2019年中国东南地区数学奥林匹克试题(高一高二组)
历届东南数学奥林匹克试题

目录2004年东南数学奥林匹克 (2)2005年东南数学奥林匹克 (4)2006年东南数学奥林匹克 (6)2007年东南数学奥林匹克 (9)2008年东南数学奥林匹克 (11)2009年东南数学奥林匹克 (14)2010年东南数学奥林匹克 (16)2011年东南数学奥林匹克 (18)2012年东南数学奥林匹克 (20)2004年东南数学奥林匹克1.设实数a、b、c满足a2+2b2+3c2=32,求证:3−a+9−b+27−c≥1.2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN.3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.(2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.4.给定大于2004的正整数n,将1,2,3,⋯,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值.5.已知不等式√2(2a+3)ccc(θ−π4)+6ssnθ+ccsθ−2csn2θ<3a+ 6对于θ∈�0,π2�恒成立,求a的取值范围.6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD⋅EE+DE⋅AE=AD⋅AE.7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛.但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛.如果4周内能够完成全部比赛,球n的值.注:A、B两队在A方场地矩形的比赛,称为A的主场比赛,B的客场比赛.8.求满足x−y x+y+y−z y+z+z−u z+u>0,且1≤x、y、z、u≤10的所有四元有序整数组(x,y,z,u)的个数.2005年东南数学奥林匹克1.(1)设a∈R.求证:抛物线y=x2+(a+2)x−2a+1都经过一个顶点,且顶点都落在一条抛物线上.(2)若关于x的方程y=x2+(a+2)x−2a+1=0有两个不等实根,求其较大根的取值范围.(吴伟朝供题)2.⊙O与直线l相离,作OO⊥l,P为垂足.设点Q是l上任意一点(不与点P重合),过点Q作⊙O的两条切线QA、QB,A、B为切点,AB与OP相交于点K.过点P作OP⊥QB,ON⊥QA,M、N为垂足.求证:直线MN平分线段KP.(裘宗沪供题)3.设n(n≥3)是正整数,集合P={1,2,⋯,2n}.求最小的正整数k,使得对于M的任何一个k元子集,其中必有4个互不相同的元素之和等于4n+1.(张鹏程供题)4.试求满足a2+b2+c2=2005,且a≤b≤c的所有三元正整数数组(a,b,c).(陶平生供题)5.已知直线l与单位圆⊙O相切于点P,点A与⊙O在直线l的,且A到直线l的距离为ℎ(ℎ>2),从点A作⊙O的两条切线,分别与直线l交于B、C两点.求线段PB与线段PC的长度之乘积.(冷岗松司林供题)6.将数集A=�a1,a2,⋯,a n�中所有元素的算术平均值记为O(A)�O(A)=a1+a2+⋯+a n n�.若B是A的非空子集,且P(B)=P(A),则称B是A的一个“均衡子集”.试求数集P={1,2,3,4,5,6,7,8,9}的所有“均衡子集”的个数.(陶平生供题)7.(1) 讨论关于x的方程|x+1|+|x+2|+|x+3|=a的根的个数;(2) 设a1,a2,⋯,a n为等差数列,且|a1|+|a2|+⋯+|a n|=|a1+1|+|a2+1|+⋯+|a n+1|=|a1−2|+|a2−2|+⋯+|a n−2|=507.求项数n的最大值.(林常供题)8.设0<α、β、γ<π2,且csn3α+csn3β+csn3γ=1.求证tan2α+tan2β+tan2γ≥3√32.(李胜宏供题)2006年东南数学奥林匹克1. 设a >b >0,f (x )=2(a+b )x+2ab 4x+a+b .证明:存在唯一的正数x ,使得f (x )=�a 13+b 132�3. (李胜宏 供题)2. 如图1,在△ABC 中,∠ABC =90°,D 、G 是边CA 上的亮点,连结BD 、BG .过点A 、G 分别作BD 的垂涎,垂足分别为E 、F ,连结CF .若BE =EE ,求证:∠ABG =∠DEC .图13. 