微课圆锥的体积教学设计

合集下载

圆锥体积教学设计(精选3篇)

圆锥体积教学设计(精选3篇)

圆锥体积教学设计圆锥体积教学设计(精选3篇)作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,编写教学设计有利于我们科学、合理地支配课堂时间。

那么你有了解过教学设计吗?下面是小编为大家收集的圆锥体积教学设计(精选3篇),仅供参考,希望能够帮助到大家。

圆锥体积教学设计1教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

所以对于新的知识教学,他们一定能表现出极大的热情。

《圆锥的体积》教案设计

《圆锥的体积》教案设计

《圆锥的体积》教案设计•相关推荐《圆锥的体积》教案设计(通用13篇)作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。

那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《圆锥的体积》教案设计,希望能够帮助到大家。

《圆锥的体积》教案设计篇1教材分析:圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。

具体来说有这样几个变化:(1)加强了所学知识与现实生活的联系。

教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。

当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。

(2)加强了对图形特征,体积、方法的探索过程。

在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。

实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。

(3)加强了学生在操作中对空间与图形问题的思考。

学情分析:加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。

教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。

如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。

圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。

教学目标:1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。

2、提高学生实际应用的能力。

《圆锥的体积》教学设计模板(精选10篇)

《圆锥的体积》教学设计模板(精选10篇)

《圆锥的体积》教学设计《圆锥的体积》教学设计模板(精选10篇)在教学工作者实际的教学活动中,总不可避免地需要编写教学设计,教学设计是一个系统化规划教学系统的过程。

如何把教学设计做到重点突出呢?以下是小编帮大家整理的《圆锥的体积》教学设计模板,仅供参考,欢迎大家阅读。

《圆锥的体积》教学设计篇1教学目标1.使学生在认识等底等高的圆柱和圆锥的基础上,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,推导圆锥的体积公式;掌握圆锥体积的计算公式,能应用公式解决相关的实际问题。

2.使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

教学过程一、定向明法1.复习旧知。

谈话:我们已经研究了立体图形圆柱,谁来说说,你掌握了有关圆柱的哪些知识?(学生回忆圆柱的特征和侧面积、表面积、体积计算方法)相机板书:圆柱的体积=底面积×高。

明确:对于一个立体图形,我们可以从它的特征、表面积和体积等方面来研究。

【说明:课始让学生回忆前阶段关于对圆柱的认识,旨在让学生通过简单的交流对立体图形的研究点有一个明确的认识。

教师画龙点睛般的肯定,也为下面学生聚焦圆锥的体积指明了方向。

】谈话:我们还认识了圆锥,谁来说说它的特征?揭题:今天我们来研究圆锥的体积。

(板书课题)2.认识圆柱和圆锥等底等高。

谈话:请各小组比一比台上的圆柱和圆锥,你们有什么发现?指名交流,并追问:你是怎么比的?明确:像这样底和高分别相等的圆柱和圆锥,我们可以说这个圆柱和圆锥等底等高。

【说明:认识等底等高的圆柱和圆锥是本课学习的基础。

对于这一特殊关系,教师没有直接告诉学生,而是舍得花时间让学生动手来比一比或量一量,说一说,亲自获得直观而清晰的认识。

】3.估计圆锥和圆柱的体积关系。

出示等底等高的圆柱和圆锥的直观图,要求:请大家估计一下,这个圆柱和圆锥的体积有怎样的关系?(这个圆锥的体积是圆柱的1/3。

)4.明确实验方法。

提问:这仅仅是我们的估计,那可以用什么方法来验证我们的估计呢?(做实验)再问:这个实验如何来做?要注意什么?请各小组商量商量。

小学数学《圆锥体积》公开课教案【优秀6篇】

小学数学《圆锥体积》公开课教案【优秀6篇】

小学数学《圆锥体积》公开课教案【优秀6篇】小学数学《圆锥体积》公开课教案篇一一、教材分析圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.二、教学过程(一)引出课题1、师:同学们,看一看祝老师手中拿的是什么?生:这是一个圆锥体.2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?生:可以,我们可以用排水法来求出它的体积.师:如果是一个很大的一个圆锥体还用这种办法,会怎样?生:能求出来但会很麻烦.师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)(二)实验探究推导公式1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?生:圆柱体2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.师:其他种和他们一样吗?生:不一样.师:谁还愿意汇报.生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。

