第2章 信号的时域分析

合集下载

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

第二章 连续信号的时域分析

第二章  连续信号的时域分析

第二章连续信号的时域分析所谓信号的时域分析,指的是整个分析过程都在时间域内进行,分析过程中所有的信号都用以时间t为自变量的时间函数表达式或时间波形图表示。

本章首先介绍几个典型的连续时间信号,以及对这些信号的基本运算。

此外,连续信号的卷积积分也是信号与系统时域分析中的基本运算,本章将详细介绍卷积积分的定义及其运算方法。

2.1 基本要求1.基本要求♦了解基本的连续信号及其相关参数和描述;♦了解信号的基本运算;♦掌握阶跃信号和冲激信号的定义、性质及作用;♦掌握卷积积分的定义、性质及计算。

2.重点和难点♦冲激信号的定义及性质♦含有阶跃和冲激函数的信号的求导和求积分运算♦卷积积分的计算2.2 知识要点1.基本的连续信号了解正弦信号、实指数信号、复简谐信号、门信号及抽样函数信号的函数表达式、时间波形及其相关参数。

2.信号的基本运算从数学意义上看,系统对信号的处理和变换就是对信号进行一系列的运算。

一个复杂的运算可以分解为一些基本运算的组合。

本章主要了解信号的加减乘除运算、翻转平移和尺度变换、微积分等几种基本的运算。

所有运算既可以利用信号的时间函数表达式进行,也可以在时间波形图上进行运算。

注意与数学上相关运算的区别。

这里强调,作为信号基本运算之一的积分运算,运算结果得到的是一个新的以t 为自变量的函数,具体表示符号和定义为⎰∞--=tf t fττd )()()1( (2-1)3.阶跃信号和冲激信号阶跃信号和冲激信号是对实际系统中的某类信号进行理想近似后得到的两个特殊信号,这两种信号用于描述一类特殊的物理现象,对于信号特性和系统性能的分析,起着十分重要的作用。

阶跃信号和冲激信号的时间波形如图2-1所示。

在信号与系统的分析过程中,经常利用阶跃函数将分段信号的时间函数表达式统一为一个解析表达式,以简化信号的运算。

利用阶跃函数还可以方便地表示因果、非因果信号等。

由于阶跃函数和冲激函数是两个特殊的函数,因此在进行求导和求积分等运算时,必须根据其定义和性质对函数表达式进行分析,以便化为普通函数的运算。

3信号分析基础2(时域相关分析)

3信号分析基础2(时域相关分析)
因此,有

T
0
x (t )dt S x ( f )df
2
1 2 S x lim X f T T
信号的频域分析
自功率谱密度函数是偶函数,它的频率范围 (,) , 又称双边自功率谱密度函数。它在频率范围 (,0) 的函数值是其在 (0, ) 频率范围函数值的对称映射, 因此 Gx ( f ) 2Sx ( f ) 。
x(t - τ)
自相关函数的性质 自相关函数为实偶函数
Rx ( ) Rx ( )
1 T 证明: Rx ( ) lim x(t ) x(t )dt T T 0 1 T lim x(t ) x(t )d (t ) T T 0 Rx ( )
波形变量相关的概念(相关函数 )
如果所研究的变量x, y是与时间有关的函数, 即x(t)与y(t):
x(t)
y(t)
2.4信号的时差域相关分析 这时可以引入一个与时间τ有关的量,称为 函数的相关系数,简称相关函数,并有:
x ( t ) y ( t ) dt xy ( ) 2 [ x ( t ) dt y 2 ( t ) dt ]1/ 2
2 2 x x

自相关函数的性质
周期函数的自相关函数仍为同频率的周期函数
1 Rx ( nT ) lim T T 1 lim T T

T 0 T 0
x(t nT ) x(t nT )d (t nT ) x(t ) x(t )d (t ) Rx ( )
相关函数反映了二个信号在时移中的相关性。
x(t) y(t) y(t) y(t) y(t)

2.2.2 自相关(self-correlation)分析

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

信号与线性系统分析第2章

信号与线性系统分析第2章
t r ( Pmt m Pm1t m1 P 0的特征根) 1t P 0 )(有r重为
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d


