电磁场计算题专项练习
(完整版)电磁场计算题(2套)教师

电磁场计算题11、如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E 、方向水平向右,其宽度为L ;中间区域匀强磁场的磁感应强度大小为B 、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B 、方向垂直纸面向里。
一个带正电的粒子(质量m ,电量q ,不计重力)从电场左边缘a 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a 点,然后重复上述运动过程。
(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。
(1)中间磁场区域的宽度d 为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a 点开始运动到第一次回到a 点时所用的时间t 。
解:(1)带正电的粒子在电场中加速,由动能定理得 212qEL mv =2qELv m= 在磁场中偏转,由牛顿第二定律得 2v qvB m r =12mv mELr qB B q==可见在两磁场区域粒子运动的半径相同.如右图,三段圆弧的圆心组成的三角形123O O O 是等边三角形,其边长为2r16sin 602mELd r B q==(2)带电粒子在中间磁场区域的两段圆弧所对应的圆心角为:1602120θ=⨯=,由于速度v 相同,角速度相同,故而两个磁场区域中的运动时间之比为:523001202121===θθt t (3)电场中,12222v mv mLt a qE qE=== 中间磁场中, qB mT t 32622π=⨯= 右侧磁场中,35563m t T qBπ== 则1232723mL mt t t t qE qBπ=++=+2、如图所示,为某一装置的俯视图,PQ 、MN 为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B ,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m ,带电量大小为q ,其重力不计的粒子,以初速v 0水平射入两板间,问:(1)金属棒AB 应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动?(2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv 0/qB 时的时间间隔是多少?(磁场足够大)解:(1)粒子匀速运动,所受电场力与洛伦兹力等大反向,则金属棒B 端应为高电势,即金属棒应朝左运动(1分) 设AB 棒的速度为v ,产生的电动势Bdv =ε (1分)板间场强Bv dE ==ε(1分)粒子所受电场力与洛伦兹力平衡0Bqv Eq = (1分) 有 0v v = (1分)(2)金属棒停止运动,带电粒子在磁场中做匀速圆周运动,当位移为R Bqmv =0时,粒子转过的角度为3πθ=(1分)设粒子运动时间为t ∆,有ππ23=∆T t (1分) Bqm T t 361π==∆ (1分)3、如图所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向。
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)
![[必刷题]2024高三物理下册电磁场专项专题训练(含答案)](https://img.taocdn.com/s3/m/762b735e91c69ec3d5bbfd0a79563c1ec5dad7a3.png)
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
高考物理压轴题-电磁场计算题

08全国如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120°,在OC 右侧有一匀强电场。
在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x 轴的夹角θ=30°,大小为v ,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。
忽略重力的影响。
求 (1)粒子经过A 点时速度的方向和A 点到x 轴的距离; (2)匀强电场的大小和方向;(3)粒子从第二次离开磁场到再次进入电场时所用的时间。
(08宁夏)24.(17分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。
有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。
质点到达x 轴上A 点时,速度方向与x 轴的夹角ϕ,A 点与原点O 的距离为d 。
接着,质点进入磁场,并垂直于OC 飞离磁场。
不计重力影响。
若OC 与x 轴的夹角为ϕ,求: (1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。
答:(1)ϕsin mqBdv =;(2)23sin cos qB d E m φφ=x y φ)θO C A v B × × × × × ×× × × × × × × × × × × × × × ×(07全国1)25.两屏幕荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y 轴,交点O 为原点,如图所示。
电磁场计算题

