电磁场计算题专项练习
(完整版)电磁场计算题(2套)教师
电磁场计算题11、如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E 、方向水平向右,其宽度为L ;中间区域匀强磁场的磁感应强度大小为B 、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B 、方向垂直纸面向里。
一个带正电的粒子(质量m ,电量q ,不计重力)从电场左边缘a 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a 点,然后重复上述运动过程。
(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。
(1)中间磁场区域的宽度d 为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a 点开始运动到第一次回到a 点时所用的时间t 。
解:(1)带正电的粒子在电场中加速,由动能定理得 212qEL mv =2qELv m= 在磁场中偏转,由牛顿第二定律得 2v qvB m r =12mv mELr qB B q==可见在两磁场区域粒子运动的半径相同.如右图,三段圆弧的圆心组成的三角形123O O O 是等边三角形,其边长为2r16sin 602mELd r B q==(2)带电粒子在中间磁场区域的两段圆弧所对应的圆心角为:1602120θ=⨯=,由于速度v 相同,角速度相同,故而两个磁场区域中的运动时间之比为:523001202121===θθt t (3)电场中,12222v mv mLt a qE qE=== 中间磁场中, qB mT t 32622π=⨯= 右侧磁场中,35563m t T qBπ== 则1232723mL mt t t t qE qBπ=++=+2、如图所示,为某一装置的俯视图,PQ 、MN 为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B ,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m ,带电量大小为q ,其重力不计的粒子,以初速v 0水平射入两板间,问:(1)金属棒AB 应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动?(2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv 0/qB 时的时间间隔是多少?(磁场足够大)解:(1)粒子匀速运动,所受电场力与洛伦兹力等大反向,则金属棒B 端应为高电势,即金属棒应朝左运动(1分) 设AB 棒的速度为v ,产生的电动势Bdv =ε (1分)板间场强Bv dE ==ε(1分)粒子所受电场力与洛伦兹力平衡0Bqv Eq = (1分) 有 0v v = (1分)(2)金属棒停止运动,带电粒子在磁场中做匀速圆周运动,当位移为R Bqmv =0时,粒子转过的角度为3πθ=(1分)设粒子运动时间为t ∆,有ππ23=∆T t (1分) Bqm T t 361π==∆ (1分)3、如图所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向。
电磁场练习题
电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。
为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。
练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。
求整个空间内的电势分布。
2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。
求两个带电板之间的电场强度。
3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。
求圆环轴线上离圆环中心距离为x处的电场强度。
练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。
求点A处的磁场强度。
2. 一个长直导线以λ的线密度均匀分布电流。
求距离导线距离为r处的磁场强度。
3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。
练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。
求电子做曲线运动的轨迹。
2. 有两个无限长平行导线,分别通过电流I1和I2。
求两个导线之间的相互作用力。
3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。
求电荷受到的合力。
练习题4:电磁场的应用1. 描述电磁波的基本特性。
2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。
3. 解释电磁场与电路中感应电动势和自感现象的关系。
根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。