3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。

即圆锥体的体积等于圆柱体体积的三分之一。

如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。

【2024版】圆锥体积教学设计(精选3篇)

【2024版】圆锥体积教学设计(精选3篇)

可编辑修改精选全文完整版圆锥体积教学设计圆锥体积教学设计(精选3篇)作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,编写教学设计有利于我们科学、合理地支配课堂时间。

那么你有了解过教学设计吗?下面是小编为大家收集的圆锥体积教学设计(精选3篇),仅供参考,希望能够帮助到大家。

圆锥体积教学设计1教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

《圆锥的体积》教案优秀4篇

《圆锥的体积》教案优秀4篇

《圆锥的体积》教案优秀4篇《圆锥的体积》教学设计篇一教学过程:一、情境引入:(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?(2)学生发言:(把它放进盛水的量杯里,看水面升高多少)(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。

真是一个爱动脑筋的孩子。

(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。

(老师板书课题)设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

二、新课探究(一)、探究圆锥体积的计算公式。

1、大胆猜测:(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆)(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)(4)老师拿教具演示等底等高。

拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的。

(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。

(把等底等高的放在桌上备用。

)2、试验探究圆锥和圆柱体积之间的关系我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

(1)课件出示试验记录单:a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?b、通过实验,你发现了什么?(2)学生分组用等底等高的圆柱圆锥试验,做好记录。

教师在组间巡回指导。

(3)汇报交流:你们的试验结果都一样吗?这个试验说明了什么?(4)老师用等底等高的圆柱圆锥装红色水演示。

《圆锥的体积》精彩教学设计(优秀5篇)

《圆锥的体积》精彩教学设计(优秀5篇)

《圆锥的体积》精彩教学设计(优秀5篇)《圆锥的体积》教学设计篇一一、教学内容:六年制小学数学教材第十二册第25-26页二、教学目标:1、知识技能目标:◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

3、情感态度目标:◆培养学生的合作意识和探究意识;◆使学生获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积方法和推导过程。

教学过程:一、质疑引入1 圆锥有什么特征?指名学生回答。

2 说一说圆柱体积的计算公式。

(1)已知 s、h 求 v(2)已知 r、h 求 v(3)已知 d、h 求 v3 我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书课题:圆锥的体积二、新课(一)教学圆锥体积的计算公式1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体- 长方体的体积公式----推导圆柱体公式)2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式〈1〉学生独立操作让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。

先在圆锥里装满水,然后倒入圆柱。

看几次正好把圆柱装满?〈2〉教师教具演示巩固学生的操作效果,cai课件演示a 屏幕上出示等底、等高b 等底、不等高c 等高、不等底实验报告单实验器材实验结果等底不等高的圆锥、圆柱等高不等底的圆锥、圆柱等底等高的圆锥、圆柱〈3〉引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的 1/3 (板书 )用字母表示圆锥的体积公式。

《圆锥的体积》教学设计(精选13篇)

《圆锥的体积》教学设计(精选13篇)

《圆锥的体积》教学设计(精选13篇)《圆锥的体积》篇1指导思想与理论依据:本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

教学背景分析:(一)教学内容分析:1、教材内容:本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。

让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。

教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

2、研读完教材后,自己的几个问题:(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?3、自己的创新认识:首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