为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )

f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:

第2章 连续时间信号和离散时间信号的时域分析

第2章  连续时间信号和离散时间信号的时域分析

第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

第2章信号与系统的时域分析

第2章信号与系统的时域分析

f 1 ( )
2012-8-10


f 2 ( t ) dt f 2 ( )


f 1 ( t ) dt 0
30
性质4 卷积时移连续信号与系统的时域分析 第2章
2012-8-10
31
第 2 章 连续信号与系统的时域分析
由卷积时移性质还可进一步得到如下推论:
若f1(t)*f2(t)=y(t), 则
n 1
( n 1 )!
2
( t ), ,
t
2
( t ), t ( t ), ( t ), ( t ),
n
2
d (t ) d (t ) d (t ) , , , , 2 n 2012-8-10 dt dt dt
3
第 2 章 连续信号与系统的时域分析
,
f 1 ( t t1 ) f 2 ( t t 2 ) y ( t t1 t 2 )
式中,t1和t2为实常数。
(2.2-21)
2012-8-10
32
第 2 章 连续信号与系统的时域分析
例 2.2 – 2 计算常数K与信号f(t)的卷积积分。 解 直接按卷积定义, 可得
K f (t ) f (t ) K
性质3 卷积的微分和积分

2012-8-10
27
第 2 章 连续信号与系统的时域分析
(2) 应用式(2.2 - 8)及卷积运算的结合律, 可得
2012-8-10
28
第 2 章 连续信号与系统的时域分析
(3) 因为
2012-8-10
29
第 2 章 连续信号与系统的时域分析
同理,可将f2(t)表示为

信号与系统 第2章(3-5)

信号与系统 第2章(3-5)

X
n = −∞

k
x[n ]
1 k
n = −∞
∑ x[n]
2 1
k
3
单位阶跃序列可 用单位脉冲序列 的求和表示: 的求和表示:
0
k
k
u[ k ] =
n = −∞
∑ δ [n]
2.5 确定信号的时域分解
X
一、信号分解为直流分量与交流分量 二、信号分解为奇分量与偶分量之和 三、信号分解为实部分量与虚部分量 四、连续信号分解为冲激信号的线性组合 五、离散信号分解为脉冲序列的线性组合 六、信号分解为正交信号集
d
u[k ] =
u( t ) =
∫d ∫
t
−∞
δ (τ ) τ
n =−∞
∑ δ [ n] ∑ u [n]
k
k
u( t ) = d r ( t ) t r (t ) =
−∞
u[k ] = r[k + 1] − r[k ]
u(τ ) τ
d
r [ k + 1] =
n = −∞
2.4 离散时间信号的基本运算
一、序列相加与相乘
2. 序列相乘 序列相乘
x1[ k ]
0 1 k
2 1 y[k]=x1[k]× x2[k] 2 1.5
X
将若干序列同序号的数值相乘。 将若干序列同序号的数值相乘。
y[k ] = x1 [k ] × x2 [k ] × … × xn [k ]
x2 [ k ]
0
k
0
k
2.4.2 序列的相加、相乘、差分与求和
x[k] = x D C [k] + x A C [k]
k = N1

信号与系统概论PPT第二章线性时不变系统的时域分析2

信号与系统概论PPT第二章线性时不变系统的时域分析2
卷积重要性质: 1) 信号与延迟冲激信号的卷积等于延迟信号
f t* t t0 f t t0
2) 信号与阶跃信号的卷积等于信号积分
f t*ut t0 f t* 1t t0 f t* t t0 1 f 1 t t0
第三节 卷积与卷积和、解卷积
卷积重要性质: 3) 信号与冲激偶的卷积等于信号微分
t
2
t
2
*
r
t
2
r
t
2
r t r t r t r t
r t 2r t r t
f(t)
f(t)
1
1
=
0 t 22
(a)
0 t 22
(b)
f΄(t)
f (-1)(t)
1
2 0 2
τ
t
0
22
=
t
(c)
(d)
f(t)f(t) τ
-τ 0 τ t 22
m
f1 m f2 n m mMaxn,0
第三节 卷积与卷积和、解卷积
重要结论:信号与冲激信号(脉冲信号) 的卷积(卷积和),其结果就是对该信号 进行移位,位移量取决于冲激(脉冲)信 号出现的位置。该结论也可视作信号通过 移位系统得到的零状态响应。
f
t*δt
t0
f
t
δ
t0 d
f
t
注意此处的 处理方式
ut 1 t1e d ut 1 t1e d
0
0
1
1
e t 1
u t Hale Waihona Puke 1 et1u t 1
例2-8:计算 cost* t 1 t 1
解:
M
M
f t* wi t ti wi f t ti