重要习题例题归纳第二章 静电场和恒定电场一、例题:1、例2.2.4(38P )半径为0r 的无限长导体柱面,单位长度上均匀分布的电荷密度为l ρ。
试计算空间中各点的电场强度。
解:作一与导体柱面同轴、半径为r 、长为l 的闭合面S ,应用高斯定律计算电场强度的通量。
当0r r <时,由于导体内无电荷,因此有0=⋅⎰→→SS d E ,故有0=→E ,导体内无电场。
当0r r>时,由于电场只在r 方向有分量,电场在两个底面无通量,因此2ερπl rl E dS E dS a a E S d E l r Sr r Sr r r r S=⋅=⋅=⋅=⋅⎰⎰⎰→→→→则有:r E l r 02περ=2、例2.2.6(39P )圆柱坐标系中,在m r2=与m r 4=之间的体积内均匀分布有电荷,其电荷密度为3/-⋅m C ρ。
利用高斯定律求各区域的电场强度。
解:由于电荷分布具有轴对称性,因此电场分布也关于z 轴对称,即电场强度在半径为r 的同轴圆柱面上,其值相等,方向在r 方向上。
现作一半径为r ,长度为L 的同轴圆柱面。
当m r20≤≤时,有02=⋅=⋅⎰→→rL E S d E r Sπ,即0=r E ;当m rm 42≤≤时,有)4(1220-=⋅=⋅⎰→→r L rL E S d E r Sπρεπ,因此,)4(220-=r rE r ερ;当m r 4≥时,有L rL E S d E r Sπρεπ0122=⋅=⋅⎰→→,即r E r 06ερ=。
3、例2.3.1(41P )真空中,电荷按体密度)1(220ar -=ρρ分布在半径为a 的球形区域内,其中0ρ为常数。
试计算球内、外的电场强度和电位函数。
解:(1)求场强:当a r >时,由高斯定律得2224επQ E r S d E S==⋅⎰→→而Q 为球面S 包围的总电荷,即球形区域内的总电荷。
300242002158)(44)(a dr a r r dr r r Q aaπρπρπρ=-==⎰⎰因此20302152r a a E rερ→→=当a r <时)53(44)(1425300020121a r r dr r r E r S d E rS -===⋅⎰⎰→→επρπρεπ因此)33(23001a r r a E r-=→→ερ (2)球电位;当a r >时,取无穷远的电位为零,得球外的电位分布为ra r d E r r03022152)(ερ=⋅=Φ⎰∞→→当a r =时,即球面上的电位为20152ερa S =Φ 当a r <时)1032(2)(24220011a r r a r d E r a rS +-=⋅+Φ=Φ⎰→→ερ4、例2.4.1(48P )圆心在原点,半径为R 的介质球,其极化强度)0(≥=→→m r a P m r 。
电磁场期末考试题及答案

电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。
A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。
A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。
B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。
A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。
A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。
A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。
A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。
A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。
2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。
答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。
答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。
电磁场计算题

东厦中学高二物理-----电磁场计算题训练之一1. 如图所示,坐标系xoy 在竖直平面内,在第一、三、四象限内有垂直于纸面向外的匀强磁场,磁感应强度大小为B ,在第一、二、四象限内有沿x 轴正方向的匀强电场,场强的大小为E 。
一个带正电的小球经过x 轴上的A 点,沿着图示方向做匀速直线运动经过y 轴上的B 点而进入第三象限,为使小球进入第三象限后能在竖直面内做匀速圆周运动,在x < 0区域内另加一匀强电场。
带电小球做圆周运动并垂直通过x 轴上的C 点。
已知θ = 30°,重力加速度为g 。
求:(1)小球经过B 点时的速率。
(2)在x < 0的区域所加电场大小和方向。
(3)OC 的长度s 。
(4)小球第二次经过y 轴的坐标。
解:(1)带电小球在第四象限中做匀速直线运动,有qE qvB =θsin mg qvB =θsin解得:B E v 2=Eg m q θt a n = (2)带电小球在第三象限中做匀速圆周运动,有mg E q ='解得:E E 3=' (竖直向上)(3) 带电小球在第三象限中做匀速圆周运动,根据牛顿运动定律rmv qvB 2=其中:θsin r r s +=联立解得:2233gB E s =(4) 带电小球在第二象限中做类平抛运动,有水平:221at s =竖直:vt y =其中:mqEa =联立解得:=y 226gBE 小球第二次经过y 轴坐标为: (0, 226gB E )2.如图所示,在y >0的区域内有沿y 轴正方向的匀强电场,在y <0的区域内有垂直坐标平面向里的匀强磁场。
一电子(质量为m 、电量为e )从y 轴上A 点以沿x 轴正方向的初速度v 0开始运动。
当电子第一次穿越x 轴时,恰好到达C 点;当电子第二次穿越x 轴时,恰好到达坐标原点;当电子第三次穿越x 轴时,恰好到达D 点。
C 、D 两点均未在图中标出。
已知A 、C 点到坐标原点的距离分别为d 、2d 。
电磁场期末复习_计算题