一副纸牌共52张,其中,“方块”、“梅花”、“红心”、“黑桃”每种花色的牌个13张,标号依次是2,3,⋯,10,J ,Q ,K ,A .相同花色、相邻标号的两张牌称为“同花顺”牌,并且A 与2也算同花顺牌(即A 可以当成1使用).试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含同花顺取牌方法数.(陶平生 供题)4. 对任意正整数n ,设a n 是方程x 3+x n =1的实数根.求证: (1) a n+1>a n ;(2) ∑1(s+1)a i n s=1<a n .(李胜宏 供题)5. 如图2,在△ABC 中,∠A =60°,△ABC 的内切圆⊙I 分别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、CI 相交于点F 、G .证明:EG =12BC .图2 6. 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a 、b 、c ,都有m (a 3+b 3+c 3)≥6(a 2+c 2+c 2)+1. (熊 斌 供题)7. (1) 求不定方程mn +nn +mn =2(m +n +n )的正整数解(m ,n ,n )的组数; (2) 对于给定的整数k (k >1),证明:不定方程mn +nn +mn =k (m +n +n )至少有3k +1组正整数解(m ,n ,n ). (吴伟朝 供题) 8. 对于周长为n (n ∈N +)的圆,称满足如下条件的最小的正整数p n 个点A 1,A 2,⋯,A p n ,对于1,2,⋯,n −1中的每一个整数m ,都存在两个点A s 、A j (1≤s 、j ≤p n ).以A s 和A j 为端点的一条弧长等于m ,圆周上每相邻两点间的弧长顺次构成的序列T n =�a 1,a 2,⋯,a p n �称为“圆剖分序列”.列入,当n =13,圆剖分数为p 13=4,图3中所标数字为相B邻两点之间的弧长,圆剖分序列为T 13=(1,3,2,7), (1,2,6,4),求p 21和p 31,并给出一个相应的圆剖分序列.图3(陶平生 供题)73112007年东南数学奥林匹克1. 试求实数a 的个数,使得对于每个a ,关于x 的三次方程x 3=ax +a +1都有满足|x |<1000的偶数根.2. 如图1所示,设C 、D 是以O 为圆心、AB 为半径的半圆上的任意两点,过点B 作⊙O 的切线交直线CD 于P ,直线PO 于直线CA ,AD 分别交于点E 、F .证明:OE =OF .图13. 设a s =msn �k +s k �k ∈N ∗�,试求S n 2=[a 1]+[a 2]+⋯+[a n 2]的值.4. 试求最小的正整数n ,使得对于满足条件∑a s n s=1=2007的任一个具有n 项的正整数数列a 1,a 2,⋯,a n ,其中必有连续若干项之和等于30. 5. 设函数f (x )满足:f (x +1)−f (x )=2x +1(x ∈R ),且当x ∈[0,1]时有|f (x )|≤1,证明:当x ∈R 时,有|f (x )|≤2+x 2.6. 如图,在直角三角形ABC 中,D 是斜边AB 的中点,PB ⊥AB ,MD 交AC 于N ;MC 的延长线交AB 于E .证明:∠DBN =∠BCE .7. 试求满足下列条件的三元数组(a ,b ,c ):E(1) a<b<c,且当a,b,c为质数;(2) a+1,b+1,c+1构成等比数列.8.设正实数a,b,c满足:abc=1,求证:对于整数k≥2,有a k a+b+b k b+c+c k c+a≥32.2008年东南数学奥林匹克1.已知集合S={1,2,⋯,3n},n是正整数,T是S的子集,满足:对任意的x、y、z∈T(x、y、z可以相同),都有x+y+z∉T.求所有这种集合T的元素个数的最大值.(李胜宏供题)2.设数列{a n}满足a1=1,a n+1=2a n+n(1+2n)(n=1,2,⋯).试求通项a n的表达式.(吴伟朝供题)3.在△ABC中,BC>AB,BD平分∠ABC交AC于点D,AQ⊥BO,垂足为Q,M是边AC的中点,E是边BC的中点.若△PQM的外接圆⊙O与AC的另一个交点为H.求证:O、H、E、M四点共圆.(郑仲义供题)4.设正整数m、n≥2,对于任一个n元整数集A=�a1,a2,⋯,a n�,取每一对不同的数a s、a j(j>s),作差a j−a s.由这C n2个差按从小到大.