其次,是要提供给同学们一个可操作的空间。

(二)学情分析:1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。

尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

2021年课文《圆锥的体积》优秀教学设计3篇

2021年课文《圆锥的体积》优秀教学设计3篇

2021年课文《圆锥的体积》优秀教学设计3篇课文《圆锥的体积》优秀教学设计1教学目标1、使学生理解求圆锥体积的计算公式.2、会运用公式计算圆锥的体积.教学重点圆锥体体积计算公式的'推导过程.教学难点正确理解圆锥体积计算公式.教学步骤一、铺垫孕伏1、提问:(1)圆柱的体积公式是什么?(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)二、探究新知(一)指导探究圆锥体积的计算公式.1、教师谈话:下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?2、学生分组实验3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

4、引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。

5、推导圆锥的体积公式:用字母表示圆锥的体积公式。

6、思考:要求圆锥的体积,必须知道哪两个条件?7、反馈练习圆锥的底面积是5,高是3,体积是()圆锥的底面积是10,高是9,体积是()(二)教学例11、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?学生独立计算,集体订正.答:这个零件的体积是76立方厘米.2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(1)已知圆锥的底面半径和高,求体积.(2)已知圆锥的底面直径和高,求体积.(3)已知圆锥的底面周长和高,求体积.4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?(三)教学例21、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)思考:这道题已知什么?求什么?要求小麦的重量,必须先求什么?要求小麦的体积应怎么办?这道题应先求什么?再求什么?最后求什么?2、学生独立解答,集体订正.板书:(1)麦堆底面积:=3.14×4=12.56(平方米)(2)麦堆的体积:12.56×1.2=15.072(立方米)(3)小麦的重量:735×15.072=11077.92≈11078(千克)答:这堆小麦大约重11078千克.3、教学如何测量麦堆的底面直径和高.(1)启发学生根据自己的生活经验来讨论、谈想法.(2)教师补充介绍.a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得.三、全课小结通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)四、随堂练习1、求下面各圆锥的体积.(1)底面面积是7.8平方米,高是1.8米.(2)底面半径是4厘米,高是21厘米.(3)底面直径是6分米,高是6分米.2、计算并填表3、判断对错,并说明理由.(1)圆柱的体积相当于圆锥体积的3倍.()(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.()(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()五、布置作业一堆煤成圆锥形,底面半径是1.5米,高是1.2米.这堆煤的体积有多少立方米?如果每立方米煤约重1.4吨,这堆煤约有多少吨?六、板书设计数学教案-圆锥的体积课文《圆锥的体积》优秀教学设计2一、复习旧知我们已经学会计算圆柱的体积,请你回忆一下如何计算圆柱的体积?二、探究新知圆锥的体积与圆柱的体积有没有关系呢?你能猜测一下等底、等高的圆柱和圆锥的体积之间的关系吗?如何计算圆锥的体积呢?三、知识应用(一)做一做1. 一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?2. 一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高5cm。

圆锥的体积教学设计【优秀7篇】

圆锥的体积教学设计【优秀7篇】

圆锥的体积教学设计【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!圆锥的体积教学设计【优秀7篇】作为一名无私奉献的老师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

《圆锥的体积》教学设计【优秀4篇】

《圆锥的体积》教学设计【优秀4篇】

《圆锥的体积》教学设计【优秀4篇】篇一:《圆锥的体积》教学设计篇一教学目标:1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

教学过程:一、复习导入师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?(指名学生回答)2、圆锥有什么特征?同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)二、探究新知课件出示等底等高的圆柱和圆锥1、引导学生观察:这个圆柱和圆锥有什么相同的地方?学生回答:它们是等底等高的。

猜想:(1)、你认为圆锥体积的大小与它的什么有关?(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?2、学生动手操作实验(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?(2)、通过实验,你发现了什么?小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。