②电场、磁场强度复矢量
解: ① kex3ez4, k5, ek ex0.6ez0.8
k, 53108 1.5109rad/s
c
f 7.5108Hz, 20.4m
2
k
② E H x x,,z z e 0y H 3 1 x,e z j (e 3x k4 z)(A e x/0 m .8,e z0 .6 0) 41e0 2 j (3x 0 4z)V /m
求导线产生的磁场;线圈中的感应电动势。
解: ② CH dli HeI02 co ts(A /m )
id
b a
磁感应强度为
Be
I0cost 2
(T)
SB d sd dbI0 2 c o ta sd 2 I 0 aln d dbco ts
故感应电动势为 d d tI2 0 aln d dbsi n t(V )
Jd D t r0 E m s itn 8 1 31 6 1 9 0 2 16E 0 m s itn 4 .5 1 3 0 E m si2 n 1 (6t0 )
8
电磁场与电磁波
2014复习资料
8. 在E 理z,想t介 质e x (4 εr=c 2.0 25o ,μtrs =-1))k 中(均已z 匀知平该面平波面电波场频强率度为瞬10时G值Hz为, :
8. 在E 理z,想t介 质e x (4 εr=c 20 .25o ,μtrs =-1))k ( 中已均z 知匀该平平面面波波电频场率强为度1瞬0G时H值z, 为:
③求磁场强度瞬时值④平均坡印廷矢量。
解: ③ r 120 1 80 ,
r
2 .25
Hz , t
ey
40
cos(
t-kz
4
电磁场计算题专项练习