衍生数列顺序排成的一个数列,称为集合A的“衍生数列”,记为A生A生中能被m整除的数的个数记为A生(m).5.证明:对于任一正整数m(m≥2),n圆整数集A=�a1,a2,⋯,a n�及B={1,2,⋯,n}所对应的A生及B生,满足不等式A生(m)≥B生(m)(陶平生供题)6.求出最大的正数λ,使得对于满足x2+y2+z2=1的任何实数x、y、z成立不等式|λxy+yz|≤√52. (张正杰供题)7. 如图1,△ABC 的内切圆⊙I 分别切BC 、AC 于点M 、N ,E 、F 分别为边AB 、AC 的中点,D 是针线EF 于BI 的交点.证明:M 、N 、D 三点共线.图1(张鹏程 供题) 8. 杰克(Jack )船长与他的海盗们掠夺到6个珍宝箱A 1,A 2,A 3,A 4,A 5,A 6,其中A s (s =1,2,⋯,6)内有金币a s 枚(诸a s 互不相等).海盗们设计了一种箱子的布局图(如图2),并推派一人和船长轮流拿珍宝箱.每次可任意拿走不与两个或两个以上的箱子相连的整个箱子.如果船长最后所取得的金币不少于海盗们所取得的金币,那么船长获胜.问:若船长先拿,他是否有适当的取法保证获胜?图2 (孙文先 供题)9. 设n 为正整数,f (n )表示满足以下条件的n 位数(称为波形数)a 1a 2⋯a n �������������的个数:a 1a 2 a 3 a 4a 6 a 5i.每一位数码a s∈{1,2,3,4},且a s≠a s+1(s=1,2,⋯);ii.当n≥3时,a s−a s+1与a s+1−a s+2(s=1,2,⋯)的符号相反.(1)求f(10)的值;(2)确定f(2008)被13除得的余数.(陶平生供题)2009年东南数学奥林匹克1.试求满足方程x2−2xy+126y2=2009的所有整数对(x,y).(张鹏程供题)2.在凸五边形ABCDE中,已知AB=DE,BC=EA,AB≠EA,且B、C、D、E四点共圆.证明:A、B、C、D四点共圆的充分必要条件是AC=AD.(熊斌供题)3.设x,y,z∈R+,√a=x(y−z)2,√b=y(z−x)2,√c=z(x−y)2;求证:a2+b2+c2≥2(ab+bc+ca). (唐立华供题)4.在一个圆周上给定十二个红点;求n的最小值,使得存在以红点为顶点的n个三角形,满足:以红点为顶点的每条弦,都是其中某个三角形的一条边.(陶平生供题)5.设1,2,⋯,9的所有排列X=�x1,x2,⋯,x9�的集合为A;∀X∈A,记f(X)=x1+2x2+3x3+⋯+9x9,P={f(X)|X∈A};求|P|. (其中|P|表示集合M的元素个数).6.已知⊙O、⊙I分别是△ABC的外接圆和内切圆;证明:过⊙O上的任意一点D,都可作一个△DEF,使得⊙O、⊙I分别是△DEF的外接圆和内切圆.(陶平生供题)7.设f(x,y,z)=x(2y−z)1+x+3y+y(2z−x)1+y+3z+z(2x−y)1+z+3x,其中x,y,z≥0,且x+y+z=1.求f(x,y,z)的最大值和最小值.(李胜宏供题)8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T型五方连块?(孙文先供题)2010年东南数学奥林匹克1. 设a 、b 、c ∈{0,1,⋯9}.若二次方程ax 2+bx +c =0有有理根,证明:三位数abc�����不是质数. (张鹏程 供题)2. 对于集合A ={a 1,a 2,⋯,a m },记O (A )=a 1a 2⋯a m .设A 1,A 2,⋯A n (n =C 201099)是集合{1,2,⋯,2010}的所有99元子集.求证:2011|∑O (A s )n s=1. (叶永南 供题)3. 如图1,已知△ABC 内切圆⊙I 分别与边AB 、BC 切于点F 、D ,之心啊AD 、CF 分别于⊙I 交于另一点H 、K.求证:FD⋅HK FH⋅DK =3.图1 (熊 斌 供题)4. 设正整数a 、b 满足1≤a <b ≤100.若存在正整数k ,使得ab |a k +b k ,则称数对(a ,b )是“好数对”.求所有好数对的个数.(熊 斌 供题)5. 如图2,△ABC 为直角三角形,∠ACB =90°,M 1、M 2为△ABC 内任意两点,M 为线段M 1M 2的中点,直线BM 1、BM 2、BM 与AC 分别交于点N 1、N 2、N.求证:M 1N 1BM 1M 2N 2BM 22MN BM .图2 (裘宗沪 供题)6. 