通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。
希望读者能够认真思考每道练习题,尽量自行解答。
如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。
通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
电磁场试题含答案
re
ˆ y ˆz ˆ 方向的方向导数为 ( (1,1,1)且沿矢量 l 2 x
6 6 , ,6) 。 3 2
13、用电场矢量 E 、 D 表示电场能量密度的公式为 we =
1 E D ,用磁场矢量 B 、 H 表示 2
磁场能量密度的公式 wm =
1 B H 。 2
7 -10
数量级。由电场中的折射率
tan1 1 10 10 。由上式知,电流由良导体进入不良导体时,在不良导体里的电流线 tan 2 2 107
近似垂直于分界面。 在(2)的情况下,因为理想介质中无传导电流,导体中只有与分界面垂直的电流,即 电场只有切向分量。 6.束缚电荷与自由电荷有何不同? 答:自由电荷:指可以自由移动的电荷。即受到其他电荷(或电场)作用就会产生运动。 如金属导体中的自由电子或电解质溶液中的正负离子。 束缚电荷:相对自由电荷而。即受到其他电荷(或电场)作用不会产生运动。如如 金属导体中的原子核和内层电子。 7.静电场中的导体有什么特点? 答:在静电场中,导体内电场等于 0,导体是等势体,导体表面是等势面,电力线垂直 于导体表面。 8.在理想介质与理想导体的分界面上电场和磁场的场矢量有什么特点? 答:在导体表面处,介质中的电场只有法向分量而磁场只有切向分量。 9.恒定电场中,不同电导率的物质分界面上有无电荷?为什么? 答:没有自由电荷,由于两种物质的介电常数不同,电场强度的法向分量在介质分界面 上是不连续的。因为电场对电介质的极化作用,而使两种不同的分界面上产生极化作用,而 使在两种不同的分界面上产生极化面电荷。 10.当电力线从良导体一侧进入到不良导体一侧时,不良导体一侧的电场如何分布?为 什么? 答:近似垂直与分界面。导电媒介一般导电率很高为 10 数量级,而绝缘媒介导电率为
电磁学复习计算题(附答案)
《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?d-3q+q2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLdq POxz ya aaa10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB的半径为R ,试求圆心O 点的场强.ABRpⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q ABR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λ a Oxεrdd/2 d/2BC AqVR ROQ εr 1εr 226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2 Ia a I xO 2a a bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 2 abcIIO12 e32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC 的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39. 假定地球的磁场是由地球中心的载流小环产生的,已知地极附近磁感强度B 为 6.27×10-5 T ,地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小.40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )y ORωR 1 R 2 NbIS2R1 mbacI IO1 2eABEF RIID C O 60︒abc dOI R 2R 1 l 2 l 141. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
【速度】电磁场30分钟计算题练习
【关键字】速度计算题练习11. 如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板.R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.(2)改变Rx,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的Rx.(1)当Rx=R时,棒沿导轨匀速下滑时,由平衡条件安培力解得ab切割产生的感应电动势由闭合欧姆定律得回路中电流解得(2)微粒水平射入金属板间,能匀速通过,由平衡条件棒沿导轨匀速,由平衡条件金属板间电压解得2.如图所示,质量m1=,电阻R1=0.3Ω,长度l=的导体棒ab横放在U型金属框架上。
框架质量m2=,放在绝缘水平面上,与水平面间的动摩揩因数μ=0.2,相距的MM’、NN’相互平行,电阻不计且足够长。