电磁场计算题专项练习一、电场1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。
已知货柜与小车间的动摩擦因数µ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:⑴第二次电场作用的时间;⑵小车的长度;⑶小车右端到达目的地的距离.16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。
一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场计算题专项练习一、电场1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。
已知货柜与小车间的动摩擦因数µ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:⑴第二次电场作用的时间;B⑵小车的长度;A⑶小车右端到达目的地的距离.16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。
一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。
已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。
求(静电力常数k=9×109N·m2/C2)(1)粒子穿过界面PS时偏离中心线RO的距离多远?(2)点电荷的电量。
BARE F二、磁场1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x轴正方向的匀强电场,电场强度大小为E,y轴为磁场和电场的理想边界。
一个质量为m ,电荷量为e的质子经过x轴上A点时速度大小为v o,速度方向与x轴负方向夹角θ=300。
质子第一次到达y轴时速度方向与y 轴垂直,第三次到达y轴的位置用B点表示,图中未画出。
已知OA=L。
(1)求磁感应强度大小和方向;(2)求质子从A点运动至B点时间15.(20分)如图10所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。
(带电粒子的重力和粒子之间的相互作用力均可忽略)(1)所加磁场的方向如何?(2)电场强度E与磁感应强度B的比值为多大?2、(20分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段时间以后从C点进入χ轴下方的匀强电场区域中,在C点速度方向与χ轴正方向夹角为450,该匀强电场的强度大小为E,方向与Y轴夹角为450且斜向左上方,已知质子的质量为m,电量为q,不计质子的重力,(磁场区域和电场区域足够大)求:(1)C点的坐标。
(2)质子从A点出发到第三次穿越χ轴时的运动时间。
(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E方向的夹角。
(角度用反三角函数表示)47、地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为磁漂移,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为m,带电量为q)在x=0,y=0处沿y方向以某一速度v运动,空间存在垂直于图中向外的匀强磁场,在y>0的区域中,磁感应强度为B1,在y<0的区域中,磁感应强度为B2,B2>B2,如图所示,若把粒子出发点x=0处作为第0次过x轴。
求:(1)粒子第一次过x轴时的坐标和所经历的时间。
(2)粒子第n次过x轴时的坐标和所经历的时间。
(3)第0次过z轴至第n次过x轴的整个过程中,在x轴方向的平均速度v与v0之比。
(4)若B2:B1=2,当n很大时,v:v0趋于何值?3、(20分)如图所示,xOy平面内的圆O′与y轴相切于坐标原点O。
在该圆形区域内,有与y轴平行的匀强电场和垂直于圆面的匀强磁场。
一个带电粒子(不计重力)从原点O沿x轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T0。
若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过圆形区域T;若撤去电场,只保留磁场,其他条件不变,求该带电粒子穿过圆的时间为02形区域的时间。
15.(13分)如图甲所示,一质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,此磁场方向垂直纸面向里.结果离子正好从距A点为d 的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处到A点的距离为2d(直线DAG与电场方向垂直).不计离子重力,离子运动轨迹在纸面内.求:甲(1)正离子从D处运动到G处所需时间.(2)正离子到达G处时的动能.1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向图12三、电磁感应1、(19分)如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2T ,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=38m/s ,下落到经过圆心时棒的速度大小为v 2 =310m/s ,(取g=10m/s 2)试求:⑴下落距离为r /2时棒的加速度,⑵从开始下落到经过圆心的过程中线框中产生的热量.14.(12分)如图甲所示,倾角为θ、足够长的两光滑金属导轨位于同一倾斜的平面内,导轨间距为l ,与电阻R 1、R 2及电容器相连,电阻R 1、R 2的阻值均为R ,电容器的电容为C ,空间存在方向垂直斜面向上的匀强磁场,磁感应强度为B .一个质量为m 、阻值也为R 、长度为l 的导体棒MN 垂直于导轨放置,将其由静止释放,下滑距离s 时导体棒达到最大速度,这一过程中整个回路产生的焦耳热为Q ,则:(1)导体棒稳定下滑的最大速度为多少?(2)导体棒从释放开始到稳定下滑的过程中流过R 1的电荷量为多少?⨯ ⨯ ⨯ ⨯⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯⨯ ⨯ ⨯ ⨯Bo甲45.、有人设想用题如图所示的装置来选择密度相同、大小不同的球状纳米粒子。
粒子在电离室中电离后带正电,电量与其表面积成正比。
电离后,粒子缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域I,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B ,方向如图。
收集室的小孔O 3与O 1、O 2在同一条水平线上。
半径为r 0的粒子,其质量为m 0、电量为q 0,刚好能沿O 1O 3直线射入收集室。
不计纳米粒子重力。
(2球3球4=,34=r S r V ππ)(1)试求图中区域II 的电场强度;(2)试求半径为r 的粒子通过O 2时的速率;(3)讨论半径r ≠r 0的粒子刚进入区域II 时向哪个极板偏转。
42(18分)如图1所示,真空中相距5d cm =的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图2所示将一个质量272.010m kg -=⨯,电量11.610q C -=+⨯的带电粒子从紧临B 板处释放,不计重力。
求(1)在0t =时刻释放该带电粒子,释放瞬间粒子加速度的大小;(2)若A 板电势变化周期81.010T -=⨯s ,在0t =时将带电粒子从紧临B 板处无初速释放,粒子到达A 板时速度的大小;(3)A 板电势变化频率多大时,在4T t =到2Tt时间内从紧临B 板处无初速释放该带电粒子,粒子不能到达A 板。
8如图(甲)所示,两水平放置的平行金属板C 、D 相距很近,上面分别开有小孔 O和O',水平放置的平行金属导轨P 、Q 与金属板C 、D 接触良好,且导轨垂直放在磁感强度为B 1=10T 的匀强磁场中,导轨间距L =0.50m ,金属棒AB 紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t =0时刻开始,由C 板小孔O 处连续不断地以垂直于C 板方向飘入质量为m =3.2×10 -21kg 、电量q =1.6×10 -19C 的带正电的粒子(设飘入速度很小,可视为零).在D 板外侧有以MN 为边界的匀强磁场B 2=10T ,MN 与D 相距d =10cm ,B 1和B 2方向如图所示(粒子重力及其相互作用不计),求(1)0到4.Os 内哪些时刻从O 处飘入的粒子能穿过电场并飞出磁场边界MN ?(2)粒子从边界MN 射出来的位置之间最大的距离为多少?40、(19分)如图所示,在xoy坐标平面的第一象限内有沿-y方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场。
现有一质量为m,带电量为+q的粒子(重力不计)以初速度v0沿-x方向从坐标为(3l、l)的P点开始运动,接着进入磁场,最后由坐标原点射出,射出时速度方向与y轴方间夹角为45º,求:(1)粒子从O点射出时的速度v和电场强度E;(2)粒子从P点运动到O点过程所用的时间。