设Z +为正整数集合,定义:a 1=2,a n+1=msn �λ�∑1a i n s=1+1λ<1,λ∈Z +�(n =1,2,⋯). 求证:a n+1=a n 2−a n +1. (李胜宏 供题)7. 设n 是一个正整数,实数a 1,a 2,⋯,a n 和n 1,n 2,⋯,n n 满足:a 1≤a 2≤⋯≤a n 和n 1≤r 2≤⋯≤n n .求证:∑∑==≥n i nj j i j i r r a a 110),min((朱华伟 供题)8. 在一个圆周上给定8个点A 1,A 2,⋯,A 8.求最小的正整数n ,使得以这8个点为顶点的任意n 个三角形中,必存在两个有公共边的三角形.(陶平生 供题)21B2011年东南数学奥林匹克1.已知min x∈R ax2+b√x2+1=3.(1)求b的取值范围;(2)对给定的b,求a.2.已知a、b、c为两两互质的正整数,且a2|(b3+c3),b2|(a3+ c3),c2|(a3+b3)求a、b、c的值.3.设集合P={1,2,3,⋯,50},正整数n满足:M的任意一个35元子集中至少存在两个不同的元素a,b,使a+b=n或a−b=n.求出所有这样的n.4.如图1,过△ABC的外心O任作一直线,分别与边AB,AC相交于M,N,E,F分别是BN,CM的中点.证明:∠EOE=∠A.图15. 如图2,设AA0,BB0,CC0是△ABC的三条角平分线,自A0作A0A1∥BB0,A0A2∥CC0,A1,A2分别在AC,AB上,直线A1A2∩BC=A3;类似得到点B3,C3.证明:A3,B3,C3三点共线.图26.设O 1,O 2,⋯,O n 为平面上n 个定点,M 是该平面内线段AB 上任一点,记|O s P |为点O s 与M 的距离,s =1,2,3,⋯,n ,证明:≤∑∑∑===ni i ni i n i i B P A P M P 111,max . 7.设数列{a n }满足:a 1=a 2=1,a n =7a n−1−a n−2,n >3.证明:对于每个n ∈N ∗,a n +a n+1+2皆为完全平方数.8.将时钟盘面上标有数字1,2,⋯,12的十二个点,分别用红、黄、蓝、绿四种颜色各染三个点,现以这些点为顶点构造n 个凸四边形,使其满足:(1) 每个四边形的四个顶点四色都有;(2) 任何三个四边形,都存在某一色,该色的三个顶点所标数字各不相同.求n 的最大值.32012年东南数学奥林匹克1. 求一个三元整数组(l ,m ,n )(1<l <m <n ),使得∑k l k=1,∑k m k=l+1,∑k n k=m+1依次成等比数列.2. 如图1,△ABC 的内切圆I 在边AB ,BC ,CA 上的切点分别是D ,E ,F ,直线EF 与直线AI ,BI ,DI 分别相交于点M ,N ,K .证明:DP ⋅KE =DN ⋅KE .图1 3. 对于合数n ,记f (n )为其最小的三个正约数之和,g (n )为其最大的两个正约数之和.求所有的正合数n ,使得g (n )等于f (n )的某个正整数次幂.4. 已知实数a ,b ,c ,d 满足:对任意实数x ,均有acccx +bccc 2x +cccc 3x +dccc 4x ≤1, 求a +b -c +d 的最大值.当a +b -c +d 取最大值时,求实数a ,b ,c ,d 的值.5. 如果非负整数m 及其各位数字之和均为6的倍数,则称m 为“六合数”.求小于2012的非负整数中“六合数”的个数.6. 求正整数n 的最小值,使得A东南数学奥林匹克�n−20112012−�n−20122011<�n−201320113−�n−201120133.7.如图2,△ABC中,D为边AC上一点且∠ABD=∠C,点E在边AB上且BE=DE,设M为CD重点,AA⊥DE于点H.已知AA=2−√3,AB=1,求∠APE的度数.图2设m是正整数,n=2m−1,O n={1,2,⋯,n}为数轴上n个点所成的集合.一个蚱蜢在这些点上跳跃,每步从一个点跳到与之相邻的点.求m的最大值,使对任意x,y∈O n,从点x跳2012步到点y的跳法种数为偶数(允许中途经过点x,y).。
2019年中国东南地区数学奥林匹克竞赛_PDF压缩

a
单独考虑左边, 左边可以看成是一个 a 的函数, b 为参数, 那么关于 a 取最
小值的时候有
Å
ã
Ç…
å
ab + (1 + b2) + b (b + 1) ≥ 2 ab · b + (1 + b2) (b + 1) = (b + 1)3
a
a
于是我们只需要取 k ≤ (b + 1)3b−2 即可.