电阻R2=0.1Ω的MN垂直于MM’。
整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T。
垂直于ab施加F=2N的水平恒力,ab从静止开始无摩揩地运动,始终与MM’、NN’保持良好接触,当ab运动到某处时,框架开始运动。
设框架与水平面间最大静摩揩力等于滑动摩揩力,g取/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1J,求该过程ab位移x的大小。
(1)对框架的压力① 框架受水平面的支持力②依题意,最大静摩揩力等于滑动摩揩力,则框架受到最大静摩揩力③中的感应电动势④ 中电流⑤ 受到的安培力F ⑥框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得3.在如图所示的竖直平面内,水平轨道CD和倾斜轨道GH与半径r=m的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角θ=37°。
电磁场期末复习_计算题
②电场、磁场强度复矢量
解: ① kex3ez4, k5, ek ex0.6ez0.8
k, 53108 1.5109rad/s
c
f 7.5108Hz, 20.4m
2
k
② E H x x,,z z e 0y H 3 1 x,e z j (e 3x k4 z)(A e x/0 m .8,e z0 .6 0) 41e0 2 j (3x 0 4z)V /m
求导线产生的磁场;线圈中的感应电动势。
解: ② CH dli HeI02 co ts(A /m )
id
b a
磁感应强度为
Be
I0cost 2
(T)
SB d sd dbI0 2 c o ta sd 2 I 0 aln d dbco ts
故感应电动势为 d d tI2 0 aln d dbsi n t(V )
Jd D t r0 E m s itn 8 1 31 6 1 9 0 2 16E 0 m s itn 4 .5 1 3 0 E m si2 n 1 (6t0 )
8
电磁场与电磁波
2014复习资料
8. 在E 理z,想t介 质e x (4 εr=c 2.0 25o ,μtrs =-1))k 中(均已z 匀知平该面平波面电波场频强率度为瞬10时G值Hz为, :
8. 在E 理z,想t介 质e x (4 εr=c 20 .25o ,μtrs =-1))k ( 中已均z 知匀该平平面面波波电频场率强为度1瞬0G时H值z, 为:
③求磁场强度瞬时值④平均坡印廷矢量。
解: ③ r 120 1 80 ,
r
2 .25
Hz , t
ey
40
cos(
t-kz
4
电磁场计算题专项练习
电磁场计算题专项练习一、电场1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。
已知货柜与小车间的动摩擦因数µ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:⑴第二次电场作用的时间;⑵小车的长度;⑶小车右端到达目的地的距离.16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。
一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。
第十三章电磁感应电磁场习题
第十三章电磁感应电磁场习题(一)教材外习题电磁感应习题一、选择题:1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将(A)加速铜板中磁场的增加(B)减缓铜板中磁场的增加(C)对磁场不起作用(D)使铜板中磁场反向()2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时,(A)螺线管线圈中感生电流方向如A点处箭头所示。
(B)螺线管右端感应呈S极。
(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转。
(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转。
()3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A)以情况Ⅰ中为最大(B)以情况Ⅱ中为最大(C)以情况Ⅲ中为最大(D)在情况Ⅰ和Ⅱ中相同()4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中。
不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感)( )6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0(C )M 1 ≠ M 2,M 2=0(D )M 1≠M 2,M 2≠0( )7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。
(完整版)大学物理电磁场练习题含答案
前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁学练习题电场与电势能计算题目
