电场磁场计算题专项训练及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电场磁场计算题专项训练
【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =-
q
mgd
23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则
(1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置?
2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少?
3、(2010全国卷Ⅰ)如下图,在a x 30≤
≤区域内存在与xy 平面垂直的匀强磁场,磁感
应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知
B
沿y轴正方向发射的粒子在t =t0时刻刚好从磁场边界上P(a3,a)点离开磁场。求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;
(2)t0时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;
(3)从粒子发射到全部粒子离开磁场所用的时间.
4、(2008天津)在平面直角坐标系xOy中,第一象限存在沿y轴负方向的匀强电场,第四象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。不计粒子重力,求
(1)M、N两点间的电势差U MN。
(2)粒子在磁场中运动的轨道半径r ;
(3)粒子从M点运动到P点的总时间t 。
5、(2009宁夏)如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标
2l。原点O离开磁场。粒子在磁场中的运动轨迹与y轴交于M点。已知OP = l,OQ =3
不计重力。求
(1)M点与坐标原点O间的距离;
(2)粒子从P点运动到M点所用的时间。
6、(2008宁夏)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外.有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场.质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d .接着,质点进入磁场,并垂直于OC 飞离磁场.不计重力影响.若OC 与x 轴的夹角为φ,求: ⑴粒子在磁场中运动速度的大小; ⑵匀强电场的场强大小.
7、(2009江苏)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U 。加速过程中不考虑相对论效应和重力作用。(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t ;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E km 。
8、(2009天津)如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B ,方向垂直xOy 平面向里,电场线平行于y 轴。一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L ,小球过M 点时的速度方向与x 轴的方向夹角为θ。不计空气阻力,重力加速度为g ,求
(1) 电场强度E 的大小和方向;
y
E
A O x
B
C
v φ
φ
(2) 小球从A点抛出时初速度v0的大小;
(3) A点到x轴的高度h.
9、(2010四川卷)如图所示,电源电动势E0=15V、内阻r0=1Ω,电阻R1=30Ω,R2=60Ω。间距d = 0.2m的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度B=1T的匀强磁场。闭合开关S,板间电场视为匀强电场,将一带正电的小球以初速度v = 0.1m/s沿两板间中线水平射入板间。设滑动变阻器接入电路的阻值为R x,忽略空气对小球的作用,取g =10m/s2。
(1)当R x=29Ω时,电阻R2消耗的电功率是多大?
(2)若小球进入板间做匀速度圆周运动并与板相碰,碰时速度与初速度的夹角为60°,则R x 是多少?
10、(2010安徽卷)如图1所示,宽度为d的竖直狭长区域内(边界为l1、l2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E0,E > 0表示电场方向竖直向上,t = 0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界的N2点。Q为线段N1N2的中点,重力加速度为g 。上述d、E0、m、v、g为已知量。
(1)求微粒所带电荷量q和磁感应强度B的大小;
(2)求电场变化的周期T;
(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值。