设
值得一说的是, 在这个题目中, 对于任何整数 n, 我们可以定义一个新的 函数 fn(a) = f (an), 那么 fn(ab) = f (abn) 要整除 max{ f (an), b} = max{ fn(a), b}. 也就是说 fn 也是一个满足相同性质的函数, 那么实际上, 我们可以证明对任 意一个 k 满足 f (k) = 1, 那么 {mk}∞m=1 中有无限多个 m 满足 f (mk) = 1. 更复 杂的话, 有兴趣的同学可以自行尝试推导一下这个 f (k) = 1 的解的密度.
评析 3. 欧几里德证明素数无限的方法是数论里面很典范的一种证明方式, 在证明某一类数字有无限多个的时候, 通过反证假设这一类数字只有有限 个, 不妨设为 k1 < k2 < . . . < kn, 套路上我们可以考虑 kn, kn + 1, k1k2 . . . kn, k1k2 . . . kn + 1, [k1, k2, . . . , kn] 等数字来找到矛盾, 本题也是如此.
22 2 2
22
Å
b b ã1/3
Å ab ab
ã1/3
Å bb
ã1/3
≥3 a· ·
2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

1.求最大的实数k ,使得对任意正数a ,b ,均有2()(1)(1)a b ab b kab +++≥.2.如图,两圆1Γ,2Γ交于A ,B 两点,C ,D 为1Γ上两点,E ,F 为2Γ上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1Γ,2Γ分别交于点()K C ≠,()L F ≠,DE 与1Γ,2Γ分别交于点()M D ≠,()N E ≠.证明:若ALM ∆的外接圆与BKN ∆的外接圆相切,则这两个外接圆的半径相等.3.函数**:f →N N 满足:对任意正整数a ,b ,均有()f ab 整除(){}max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论.4.将一个25⨯方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示.现有一个固定放置的918⨯方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.5.称集合{1928,1929,1930,,1949}S =的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由.6.设a ,b ,c 为给定的三角形的三边长.若正实数x ,y ,y 满足1x y z ++=,求axy byz czx ++的最大值.7.设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形A B C D '''',使得点P 在直线AB 与A B ''上,点Q 在直线BC 与B C ''上,点R 在直线CD 与C D ''上,点S 在直线DA 与D A ''上.8.对于正整数1x >,定义集合()(){},,,mod 2x p S p p x p x v x αααα=≡为的素因子为非负数且,其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =. 今给定正整数m .设正整数数列1a ,2a ,,n a ,满足:对任意整数n m >,()()(){}11max ,1,,n n n n m a f a f a f a m +−−=++.(1)证明:存在常数A ,B ()01A <<,使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有*n ∈N ,n a Q <.第十六届中国东南地区数学奥林匹克参考答案1.原不等式()()2221(1)a b b a b b kab ⇔++++≥ ()221(1)b ab b b kb a ⎛⎫⇔++++≥ ⎪⎝⎭ 单独考虑左边,左边可以看成是一个a 的函数、b 为参数,那么关于a 取最小值的时候有()()2231(1)1(1)(1)b ab b b b b b a ⎛⎫⎛⎫++++≥++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭于是我们只需要取32(1)k b b −≤+即可.设32(1)()b f b b +=,那么23(1)(2)()b b f b b+−'=,演算可知2b =是f 的极小值点,那么min 27(2)4f f ==,即max 274k =,取极值时有1a =,2b =. 评析1.不等号的左边和右边都不对称,但是右边只是一个2kab ,所以可以考虑一下类似于分离变量的方法把a 或2b 挪到左边去.本答案用的是把a 挪到左边的方法.把2b 挪到左边也有类似的做法,但是会变得比较复杂,有兴趣的同学不妨一试.