电磁学练习题电场与电势能计算题目1. 两点电荷的电场计算假设存在两个点电荷,电荷量分别为Q1和Q2,它们之间的距离为r。
我们需要计算它们产生的电场。
根据库仑定律,两点电荷之间的电场强度E可以表示为:E = k * |Q1 * Q2| / r^2其中,k为库仑常数,约等于9 × 10^9 N·m^2/C^2。
2. 电场中带电粒子的受力计算已知点电荷Q1产生的电场强度为E1,带电粒子Q2的电荷量为q2,我们需要计算Q2在Q1的电场中受到的力。
根据库仑定律,电荷在电场中受到的力F可以表示为:F = q2 * E13. 点电荷沿电势梯度移动的能量变化计算假设存在一个点电荷Q,在电势为V1的位置移动到电势为V2的位置。
我们需要计算电荷Q在移动的过程中电势能的变化。
根据电势能的定义,电势能U可以表示为:U = Q * (V2 - V1)4. 电荷分布体系的电势能计算假设存在一个电荷分布体系,我们需要计算该体系的总电势能。
如果电荷分布体系是由离散点电荷组成的,总电势能U可以表示为:U = Σ(Qi * Vi),其中,Qi为第i个离散点电荷的电荷量,Vi为该点电荷在该体系中的电势。
如果电荷分布体系是由连续分布的电荷产生的,总电势能U可以表示为:U = ∫(ρ * V)dτ,其中,ρ为电荷密度,V为在某点上的电势,dτ为电荷密度的微元。
以上是关于电场与电势能的一些计算题目,通过应用电磁学的公式和定律,我们可以计算出电场、电势能以及电荷受力等相关物理量。
这些题目可以帮助我们加深对电磁学的理解和应用能力。
在解答这些题目时,需要注意单位的转换和计算的精度,以确保结果的准确性。
希望以上内容对你的学习有所帮助。
电磁场考试试题及答案
电磁场考试试题及答案一、选择题(每题5分,共20分)1. 麦克斯韦方程组描述了电磁场的基本规律,下列哪一项不是麦克斯韦方程组中的方程?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定律答案:C2. 在电磁波传播过程中,电场和磁场的相位关系是:A. 相位相同B. 相位相反C. 相位相差90度D. 相位相差180度答案:C3. 根据洛伦兹力定律,带电粒子在磁场中运动时受到的力的方向是:A. 与速度方向相同B. 与速度方向相反C. 与速度方向垂直D. 与磁场方向垂直答案:C4. 以下哪种介质的磁导率不是常数?A. 真空B. 铁C. 铜D. 空气答案:B二、填空题(每题5分,共20分)1. 根据高斯定律,通过任何闭合表面的电通量与该闭合表面所包围的总电荷量成正比,比例常数为____。
答案:\(\frac{1}{\varepsilon_0}\)2. 法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值,其数学表达式为 \(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中 \(\Phi_B\) 表示____。
答案:磁通量3. 根据安培环路定律,磁场 \(\vec{B}\) 在闭合回路上的线积分等于该回路所包围的总电流乘以比例常数 \(\mu_0\),其数学表达式为\(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\),其中\(I_{\text{enc}}\) 表示____。
答案:回路所包围的总电流4. 电磁波在真空中的传播速度为 \(c\),其值为 \(3 \times 10^8\) 米/秒,该速度也是光速,其物理意义是____。
答案:电磁波在真空中传播的速度三、简答题(每题15分,共40分)1. 简述电磁波的产生机制。
答案:电磁波是由变化的电场和磁场相互作用产生的。
当电场变化时,会在周围空间产生磁场;同样,变化的磁场也会在周围空间产生电场。
电磁场大题专项训练
电磁场大题专项训练一、解答题1.如图所示,在直角坐标系xOy的第一象限的空间内存在沿y轴负方向、电场强度E=200V/m的匀强电场,第二象限的空间内存在垂直纸面向里的匀强磁场。
质量均为m=4.0×10-15kg、电荷量均为q=+2.0×10-9C的两带电粒子a、b先后以v0=3.0×103m/s的速率,从y轴上P点沿x轴正、负方向射出,PO之间的距离h=8.0×10-2m,经过一段时间后,a、b两粒子先后到达x轴时运动方向相同。
若两粒子之间的相互作用、所受重力以及空气阻力均可忽略不计,求:(1)匀强磁场磁感应强度B的大小;(2)a、b两粒子的轨迹与x轴交点之间的距离d。
2.在以坐标原点为中心、边长为L的正方形EFGH区域内,存在磁感应强度为B方向垂直于纸面向里的匀强磁场,如图所示。
在A处有一个粒子源:可以连续不断的沿x轴负方向射入速度不同的带电粒子,且都能从磁场的上边界EF射出。
己知粒子的质量为m,电量大小为q,不计重力和粒子间的相互作用。
(1)若粒子从EF与y轴的交点射出,试判断粒子的电性并计算粒子射入磁场的速度1v的大小;(2)若粒子以速度2qBLvm射入磁场,求粒子在磁场中运动时间t。
3.如图甲所示,在0≤x ≤d 的区域内有垂直纸面的磁场,在x <0的区域内有沿y 轴正方向的匀强电场(图中未画出)。
一质子从点P (3d ,-2d )处以速度v 0沿x 轴正方向运动,t =0时,恰从坐标原点O 进入匀强磁场。