第二章:信号的时域分析方法

第二章:信号的时域分析方法
信号的幅值概率密度函数在工程实际中我们所测得的许多信号是随机信号其幅值取值的概率有一定的规律性即同一过程的多次观察中信号中各种幅值出现的频次将趋于确定值
第二章:信号的时域分析方法
2.1 2.2 2.3 2.4 2.5 2.6 信号的分类 信号的获取 信号的时域参数分析 信号的相关分析 时域平均 信号的预处理
Rx (t1,t1 +τ ) = Rx (τ )
1 µ x (t 1 ) = lim N →∞ N
Rx (t1, t1 +τ) = lim
1 xk (t1 )xk (t1 +τ) ∑ N→ ∞N k−1
k =1 N
∑ x (t )
k 1
N
信号的获取过程
信号的获得及处理过程如下图所示
信号预处理 A/D
φ
k
=
1 π
t t x(t ) = sin + sin 3 5
周期为30π
一.确定性信号
2.准周期信号 当若干个周期信号叠加时,如果它们的周期的最 小公倍数不存在(T→∞),则和信号不再为周 期信号,但它们的频率描述还具有周期信号的特 点,称为准周期信号。例:下式由两个谐波成分 组成,式中的 T1与T2的最小公倍数→∞,所以 为准周期信号。
5 PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
三.采样长度与频率分辨率
分析频 率范围
fc (Hz)
2.3信号的时域参数分析
数 2048 △T(s) △f(Hz) 80 40 16 8 4 1.6 0.8 0.4 0.16 0.08 0.04 0.016 0.008 0.0125 0.025 0.0625 0.125 0.25 0.625 1.25 2.5 6.25 12.5 25 62.5 125

信号与系统第二章

信号与系统第二章

§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。

第二章信号的时域分析(1)

第二章信号的时域分析(1)

(3)4 e 2t (t 8)dt
(4)
t e
6
(7)e 4t (2 2t )
(8)e 2t u(t ) (t 1)
23
(2 2t )dt
解:
(1)
sin(t )
π π (t )dt sin( ) 2 / 2 4 4
③ 冲激信号的物理意义:
表征作用时间极短,作用值很大的物理现象的数学模型。
16
二、奇异信号
2. 冲激信号
(4) 冲激信号的极限模型
f (t ) 1 2
h (t )
2
g (t ) 1
t


1/
t




t
(t ) lim f (t ) lim g (t ) lim h (t )
t
du (t ) (t ) dt
22
[例] 计算下列各式
(1)
sin(t )
π (t )dt 4
(5)
2 2 (t 2
t 3t ) ( 1)dt 3
(2)
3 5t e 2
(t 1)dt
(6)(t 3 2t 2 3) (t 2)
t 0
3
一、典型普通信号
2. 正弦信号
A: 振幅
x(t ) A sin( 0t )
:初始相位
周期信号
t 0 0
0:角频率
A
x (t ) sin(0t )
T0