也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。

看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?问:把圆柱装满一共倒了几次?生:3次。

师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。

(板书:圆锥的体积=1/3×圆柱体积)师:圆柱的体积等于什么?生:等于“底面积×高”。

2023最新-小学数学《圆锥体积》公开课教案【优秀7篇】

2023最新-小学数学《圆锥体积》公开课教案【优秀7篇】

小学数学《圆锥体积》公开课教案【优秀7篇】作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

教案应该怎么写呢?下面是整理的小学数学《圆锥体积》公开课教案【优秀7篇】,希望能够给予您一些参考与帮助。

小学六年级数学《圆锥的体积》教案篇一【教学内容】圆锥的体积(1)(教材第33页例2)。

【教学目标】1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

【重点难点】圆锥体积公式的推导过程。

【教学准备】同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

【情景导入】1、复习旧知,作出铺垫。

(1)教师用电脑出示一个透明的圆锥。

教师:同学们仔细观察,圆锥有哪些主要特征呢?(2)复习高的概念。

A、什么叫做圆锥的高?B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。

(提供刀片、橡皮泥模型等,帮助学生进行操作)2、创设情境,引发猜想。

(1)电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得透不过气来。

一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。

这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。

小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。

(动画中圆柱形和圆锥形的雪糕是等底等高的)(2)引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。

(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

圆锥的体积微课教学设计

圆锥的体积微课教学设计

《圆锥的体积》微课教学设计兴庆区回民一小马玉江一、教学目标设计:(一)教学目标:1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、通过实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

3、培养学生的观察、分析、归纳的综合能力。

(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

二、教学过程:(一)复习导入同学们好!欢迎大家进入微课堂。

这节课我们一起来研究圆锥体积的计算公式,首先我们一起回忆一下圆柱的体积计算公式。

(二)操作实验,得出结论:通过实验观察,体验圆锥体积公式的推导过程:1、回到多煤体中,明确图中圆柱容器和圆锥容器是等底等高2、仔细观察实验过程,分析实验结果。

3、学生试着归纳结果(主要采用分组讨论的方法。

将讨论结果每组选出代表做汇报,教师点评。

):“圆锥的体积公式,并用字母表示公式”。

4、师生共同归纳出圆锥的体积公式:圆锥的体积等于和它等底等高圆柱体积的三分之一。

书写公式:圆锥体积 =×底面积×高字母公式:V=sh重点理解:等底等高(三)巩固知识,分层练习:1、圆锥的体积是与它等底等高的圆柱的体积的()2、一个圆柱和一个圆锥等底等体积,圆柱的高是圆锥高的()3、一个圆柱的体积是9立方分米,和它等底等高的圆锥的体积是()立方分米。

4、一个圆锥形的零件,底面积是18平方厘米,高是9厘米,这个零件的体积是多少立方厘米?(四)全课小结:1.学习方式的小结:回忆一下,本节课主要用了哪种学习方式?2.知识、能力上小结:通过今天的学习你有什么收获?3.亲爱的孩子们,通过这节课的学习,以后一定要把数学知识运用到生活中去。

圆锥的体积教学设计(优秀6篇)

圆锥的体积教学设计(优秀6篇)

圆锥的体积教学设计(优秀6篇)《圆锥的体积》教案篇一教学内容教科书第39~40页例1,课堂活动及练习九第1题,第2题。

1.在操作和探究中理解并掌握圆锥的体积计算公式。

2.引导学生探究、发现,培养学生的观察、归纳等能力。

3.在实验中,培养学生的数学兴趣,发展学生的空间观念。

一、圆锥体积的计算公式的推导过程。

圆锥体积计算公式的理解。

小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。

一、情景铺垫,引入课题教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。

圆柱形蛋糕的标签上写着底面积16CM2,高20CM,单价:40元/个;圆锥形的蛋糕标签上写着底面积16CM2,高60CM,单价:40元/个。

屏幕上出示问题:到底选哪种蛋糕划算呢?教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?教师抽学生回答问题。

可能会出现以下几种情形:第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。

第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。

第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。

教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?学生明白首先要求出圆锥形蛋糕的体积。

教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。

揭示课题。

板书课题:圆锥的体积二、自主探究,感悟新知1.提出猜想,大胆质疑教师:谁来猜猜圆锥的体积怎么算?学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的体积,从而得出圆锥的体积……对学生的各种猜想,教师给予肯定和表扬。

