向竖直向上的匀强电场,x >L 的区域内有一方向垂直于xOy 平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点,以沿x 轴正方向的初速度v 0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60o 和30o ,两粒子在磁场中分别运动半周后恰好在某点相遇.已知两粒子的重力以及两粒子之间的相互作用都可忽略不计.求:
(1)正、负粒子的比荷之比2
211:m q m q ;
(2)正、负粒子在磁场中运动的半径大小;
(3)两粒子先后进入电场的时间差.
8.如图所示,在xoy 平面内以O 为圆心、R 0为半径的圆形区域I 内有垂直纸面向外的匀强磁场。

一质量为m 、电荷量为+q 的粒子以速度v 0从A (R 0,0)点沿x 轴负方向射入区域I ,经过P (0,R 0)点,沿y 轴正方向进入同心环形区域Ⅱ,为使粒子经过区域Ⅱ后能从Q 点回到区域I ,需在区域Ⅱ内加一垂直于纸面向里的匀强磁场。

已知OQ 与x 轴负方向成30角,不计粒子重力。

求:
(1)区域I 中磁感应强度B 0的大小;
(2)环形区域Ⅱ的外圆半径R 至少为多大;
(3)粒子从A 点出发到再次经过A 点所用的最短时间。

9.如图, OAC ∆的三个顶点的坐标分别为O (0,0)、A (L ,0)、C (0, 3L ),在OAC ∆区域内有垂直于xOy 平面向里的匀强磁场。

在t =0时刻,同时从三角形的OA 边各处以沿y 轴正向的相同速度将质量均为m ,电荷量均为q 的带正电粒子射入磁场,已知在t=t 0时刻从OC 边射出磁场的粒子的速度方向垂直于y 轴。

不计粒子重力和空气阻力及粒子间相互作用。

(1)求磁场的磁感应强度B 的大小;
(2)若从OA 边两个不同位置射入磁场的粒子,先后从OC 边上的同一点P (P 点图中未标出)射出磁场,求这两个粒子在磁场中运动的时间t 1与t 2之间应满足的关系;
(3)从OC 边上的同一点P 射出磁场的这两个粒子经过P 点的时间间隔与P 点位置有关,若该时间间隔最大值为340t ,求粒子进入磁场时的速度大小。

10.如图所示,在x 轴上方有垂直xoy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xoy 平面,图象如图所示。

一质量为m ,电量为-q 的粒子在03
2t t =时刻沿着与y 轴正方向成60°角方向从A 点射入磁场,02t t =时第一次到达x 轴,并且速度垂直于x 轴经过C 点,C 与原点O 的距离为3L 。

第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L 。

(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示。

)
(1)求此粒子从A 点射出时的速度υ0。

(2)求电场强度E 0的大小和方向。

(3)粒子在09
t t =时到达M 点,求M 点坐标。

相关文档
最新文档