0
4
A
一、典型普通信号
3. 指数类信号 — 实指数信号

第2章 习题解答

第2章 习题解答

f(t) 1
f(3 t) 1
t
−2 −1 0
12
−1

t
− 2 −1 0
12
3
3
33
f(-3 t) 1

t
−2 3
−1 3
0 12 33
f(-3(t-2)) 1

0
45 33
t 78 33
图2-6 题 2-9(3)解答图
方法二:先翻转、再展缩、后平移。先翻转,再压缩 3 倍,后右移 2 个单位。
f (t) ⎯翻⎯⎯转→ f (−t) ⎯压⎯缩⎯3⎯倍→ f (−3t) ⎯右⎯移⎯2个单⎯⎯位→ f (−(3 t − 2)) = f (−3t + 6)
a
a
2
(2) 根据冲激信号的筛选特性 f (t)δ (t − t0 ) = f (t0 )δ (t − t0 ) ,可得 tδ (t) = 0δ (t) = 0
(3) 根据冲激信号的筛选特性可得 f (t) = sin t ⋅ δ (t − π ) = sin π ⋅δ (t − π ) = δ (t − π ) 。
(4) f (t) = δ (t − 1) − 2δ (t − 2) + δ (t − 3) (5) f (t) = r(t + 1) − r(t −1) − u(t −1) (6) f (t) = r(t + 2) − r(t + 1) − r(t −1) + r(t − 2)
【解】 题中各信号的波形如图 2-1所示。 f(t)
(1) f (3t)
(2) f (3t + 6)
(3) f (−3t + 6)
(4) f ( t ) 3

信号与系统第2章 信号通过LTI系统的时域分析

信号与系统第2章 信号通过LTI系统的时域分析

因此,f(t)的第n个分段可近似表示为
f n (t ) f (tn )[ (t tn ) (t tn )](2-3)
图2-1
使用矩形脉冲逼近f(t)
而f(t)就可近似表示为这个分段之和 ,即
f (t )
fn (t ) f (tn )[ (t tn ) (t tn )] n 0 n 0 (2-4) N 1 (t tn ) (t tn ) f (tn )
对式(2-8)中的积分变量作变量置换, d dt1 ,得到 令 t t1 ,因此 t t1 ,
y(t )
∞ ∞

x(t t1 )h(t1 )dt1
∞ ∞

x(t )h( )d h(t ) x(t ) (2-9)
比较式(2-8)、式(2-9)可知,卷 积服从交换律。 这个分解表达式及其物理意义
首先考察下面的数学表达式
∞ ∞

f ( )δ(t )d f (t )
(2-1)
表达式(2-1)在前面1.3.2小节介绍 (t)性质时已经指出,这个表达式的物理 意义是指任何一个连续时间信号可以分 解为单位冲激信号的线性组合。 下面对此进行展开说明。
n 0
N 1
N 1


2.3 信号通过LTI系统的时域分析与卷积积分
2.3.1 分析
如图2-2所示,假设LTI系统处于初始 松弛状态,输入信号为x(t),则利用LTI系 统的线性和时不变性,输出信号为
y (t ) T [ x(t )] T[
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
初始松弛时,LTI系统输出y(t)是输 入x(t)与系统单位冲激响应h(t)的卷积这 一结果表明,对于LTI系统,h(t)已经给 出了系统的全部信息,也即表征了系统 的全部性质。 因此,LTI系统现已可用图2-4所示 的框图来表示。

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。

第2章 信号的时域分析

第2章  信号的时域分析

义为: •
sin
c(t)
sin(πt) πt
1
t0 t 0
(2.2.2)
• 变换该,函数的F意1[re义ct(是)] 宽 21度e为jt 2dtπ s高in(t度 t)为 si1n 的c(t)矩形脉冲的傅里叶反

(2.2.3)
• 3. 周期性的sinc()函数也称为“狄利克雷(Dirichlet)”函数 “diric()”。在MATLAB中,可以使用sinc()函数得到抽样信号 Sa(x),程序如下:
• •
x(t) cne jnt
(2.1.7)
n
• 该式称为复指数形式的傅立叶级数表示式。它表明一个周期信号
可以由无限多个复指数信号所组成,是基波频率,n是n次谐
波频率,它们的振幅和相位由cn决定,可求得如下结
果:
• •
1
cn T0
To / 2 x(t)e jnt dt
To / 2
(2.1.8)
2.2.2 非周期三角波
• tripuls()函数生成采样非周期三角波。其语法如下: • (1)y = tripuls(T) :按数组T中给出的时间向量,返回一个连续的、非周
期、对称,单位高度的三角脉冲,中心关于T=0对称,默认宽度为1。 • (2)y = tripuls(T,w):生成中心关于T=0对称,宽度为w的三角脉冲 。 • (3)y = tripuls(T,w,s):生成中心关于T=0,宽度为w的三角脉冲。s决定
=0时,为等幅震荡正、余弦信号。
=0时,为实指数号。
=0, =0时,为直流信号。
2.3 奇异信号与连续非周期信号的时域分析
• 单位阶跃信号、单位斜坡信号与单位冲激函数都是奇异信号,它们在信号分析和处 理中有特殊的作用。