磁场按图乙所示规律变化,以垂直于纸面向外为正方向。
已知质子的质量为m ,电荷量为e ,重力不计。
(1)求质子刚进入磁场时的速度大小和方向;(2)若质子在02T 时间内从y 轴飞出磁场,求磁感应强度B 的最小值; (3)若质子从点M (d ,0)处离开磁场,且离开磁场时的速度方向与进入磁场时相同,求磁感应强度B 0的大小及磁场变化周期T 。
4.如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外。
电磁场练习题
电磁场练习题电磁场练习题电磁场是物理学中的一个重要概念,它描述了电荷和电流所产生的电场和磁场的相互作用。
在学习电磁场的过程中,练习题是一种非常有效的学习方法。
通过解答练习题,我们可以加深对电磁场概念和原理的理解,提高解决实际问题的能力。
下面,我将为大家提供一些关于电磁场的练习题。
练习题一:电场强度计算假设有一均匀带电球体,其半径为R,总电荷为Q。
求球心处的电场强度E。
解答:首先,我们可以将球体切割成无数个无限小的环带,然后计算每个环带所产生的电场强度,再将所有环带的电场强度矢量相加,即可得到球心处的电场强度。
设每个环带的宽度为δθ,电荷为dq。
根据库仑定律,每个环带所产生的电场强度为dE = k * dq / r^2,其中k为库仑常数,r为球心到环带的距离。
由于球体是均匀带电的,dq = Q / (4πR^2) * R * δθ,代入上式,可得dE = k * Q / (4πR^3) * R * δθ / r^2。
由于球体是均匀带电的,球心到每个环带的距离r为常数,因此可以将dE看作是一个常量。
将所有环带的电场强度矢量相加,即可得到球心处的电场强度E = ∫dE = ∫k * Q / (4πR^3) * R * δθ / r^2。
对上式进行积分,可得E = k * Q / (4πR^3) * R * ∫δθ / r^2。
由于球体的半径为R,球心到每个环带的距离r可以表示为r = R * sinθ,其中θ为环带的极角。
将r代入上式,可得E = k * Q / (4πR^3) * R * ∫δθ / (R * sinθ)^2。
对上式进行积分,可得E = k * Q / (4πR^3) * R * [-cosθ]。
由于θ的范围为0到π,代入上式,可得E = k * Q / (4πR^3) * R * (1 - (-1))。
化简上式,可得E = k * Q / (2πR^3)。
练习题二:磁场强度计算假设有一直导线,电流为I,长度为L。
电磁场练习(计算题)
电磁场练习(计算题)1.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距 l.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小gsinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)甲乙的电阻R各为多少;(2)以刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(3)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.2.如图a,一对平行光滑轨道放置在水平面上,两轨道间距L=0.20m ,电阻R=1.0Ω;有一电阻r=0.5Ω的金属棒静止地放在轨道上,与两轨道垂直,轨道的电阻忽略不计,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下。
(1)现用一恒力F=0.2N沿轨道方向拉金属棒ab,使之由静止沿导轨向右做直线运动。
则金属棒ab达到的稳定速度v1为多大?(2)若金属棒质量m=0.1kg在恒力F=0.2N作用下由静止沿导轨运动距离为s=4m时获得速度v2=2m/s,此过程电阻R上产生的焦耳热Q R为多大?(3)若金属棒质量未知,现用一外力F沿轨道方向拉棒,使之做匀加速直线运动,测得力F与时间t 的关系如图b所示,求金属棒的质量m和加速度a。
3.如图所示,在以坐标原点O为圆心,半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。
一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射人,带电粒子恰好做匀速直线运动,经t0时间从P点射出。
(1)电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 0/2 时间恰从半圆形区域的边界射出,求粒子运动加速度大小。
大学_电磁场试题及参考答案