2.分组合作,动手实验教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。

《圆锥的体积》教案12篇

《圆锥的体积》教案12篇

《圆锥的体积》教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《圆锥的体积》教案12篇《圆锥的体积》教案1教学内容:练习四第4~12题和第23页思考题教学目标:1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。

圆锥的体积教学设计优秀4篇

圆锥的体积教学设计优秀4篇

圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。

并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

同时渗透转化方法在数学学习中的应用。

二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。

师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。

汇报实验结果。

先在圆锥里装满水,然后倒入圆柱。

正好3次可以倒满。

多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。

请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。

师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

多找几名同学说。

板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。

人教版数学六年级下册圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册圆锥的体积教学设计(推荐3篇) 人教版数学六年级下册圆锥的体积教学设计【第1篇】设计意图:本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。

这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。

教学目标:1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。

2、会应用公式计算圆锥的体积并解决一些实际问题。

3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。

教学重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题教学难点:圆锥体积计算方法和推导过程。

教学过程:一、复习铺垫:1、揭示课题:今天我们一起来探究如何计算圆锥的体积。

2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。

如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?二、实验操作:1、请看接下来的2个实验:2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。

3、播放视频:实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。

实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。

4、通过实验你们发现了什么?三、公式推导:1、通过两次的实验我们可以得出结论:圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。

2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。

新人教版六年级下册数学教案:圆锥的体积6篇

新人教版六年级下册数学教案:圆锥的体积6篇

新人教版六年级下册数学教案:圆锥的体积新人教版六年级下册数学教案:圆锥的体积精选6篇(一)教学目标:1. 理解圆锥的概念,能够识别圆锥的各个要素;2. 理解圆锥的体积公式,并能够应用公式计算圆锥的体积;3. 能够解决与圆锥体积相关的问题。

教学准备:1. 教师准备白板、黑板笔、教科书、圆锥模型等教具;2. 学生准备铅笔、橡皮、练习纸等学具。

教学过程:步骤一:导入新知1. 教师出示一些圆锥的图片,引导学生观察并提出对圆锥的基本认识,如“圆锥是由一个圆锥面和一个顶点组成的”。

2. 教师向学生介绍圆锥体积的概念,并告诉学生圆锥体积的计算方法。

步骤二:讲解圆锥的体积公式1. 教师用黑板绘制一个圆锥,标注出底面半径r和圆锥的高h。

2. 教师向学生介绍圆锥的体积公式:V = 1/3 * 底面积 * 高,也可以记作 V = 1/3 * π * r² * h。

3. 教师引导学生理解公式中的各个要素的意义,例如底面积指的是圆的面积,高指的是圆锥的高度。

步骤三:练习与巩固1. 教师出示一些实际问题,引导学生运用圆锥体积的公式进行计算,例如:“一个圆锥的底面半径是5 cm,高是8 cm,求它的体积是多少?”2. 学生们进行个别或小组练习,解决类似的问题。

步骤四:拓展探究1. 教师出示一些需要发散性思维的问题,例如:“如果圆锥的底面积是固定的,它的体积会受到什么因素的影响?”2. 学生们进行思考和讨论,并归纳总结出结论。

步骤五:归纳总结1. 教师向学生归纳总结圆锥体积的计算公式,并强调理解公式中各个要素的重要性。

2. 学生们记录下归纳总结的内容,做到知识点概念清晰、表达准确。

步骤六:拓展应用1. 教师出示一些更加复杂的实际问题,学生们利用圆锥体积的公式进行计算和解决问题。

2. 学生们进行个别或小组练习,提高解决实际问题的能力。

步骤七:课堂小结1. 教师进行课堂小结,复习本节课的重点内容,并解答学生的疑问。

2. 教师布置相关的作业,巩固和拓展学生的知识。

圆锥的体积教学设计[优秀范文五篇]