信号与系统 第二章 线性时不变系统的时域分析

信号与系统 第二章 线性时不变系统的时域分析
r
外加信号 常数A
特解 常数B
r 1i k t i r 1 i 1
tr
sin t或cos t
eλt
k1 cost k2 sin t keλt, λ不是方程的特征根 kteλt, λ是方程的特征根
k t
i 1 i
r 1
r 1i t
e , λ是方程的r阶特征重根
一、微差分方程的建立以及经典解法
'' 1
di1 (t ) 1 t L i2 ( )d R2i2 (t ) f (t ) dt C
一、微差分方程的建立以及经典解法
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
(1)

t

i ( )d
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
例题,已知线性时不变系统方程如下: y˝(t)+6y΄(t)+8y(t)= f(t), t>0. 初始条件y(0)=1, y΄(0)=2,输入信号f(t)=e-tu(t) , Q求系统的完全响应y(t)。
解:1)求方程的齐次解 特征方程为:m2+6m+8=0 显然特征根为:m1=-2,m2=-4
故原方程的齐次解为:yn(t)= Ae-2t+Be-4t

信号与系统课程第1-4章要点

信号与系统课程第1-4章要点
N
m 0
第4章 信号的频域分析
四类信号频谱特点及时频对应关系
x(t)
CFT
t
X(j)
0 ~ x (t )
0

CFS
t
X(n0)
0
x[k]
0

X(ej)
DTFT
0
~ x [k ]
...
2π π
0
...
~ X [m]
k
π


DFS
k
...
N 0 N
...
m
0
第4章 信号的频域分析
抽样信号
冲激偶信号
◎离散序列 • 脉冲序列 • 阶跃序列 • 指数序列 • 正弦序列 • 矩形序列
第2章 信号的时域分析
主要涉及三个方面的内容: ●基本信号 ●基本运算
信号扩展与压缩 信号翻转 信号时移
●基本分解
序列内插与抽取
序列翻转 序列位移 序列相加 序列相乘 序列差分 序列求和

冲激平衡法
h (t )

i 0
n
ai y[k i] b j x[k j ]
j 0
m

等效初始条件法
h[k ]
第3章 系统的时域分析
线性非时变(LTI)系统响应时域求解
经典法:求解微分(差分)方程
卷积法: 系统完全响应 = 零输入响应 + 零状态响应
y(t ) yzi (t ) yzs (t ) yzi (t ) x(t ) * h(t )
信号与系统第1-4章要点
第 1章 第 2章 第 3章 第 4章 信号与系统分析导论 信号的时域分析 系统的时域分析 信号的频域分析