电磁场试题及参考答案电磁场试题一、选择题一、选择题:(每小题至少有一个选项是正确的,每小题4分,共48分)1.D2.BCD3.A4.CD5.ABC6.ABC7.D8.B9.B10.D11.B12.A二、填空题(每空3分,共30分,请把答案填写在题中横线上)13、最大、最大、零、零、零14、充电完毕、负电荷15、3:116、1.64106 1.83102三,计算题电磁场试题二、填空题17、(7分)(由法拉第电磁感应现象说明均匀变化的磁场所产生的电场是恒定的18、(7分)某雷达工作时发射的电磁波的波长=20m,每秒脉冲数n=5000个,每个脉冲持续时间t=0.02s,问电磁波的振荡频率为多少?每个光脉冲的长度L 是多少?最大的侦察距离是多少?19.(8分)一个波长范围为150~600m的无线电波段内,为避免邻台干扰,两个相邻电台频率至少应相差10kHz,求在此波段内,最多能容纳Q多少个电台.电磁场试题三、计算题(每空3分,共30分)13、LC振荡电路中,当电容器C放电完毕时,下列各物理量为(最大或零):电流i____,磁场能E磁____,电压UC___,L中电动势自____,C上电量q____。
14、如图中LC振荡电路的周期为T=210-2s。
从电流逆时针最大开始计时,当t=2.510-2s时,电容器正处于_____状态;这时电容器上极板的带电情况为_____。
15.在图所示的电路中,可变电容器的最大电容是270 pF,最小电容为30 pF,若L保持不变,则可变电容器的动片完全旋出与完全旋入时,电路可产生的振荡电流的频率之比为_____. 16.某收音机调谐电路的可变电容器动片完全旋入时,电容是390 PF,这时能接收到520kHz 的无线电电波,动片完全旋出时,电容变为39 PF,这时能收到的无线电电波的频率是______106 Hz,此收音机能收到的无线电电波中,最短的波长为______m.(取三位有效数字)电磁场试题参考答案(每小题至少有一个选项正确,每小题4分,共48分)1.根据麦克斯韦电磁理论,如下说法正确的是 ( )A.变化的电场一定产生变化的磁场B.均匀变化的电场一定产生均匀变化的磁场C.稳定的电场一定产生稳定的磁场D.振荡的电场一定产生同频率的振荡磁场2、关于LC振荡电路在振荡过程中,下列说法正确的是( )A、电流最大的时刻电压也最高B、电流增大的过程是电容器的放电过程C、电流最小的时刻电压却最高D、自感电动势最大时电容器带电量最大3. 要使LC振荡电路的周期增大一倍,可采用的办法是 ( )A.自感系数L和电容C都增大一倍B.自感系数L和电容C都减小一半C.自感系数L增大一倍,而电容C减小一半D.自感系数L减小一半,而电容C增大一倍4.在LC振荡电路的`工作过程中,下列的说法正确的是 ( )A.在一个周期内,电容器充、放电各一次B.电容器两极板间的电压最大时,线圈中的电流也最大C.电容器放电完了时,两极板间的电压为零,电路中的电流达到最大值D.振荡电路的电流变大时,电场能减少,磁场能增加5.LC回路发生电磁振荡时,振荡周期为T.若从电容器开始放电取作t=0,则 ( )A.5T/4和7T/4两个时刻,回路中电流最大,方向相反B.3T/2和2T两个时刻,电容器所带电量最大C.5T/4至3T/2时间内,回路中电流减小,电容器所带电量增加D.3T/2至7T/4时间内,磁场能向电场能转化6、下列说法正确的是 ( )A、摄像机摄像管实际上是一种将光信号转变为电信号的装置B、电视机显像管实际上是一种将电信号转变为光信号的装置C、摄像机在一秒钟内要送出25张画面D、电视机接收的画面是连续的7、由自感系数为L的线圈和可变电容器C构成收音机的调谐电路,为使收音机能接收到f1为550千赫至 f2为1650千赫范围内的所有电台的播音,则可变电容器与f1 对应的电容C1与f2对应的电容C2之比为( )A、1:3B、 3 :1C、1:9D、9:18、如图所示,L是不计电阻的电感器,C是电容器,闭合电键K,待电路达到稳定状态后,再断开电键K,LC电路中将产生电磁振荡。
(完整word版)电磁场计算题专项练习
电磁场计算题专项练习一、电场1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0。
1kg带电量为q=1×10—2C的绝缘货柜,现将一质量为0。
9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。
已知货柜与小车间的动摩擦因数µ=0。
1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:B⑴第二次电场作用的时间;A⑵小车的长度;⑶小车右端到达目的地的距离.16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.6如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm,A 板比B 板电势高300V ,即UAB =300V.一带正电的粒子电量q =10—10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。
电磁运动计算题专项训练
电磁运动计算题专项训练引言本文档旨在提供一些电磁运动计算题的专项训练,帮助读者加深对电磁运动计算的理解和应用能力。
计算题一:电磁场中的电荷运动1. 一带电粒子在匀强磁场中以速度v0垂直于磁场方向进入后,沿螺旋线运动。
已知带电粒子的电荷量q、质量m和速度v0,求该粒子在磁场中的受力和运动轨迹。
2. 一带电粒子在匀强磁场中运动,其轨迹为半径为R的圆。
已知带电粒子的电荷量q、质量m和圆的半径R,求该粒子的线速度和角速度。
计算题二:电荷在电磁场中的受力1. 一带电粒子在匀强磁场中运动,其速度与磁场方向平行。
已知带电粒子的电荷量q、速度v和磁场强度B,求该粒子所受的洛伦兹力。