圆锥的体积教学设计[优秀范文五篇]

圆锥的体积教学设计[优秀范文五篇]第一篇:圆锥的体积教学设计圆锥的体积教学设计【教学内容】圆锥的体积(北师大版小学六年级数学课本第十一页至第十二页)【教材分析】圆锥体积公式的推导及圆锥体积公式的应用,按创设情境--实验探究--导出公式三个层次编排。

学生分组操作时,肯定能借助倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积的3倍关系,但要注意对“等底等高”这一条件的强调。

【教学目标】1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

2、经历“类比猜想----验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

3、培养学生自主探究的能力和小组合作学习的能力。

【教学重难点】重点:掌握圆锥体积的计算公式。

难点:正确探索出圆锥体积与圆柱体积之间的关系。

【教具学具】教具:等底等高的圆柱与圆锥、水,课件。

学具:学生自制的等底等高的圆柱与圆锥、细沙或大米【教学过程】一、创设情境,导入新课看,老师手里拿的是什么?(圆锥)回忆一下,圆锥有什么特征?这节课,我们就来研究一下圆锥的体积,齐读课题。

二、操作实验,自主探索1、提出问题:回忆一下我们学过圆柱的体积公式是什么?出示圆柱体,想一想圆柱体积的计算公式是怎样推导出来的?(指名回答,课件简单演示圆柱转化成长方体过程,帮助学生回忆。

)我们是把圆柱转化成已经学过的长方体推导出来的。

圆锥的体积该怎样求呢?能不能也通过学过的图形来推导呢?那应该转化为哪一个立体图形最合适呢?说说你的想法,它们的底面都与圆有关,正如这个同学所说,它们的形状具有一定的相似性,那么它们的体积也应该有着密切的联系。

2、大胆猜想:老师这儿现在就有一个圆柱和一个圆锥,大家观察一下它们有什么特点,对,它们等底等高。

很明显,圆柱的体积要大于圆锥的体积,那么你能不能进行一下大胆的猜测,圆柱和圆锥的体积可能存在着什么关系呢?圆柱体积等于3倍的圆锥体积,刚才大家对圆柱和圆锥的体积进行了大胆的猜测,那么这个猜测是否正确,我们应该怎么办呢?我们分小组验证一下,课前老师让大家准备了圆柱和圆锥,还有沙子。

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。

本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。

圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。

圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。

通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。

鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

四、学情分析:学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V=Sh
2.一个圆柱的底面积是60平方分米,高是15分米,它的体积是多少立方分米?
60X15=900(平方分米)
答:它的体积是900平方分米。
导入:同学们,前面我们学习了圆柱体体积计算方法,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.
二、探究新知
指导探究圆锥体积的计算公式.
1、观看视频,
你发现了什么?引导学生发现:
×12.56×1.2=5.024(立方米)
5.024×735=3692.64(千克)
答:这堆小麦大约有3692千克.
四:总结:
现在你还有什么地方不明白?请你看一看视频,如果还不明白,那么请你记下来和同学们共同探讨。好吗?
圆柱的体积是与它等底等高圆锥体积的3倍。
圆锥的体积是与它等底等高圆柱体积的。
也就是:
圆柱体积=底面积×高
圆锥体积=底面积×高×
2、教师谈话:
现在你能写出计算圆锥体积的公式吗?
三、检测练习:
1、一个圆柱的体积是315立方厘米,与它等底等高的圆锥的体积是多少立方厘米?
×315=105(立方厘米)
答:圆锥的体积是105立方厘米。
2、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
×19×12=76(立方厘米)
答:这个零件的体积是76立方厘米
3.在打谷场上,有一个近似圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?
4÷2=2(Leabharlann )3.14×2×2=12.56(平方米)
微课《圆锥的体积》教学设计
xxxx小学xx教学目标:
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学过程:
一、复习旧知
1、提问:圆柱的体积公式是什么?
相关文档
最新文档