第2章 随机信号的时域分析

第2章  随机信号的时域分析
3、n维分布 n维概率分布函数
FX (x1, x2,⋅⋅⋅xn;t1,t2,⋅⋅⋅tn ) = P{X (t1) ≤ x1, X (t2) ≤ x2,⋅⋅⋅X (t2) ≤ x2}
若n阶偏导数存在,可有n维概率密度函数
fX
( x1 ,
x2 ,⋅⋅⋅xn;t1, t2
, ⋅ ⋅ ⋅tn
)
=
∂n
FX
(x1, x2 ,⋅⋅⋅xn;t1, t2 ,⋅⋅⋅tn ∂x1∂x2 ⋅⋅⋅ ∂xn
一个“所有样本函数的集合”。这种理解方式有助于后面随机信号两个基本概念“各态历经性”、 “功率谱密度”的理解。
t
t
t
ቤተ መጻሕፍቲ ባይዱ
t
图 2.1.2 随机信号的理解 ②随机过程X(t,ζ)看成一个“随时间变化的随机变量”。 随机信号X(t,ζ)在t=ti时刻-X(ti,ζ)是定义在Ω上的一个“随机变量”Xi。而随机过程X(t, ζ)在t=tj时刻-X(tj,ζ)是定义在Ω上的另一个“随机变量”Xj。随着t的变化,得到一个个不同——
……
……
X (tn )
mX (t)
t
o t1
t2
……
ti
……
tn
图 2.1.4.1 随机信号的数学期望
【说明】1o ∀t ∈T ,X(t)代表一随机变量,它的随机取值x(t)(t固定),记为X。
( 2o 由于mX(t)是随机过程X(t)的所有样本函数在t时刻所取的样本 x1, x2,
平均,随t的取值而变化,是时间t的确定函数。如图2.1.4.所示。
, xn ) 的统计
【物理含义】1 o mX(t)是随机过程X(t)的所有样本函数在各个时刻摆动的中心,是X(t)在各个时刻的 状态的概率质量分布的“中心位置”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 信号的时域分析
2.1 信号幅值域分析
这里我们研究的对内容包括,周期信号的各种强 度分析和随机信号的统计分析。
2.1.1 周期信号的强度
周期信号的强度以峰值、绝对均值、有效值和平 均功率来表示。 • 峰值Xp 是信号在一个周期T内所能出现的最大 值,即
x p x(t ) max

峰-峰值Xp-p 是一个周期中最大瞬时值Xp+与最 小瞬时值Xp-之差。 在实际应用中要对峰-峰值 有足够的估计,信号的峰-峰值不能超过测试系 统允许输入的上限值与下限值,前一个要求是 保证系统正常工作,后一个要求是保证足够小 的非线性误差。 周期信号的均值mx 它的表达式
• 均值 表示集合平均或数学期望,各态历经信号的均值 可以用观测时间T内的幅值平均来表示,记为mx 或E[x(t)], 1 T mx E[ x(t )] lim x(t )dt T T 0 • 均方值 表示信号的强度。各态历经信号的均方值可以用 2 观测时间内的幅值平均来表示,记为 x 或 E[ x 2 (t )]
相关分析的应用实例2
• 左图是原信号,右图是相关函数
相关分析表明:
• 相关函数变化迅速,说明原信号中是宽带噪声。 • 相关函数中含有交流成分,说明原信号中由周期信号。 • 相关函数的均值不为0,说明原信号中有直流成分。
2.3.2 互相关分析
• 互相关函数的计算
1 R xy ( ) T

T
0
根据不同的实际需要,可以从不同的角度出发将 信号分解成为若干个简单信号的和
x(t ) x1 (t ) x2 (t ) x3 (t )
反之则可以进行信号的合成。通常进行如下的分解: • 交直流分解 将信号x(t)分解成为 实际中经常进行这种分解,例如:分析各种整 流滤波或稳压电源的输出,我们需要其直流成 分,其交流波动分量应设法抑制与消除。 虚实分解 x(t ) xR (t ) jxI (t ) 直角坐标表示 XR(t)—实部,有功部分,只有实部的电能能够 转化为能量。 XI(t)—虚部,无功部分。只能储存(电容)和转换 (电感)。