该题做法非常多,本篇答案给出的做法只是一种以高中课本知识即可解决的方法,但是如果不想用到函数求导这种比较偏流氓的方法的话,纯粹不等式的方法也是可行的.比如, ()(1)(1)11222222b b ab ab b b a b ab b a ⎛⎫⎛⎫⎛⎫+++=++++++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 1/31/31/333131222222b b ab ab b b a ⎛⎫⎛⎫⎛⎫≥⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2274ab = 2.如图.记G 为CF ,DE 的交点,ALM ∆和BKN ∆的外接圆圆心为A O ,B O .取两圆切线上任意一点为1H ,切线另一边的任意一点为2H ,连接CD .LN ,AB ,MK ,EF ,A B O O ,由于180DCA DBA FBA FEA ∠+∠=∠+∠=︒,我们有180DCA FEA ∠+∠=︒,即//CD EF .另外,由圆幂定理我们有~GLN GEF ∆∆,~GKM GDC ∆∆,于是我们有GLN GDC GEF GKM ∠=∠=∠=∠,即//LN MK .另一方面,那么因为//CD EF ,我们有180180180LGM CDG EFG CAM EAL LAM ∠=∠+∠=−∠+−∠=−∠︒︒︒,即G 在A O 上.同理G 在B O 上.由于A O 与B O 相切,我们知道G 在A B O O 上.那这个时候G 在LK ,MN ,A B O O 上,我们知道12GKN NGH MGH GLM ∠=∠=∠=∠,故//LM KN .由于//LM KN ,我们知道LMKN 是一个平行四边形,那么LGM KGN ∆≅∆,那么两个三角形的外接圆半径相等,ALM ∆和BKN ∆的外接圆半径相等.评析2.熟悉平面几何的同学应该很快就可以凭经验知道//CD EF ,//LN MK ,且G 在这两个外接圆上.余下的部分,观察题图可以猜测//LM NK ,如果有这一条的话我们很容易推出两个外接圆的半径相等,剩下就是一些比较角度的工作.总体来说本题偏简单题.3.一定存在无穷多个这样的k ,使得()1f k =.若不然,假设只有有限多个k 使得()1f k =,我们分两种情况讨论.若这样的k 不止一个,那我们可以取到最大的一个,还是记为k ,那么对任意n k >,我们有()1f n >.对任意一个素数p ,由于pk k >,我们有()1f pk >.但是由于()f pk 整除max{(),}max{1,}f k p p p ==.我们知道()f pk p =.对任意两个素数p ,q ,不妨p q ≤,那么()f pqk 整除max{(),}max ,}f pk q p q q ==.那么我们现在亏虑三个素数p ,q ,r 满足p q r ≤≤,但是pq r >(比如,2p =,3q =,5r =).那么一方面,()f pqrk 整除max{(),}max{,}f rk pq r pq pq ==.另一方面,()f pqrk 整除max{(),}max{,}f pqk r q r r ==.但是(,)1pq r =,所以()|1f pqrk 即()1f pqrk =.但是pqrk k >,矛盾.所以一定存在无穷多个k ,使得()1f k =.评析3.欧几里德证明素数无限的方法是数论里面很典范的一种证明方式,在证明某一类数字有无限多个的时候,通过反证假设这一类数字只有有限个,不妨设为12n k k k ⋅<<,套路上我们可以考虑n k ,1n k +,12n k k k ,121n k k k +.[]12,,,n k k k 等数字来找到矛盾,本题也是如此.值得一说的是,在这个题目中,对于任何整数n ,我们可以定义一个新的函数()()n f a f an =,那么()()n f ab f abn =要整除{}max{(),}max (),n f an b f a b =.也就是说n f 也是一个满足相同性质的函数.那么实际上,我们可以证明对任意一个k 满足()1f k =.那么1{}m mk ∞=中有无限多个m 满足()1f mk =.更复杂的话,有兴趣的同学可以自行尝试推导一下这个()1f k =的解的密度.4.首先显然,一个92⨯的格子里面放置两面旌旗一共有两种方法,如下图:或那么918⨯的格子中可以放入9个92⨯的格子,所以每个92⨯的格子里有两种可能,一共92512=种放法.下面证明没有别的放法.首先我们考察918⨯的侧边,即变成为9这条边.若我们用18面旌旗把这些格子填满了,那么我们考察这条边上放的旌旗.旌旗的几条边长为5,4,2,1.若旌旗边长为1的边靠着底边,那么1的左右某一边的格子只能用另一面旌旗的边长为5的边来填,如图:那么这条边上剩下三个格子,无法用2和1来填满(因为1需要伴随5).若旌旗边长为2的边靠着底边,那么这时侧边只能是9522=++用三条旌旗来覆盖,这个时候两条旌旗横着用边长为2的底边来接触侧边.