2. 一带电粒子在匀强磁场中运动,其速度与磁场方向不平行。
已知带电粒子的电荷量q、速度v、磁场强度B和运动轨迹与磁场法线的夹角θ,求该粒子所受的洛伦兹力。
计算题三:电磁感应问题1. 一导线在匀强磁场中以速度v平行于磁感应强度B运动。
已知导线的长度L和磁感应强度B,求导线两端的感应电动势。
2. 一方形金属导轨以速度v与磁场垂直的方向进入匀强磁场中,求导轨两端之间的感应电动势。
结论通过专项训练计算电磁运动题目,读者可以深入了解电磁场中的电荷运动和电荷的受力情况,并掌握电磁感应问题的计算方法。
这些训练题目有助于提高读者的电磁学知识和解题能力。
参考资料- Griffiths, D. J. (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场计算题专项练习一、电场1、(20分)如图所示,为一个实验室模拟货物传送的装置,A就是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车与货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车与货物的速度恰好为零。
已知货柜与小车间的动摩擦因数µ=0、1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:⑴第二次电场作用的时间;B⑵小车的长度;A⑶小车右端到达目的地的距离.16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线就是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度与L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.6如图所示,两平行金属板A 、B 长l =8cm,两板间距离d =8cm,A 板比B 板电势高300V,即UAB =300V 。
一带正电的粒子电量q =10-10C,质量m =10-20kg,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。
已知两界面MN 、PS 相距为L =12cm,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。
求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远? (2)点电荷的电量。
二、磁场1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E,y 轴为磁场与电场的理想边界。
一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。
质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。
已知OA=L 。
(1)求磁感应强度大小与方向; (2)求质子从A 点运动至B 点时间15.(20分)如图10所示,abcd 就是一个正方形的盒子,在cd 边的中点有一小孔B A v 0R MNLPSO EFle,盒子中存在着沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。
(带电粒子的重力与粒子之间的相互作用力均可忽略)(1)所加磁场的方向如何?(2)电场强度E与磁感应强度B的比值为多大?2、(20分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段时间以后从C点进入χ轴下方的匀强电场区域中,在C点速度方向与χ轴正方向夹角为450,该匀强电场的强度大小为E,方向与Y轴夹角为450且斜向左上方,已知质子的质量为m,电量为q,不计质子的重力,(磁场区域与电场区域足够大)求:(1)C点的坐标。
(2)质子从A点出发到第三次穿越χ轴时的运动时间。
(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E方向的夹角。
(角度用反三角函数表示)47、地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为磁漂移,以下就是描述的一种假设的磁漂移运动,一带正电的粒子(质量为m,带电量为q)在x=0,y=0处沿y方向以某一速度v运动,空间存在垂直于图中向外的匀强磁场,在y>0的区域中,磁感应强度为B1,在y<0的区域中,磁感应强度为B2,B2>B2,如图所示,若把粒子出发点x=0处作为第0次过x轴。
求:(1)粒子第一次过x轴时的坐标与所经历的时间。
(2)粒子第n次过x轴时的坐标与所经历的时间。
(3)第0次过z轴至第n次过x轴的整个过程中,在x轴方向的平均速度v与v之比。
(4)若B2:B1=2,当n很大时,v:v0趋于何值?3、(20分)如图所示,xOy平面内的圆O′与y轴相切于坐标原点O。
在该圆形区域内,有与y轴平行的匀强电场与垂直于圆面的匀强磁场。
一个带电粒子(不计重力)从原点O沿x轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T0。