1 mx x (t ) dt T0 0
它是信号的恒定分量,也就是直流分量。
T0
周期信号的强度
• 有效值 是信号的均方根值xrms,即
xrms
1 T0

T0
0
x 2 (t )dt
• 均方值 是信号的平均功率,即
1 T0 2 Pav x (t )dt T0 0
2.1.2 随机信号的幅值特性参数
x(t ) y (t )dt
Rxy (n) x(n) x(n m)
n 0
N
• 互相关函数的性质
性质1 互相关函数不是偶函数 性质2 互相关函数在T=0处的值Rxy(0)未必是最大 值。 性质3 互相关函数的最大值可能出现在T的某一个 值,其位置与信号的特点有关。
(我儿子和我现在不是最像)
1 T 2 E[ x (t )] lim x (t )dt T T 0 均方值是信号平均能量的一种表示。 • 方差 2 表示信号的波动分量,记为 x ,即 1 T 2 2 x E[(x(t ) mx ) ] lim [ x(t ) mx ]2 dt T T 0 2 E[(x 2 (t ) mx 2 x(t )mx ]
• 由于幅值间隔不可能 无穷的小,观测时间 也不可能无穷的大, 因此由实际观测数据 获得的概率密度函数 只能使估计值。
2.2信号的时间域分析
• 信号的时域描述是以时间为横坐标变量来描述信 号随时间的变化规律。对时域信号x(t)的分析可包 含信号分解、合成及参数求取两方面。
2.2.1 信号的分解与合成
由图可见,其相关函数陡峭。
(2)宽带信号(小惯性信号,使用了白噪声信号驱 动=0.3,0.5的一阶惯性环节,获得的有色噪声)
(3)窄带信号(大惯性信号,使用了白噪声信号 驱动=0.9 的一阶惯性环节,获得的有色噪声)
相关分析的应用实例1
(1)左图是原信号,右图是相关函数
相关分析表明: • 相关函数变化缓慢,说明原信号中是窄带噪声。 • 相关函数中含有交流成分,说明原信号中由周期信号。 • 相关函数的均值为0,说明原信号中无直流成分。
Tx t1 t2 tn
当样本函数的观测时间趋于无穷大时,的比值就 是幅值落在(x,x+Δx)区间内的概率,即
Tx P[ x x(t ) x x] lim T T
概率密度函数的计算 • 概率密度函数的p(x)的定义式
p( x) lim
x 0
P[ x x(t ) x x] x
2 x 2
2 E[ x 2 (t )] E (mx ) 2mx E[ x(t )] 2 2 x mx
因此,有
m
2 x 2 x
2 x
由于实际记录的时间不可能无限长,故只能在有 2 2 ˆ ˆ 限的时间内求得估计值,记为 m x x x 。 • 概率密度函数 随机信号的概率密度函数是指信号落在指定区域 的概率,对于下图来说就是x(t)值落在(x,x+Δx) 区间内的时间为Tx
2.3.3 相关分析的实例
• 例1、超声波流速检测
这种超声波方法可以用于测量自来水、气体或含有 颗粒的液体。 工作原理:对两个超声波信号做互相关分析,在相 关函数出现峰值的时刻T,就是流体由前一个超声波 发生器达到后一个超声波发射器,如果两个超声波 发射器的距离是L,那么流体的流速为
L v T
该方法具有极高的测量精度。
③白噪声信号
白噪声信号
④宽带随机信号
④随机信号:x(n)=0.4x(n-1)+w(n)
随机信号:x(n)=0.4x(n-1)+w(n)
有色噪声x(n)=0.6x(n-1)+w(n)
有色噪声x(n)=0.8x(n-1)+w(n)
有色噪声x(n)=0.9x(n-1)+w(n)
有色噪声x(n)=0.9x(n-1)+w(n) 窄带噪声
上图的源程序
• • • • • t=0.1:0.1:200000 x=1.0*sin(0.2*t)+0*randn(1,2000000) subplot([121]),plot(x) [f,xi]=ksdensity(x) subplot([122]),plot(xi,f)
②正弦波加随机噪声信号
• 例2、1/f噪声的精确测量及其在太阳能电 池可靠性筛选中的应用超声波流速检测.
式中P[(x<x(t)<x+Δx)表示落入区间(x,x+Δx)的概 率。
• 概率密度函数的物理意义 概率密度函数的p(x)唯一地由幅值确定,对于平稳 随机过程,p(x)与时间无关。 不同的信号具有不同的p(x)-x图,因此根据不同的 p(x)-x图形可以识别不同的信号。 ①正弦信号
海量数据的正弦信号
x(t ) xt ) b0 sin 0t b1 sin 1t b2 sin 2t b3 sin 3t b0 cos0t b1 cos1t b2 cos 2t b3 cos3t
Fourier(1768-1830)
2.3 信号的相关分析
2.3.1 自相关分析
x(信号)=mx(直流部分)+x (t)(周期信号)+r(随机信号)
T
• 直流信号的相关函数: 也就是幅值的平方。
R(mx mx ) m
2 x
• 周期信号的相关函数仍然是周期函数,周期不变, 但函数可能改变了。例如下图:
• 随机信号的相关函数 (1)宽带信号(无惯性信号,使用了白噪声信号)
相关文档
最新文档