同时第二列只有一个空着的格子,若要填住这个格子只能用一条旌旗的旗头来填,所以只能是如图的填法:其中虚线表示两面用边长为2的底边填充格子侧边的旌旗可以放在用边长为5的底边填充侧边的旌旗的上面或者下面.于是无论如何在第三列总会出现三个连续的空格无法被旌旗填充,所以侧边只能用54+的填法,那么消去这两列之后新的侧边也只能用54+的填法来填充,这种归纳的想法可知没有其他的填法. 评析4.本题的答案非常送分,证明的方法却变得非常朴素.一般遇到填格子的题目的话很常规的一种套路就是用染色的方法,我们可以斑马条纹染色,也可以国际象棋棋盘染色,但是这个题目似乎用染色的方法做不出来,反而用这种硬讨论的朴素方法可以做,似乎有时也需要跳出套路来想问题.5.显然,若m M ∈满足(mod 4)m i ≡,那么任何n 满足()4mod 4n i ≡−都不能在4里面.所以将S 按照模4的余数分为4种:0{1928,1932,1936,1940,1944,1948}S =1{1929,1933,1937,1941,1945,1949}S =2{1930,1934,1938,1942,1946}S =3{1931,1935,1939,1943,1947}S = 那么016S S ==,235S S ==.那么入前所述,0S ,2S 的元素顶多有一个在M 中,1S ,3S 的元素不能同时在M 中,所以四元红色子集有四种情况:四个元素都属于1S 或3S ;一个元素属于0S ,剩下三个元素都属于1S 或3S ;一个元素属于2S ,剩下三个元素都属于1S 或3S ;一个元素属于0S .一个元素属于2S ,剩下两个元素都属于1S 或3S ,所以4433332265656565665565651100x C C C C C C C C =++⨯+⨯+⨯+⨯+⨯⨯+⨯⨯=.同理,5544443365656565665565651127y C C C C C C C C =++⨯+⨯+⨯+⨯+⨯⨯+⨯⨯=.所以x y <评析5.这个题目就算是出自高考全国卷都不会让人感觉到任何奇怪……6.考虑拉格朗日乘子(1)axy byz czx x y z λ=++−⋅++−,那么ay cz x λ∂=−++∂ ax bz y λ∂=−++∂ cx by z λ∂=−++∂ 1x y z λ∂=−−−∂ 那么0L L x y z λ∂∂∂∂====∂∂∂∂的解为: 222()222b c a b x ab bc ca a b c +−=++−−−,222()222c a b c y ab bc ca a b c+−=++−−− 222()222a b c a z ab bc ca a b c +−=++−−−,2222222abc ab bc ca a b c λ−=++−−− 于是max 222()222abc axy byz czx ab bc ca a b c ++=++−−− 评析6.三元二次极值问题用拉格朗日乘子比较容易解决,因为拉格朗日量的各种偏导数都是线性的,最终我们只需要解决一个线性方程即可,所以这篇答案中用了最简单暴力的方法.事实上,这个题目可以用几何不等式的方法来做,或者直接用嵌入不等式来做,但是我不会.7.对于任意的四边形ABCD (甚至不要求凸),我们都可以找一条直线l 使得l 不在任何一条边上,也不与任何一条边平行,并且AB ,BC ,CD ,DA 分别与l 交于四个不同的点P ,Q ,R ,S .我们将证明一个更强的结论:若P ,Q ,R ,S 是一条直线l 上的四个不同的点,那么我们可以找到一个正方形A B C D '''',使得A B '',B C '',C D '',D A ''分别过P ,Q ,R ,S 点.我们不妨设l 就是y 轴(不然通过旋转即可),P ,Q ,R ,S 的纵坐标为p ,q ,r ,s .那么考虑一个斜率参数k ,过P ,R 做斜率为k 的直线y kx p =+和y kx r =+,过Q ,S 做斜率为1k−的直线1y x q k =−+和1y x s k=−+.那么设这四条直线就是A B '',C D '',B C '',D A '',于是我们可以解得 ()2221(),11k A s p k s p k k ⎛⎫=−+ ⎪++⎝⎭,()2221(),11k B q p k q p k k ⎛⎫=−+ ⎪++⎝⎭ ()2221(),11k C q r k q r k k ⎛⎫=−+ ⎪++⎝⎭,()2221(),11k D s r k s r k k ⎛⎫=−+ ⎪++⎝⎭于是22222||()||()AB k q s l AD p r −==− 即p r k q s−=±− 那么由于p ,q ,r ,s 互不相同可知存在这样的斜率,使得A B C D ''''是正方形.评析7.这道平面几何的题目非常的非主流,同学们如果直接从平几方法来构造的话可能会被卡很久,这里给了一种解析的方法.实际上这个题目也可以用复数做,假设A B C D ''''的中心所对应的复数为z ,那么正方形的四个点可以设为z t +,z it +,2z i t +,3z i t +,这种做法也一样可行.8.