T;若撤去磁场,只保留电场,其她条件不变,该带电粒子穿过圆形区域的时间为02若撤去电场,只保留磁场,其她条件不变,求该带电粒子穿过圆形区域的时间。
15.(13分)如图甲所示,一质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,此磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处到A点的距离为2d(直线DAG与电场方向垂直).不计离子重力,离子运动轨迹在纸面内.求:甲(1)正离子从D处运动到G处所需时间.(2)正离子到达G处时的动能.1(20分)如图12所示,PR就是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力与摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还就是负电荷?(2)物体与挡板碰撞前后的速度v 1与v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小与方向三、电磁感应1、(19分)如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0、2T,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=38m/s,下落到经过圆心时棒的速度大小为v 2 =310m/s,(取g=10m/s 2) 试求:⑴下落距离为r /2时棒的加速度, ⑵从开始下落到经过圆心的过程中线框中产生的热量.14.(12分)如图甲所示,倾角为θ、足够长的两光滑金属导轨位于同一倾斜的平面内,导轨间距为l ,与电阻R 1、R 2及电容器相连,电阻R 1、R 2的阻值均为R ,电容器的电容为C ,空间存在方向垂直斜面向上的匀强磁场,磁感应强度为B .一个质量为m 、阻值也为R 、长度为l 的导体棒MN 垂直于导轨放置,将其由静止释放,下滑距离s 时导体棒达到最大速度,这一过程中整个回路产生的焦耳热为Q ,则:(1)导体棒稳定下滑的最大速度为多少?(2)导体棒从释放开始到稳定下滑的过程中流过R 1的电荷量为多少?甲⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯⨯ ⨯ ⨯ ⨯Bo图1245、、有人设想用题如图所示的装置来选择密度相同、大小不同的球状纳米粒子。
粒子在电离室中电离后带正电,电量与其表面积成正比。
电离后,粒子缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域I,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B ,方向如图。
收集室的小孔O 3与O 1、O 2在同一条水平线上。
半径为r 0的粒子,其质量为m 0、电量为q 0,刚好能沿O 1O 3直线射入收集室。
不计纳米粒子重力。
(2球3球4=,34=r S r V ππ)(1)试求图中区域II 的电场强度;(2)试求半径为r 的粒子通过O 2时的速率;(3)讨论半径r ≠r 0的粒子刚进入区域II 时向哪个极板偏转。
42(18分)如图1所示,真空中相距5d cm =的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图2所示将一个质量272.010m kg -=⨯,电量11.610q C -=+⨯的带电粒子从紧临B 板处释放,不计重力。
求(1)在0t =时刻释放该带电粒子,释放瞬间粒子加速度的大小;(2)若A 板电势变化周期81.010T -=⨯s,在0t =时将带电粒子从紧临B 板处无初速释放,粒子到达A 板时速度的大小; (3)A 板电势变化频率多大时,在4Tt =到2Tt =时间内从紧临B 板处无初速释放该带电粒子,粒子不能到达A 板。
8如图(甲)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O 与O',水平放置的平行金属导轨P、Q与金属板C、D接触良好,且导轨垂直放在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t=0时刻开始,由C板小孔O处连续不断地以垂直于C板方向飘入质量为m=3、2×10 -21kg、电量q=1、6×10 -19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B=10T,MN与D相距d=10cm,B1与B2方向如图所示(粒子重力及其相互作用不2计),求(1)0到4、Os内哪些时刻从O处飘入的粒子能穿过电场并飞出磁场边界MN?(2)粒子从边界MN射出来的位置之间最大的距离为多少?40、(19分)如图所示,在xoy坐标平面的第一象限内有沿-y方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场。
现有一质量为m,带电量为+q的粒沿-x方向从坐标为(3l、l)的P子(重力不计)以初速度v点开始运动,接着进入磁场,最后由坐标原点射出,射出时速度方向与y轴方间夹角为45º,求:(1)粒子从O点射出时的速度v与电场强度E;(2)粒子从P点运动到O点过程所用的时间。