(1)设11k s s k x p p =(2)k ≥,直接计算可以有 22221010()i i i i s s k k s j s j i i i i i i j f x p p p ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦−−====⎛⎫ ⎪==⋅ ⎪ ⎪⎝⎭∑∑∑∑222112111111i i i s k k s s i ii i i ii p p p p p ⎡⎤⎢⎥⎣⎦−==−=⋅<⋅−−∑∑ 21114123i i k s s i i i i p p −==<⋅=−∑∑(因为i p 最小为2) 记录i s i i a p =,,那么2i a ≥,我们重点考虑i a ∑和i a ∏之间的大小关系. 令()1,,k i i f a a a a λ=⋅−∑∏,那么j i j if a a λ≠∂=−∏∂,所以事实上若j i j a λ≠≤∏,对任意i 都成立,那么在i a 变小的时候f 变大,则()1,,(2,,2)22k k f a a f k λ≤=−.用求导的方法很容易知道22k k λ−会在()()()1111ln 2ln2ln (2)ln 22ln (2)ln (2)3k λ−−−−=⋅⋅≤⨯⨯⋅<的时候取到,那么在整数的取值上,我们取2k =,3得到 222244λλ⨯−=−323268λλ⨯−=−由于2λ≤,我们知道2244kk λλ−≤−.于是1144()2233k kk i i i i f x a k a λλ==⎛⎫<≤⋅−+ ⎪⎝⎭∑∏ 14416144333k i i a x λλλλλ=−⎛⎫≤⋅−+=⋅+⋅ ⎪⎝⎭∏ 那么我们只需要取一个λ使得423λ<≤即可,比如我们取2λ=就会得到28()33f x x <+. (2)若不存在这样的Q ,那么存在n a 使得28n a m >+,不妨设n a ,1n a −,,n m a −中最大的是a ,那么显然28a m >+.于是()()(){}11max ,1,,n n n n m a f a f a f a m +−−=++ ()2828max ,,3333n n m a a m −⎧⎫<+++⎨⎬⎩⎭()()2828max ,,3333n n m a m a m −⎧⎫≤++++⎨⎬⎩⎭ {}228max ,,333n n m a a m −=++ 22833m a a +≤+< 所以归纳可证明n k a a +<,这与无上界是矛盾的.所以一定存在这么一个Q ,使得n a Q <对所有*n N ∈都成立.评析8.数论中出现素因子的加法一般都会变得很难,但是这个题目主要通过估计就可以达到要求,所有同学做题的时候一定要注意看题目,不要看一眼觉得很复杂就马上放弃,这个题还是可做的.从答案上看这个估计并不太难,只要敢拆敢放就能做出来,实际上这种估计也的确没有用到任何解析数论的方法,所有的步骤都是高中生都可以做出来的,但是我还是建议各位同学在学习潘承洞,潘承彪两位先生的《初等数论》的时候把后面章节的内容也看一看,素数定理和 Eratosthenes 筛法的基础知识并不会太难,了解一下并没有什么坏处.另外,这篇答案的放缩放得非常狠,比如公式第二行的不等号基本上是i s 直接放到无穷,第三行的不等号就直接把所有i p ;都放成2,之后讨论函数的时候又把所有i s i p 当2来做,可以说23是一个非常粗略的答案.有兴趣的同学可以算算2k =的情况玩玩,看看自己能把这个不等号放到多小.。
2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。
个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。
2019年中国数学奥林匹克完整试题及解析

(因为
C325
≥
max L(x, y)).
(x,y)∈X
下面构造例子说明 C325 是可以取到的最好的常数:
设 S = {1, 2, · · · , 35}, 考虑置换 f = (12 · · · 35), 即:
f (1) = 2, f (2) = 3, · · · , f (34) = 35, f (35) = 1,
极值可以在满足一些对称性的序列 (ai) 上取到. 毋庸置疑,满足题目条件的数列集合是闭集,因此两个
小题中的目标函数(都是连续的)确实能取到最大值.
(1)设序列
(ai)
使
a+b+c+d
取到最大,令
ci
=
ai
+
ai+10
+ ai+20 4
+ ai+30 ,下标模
40
理解.
根
据上一段,ci 满足题目条件,而且(1)中目标函数在序列 (ai) 和 (ci) 上取值相同,因此可以只对具有
2019 年中国数学奥林匹克试题解析
6
注意到: L(x, y) ≤ L(f1(x), f1(y)) + 1, 从而
L(x, y) ≤ L (fk−1(· · · (f1(x))), fk−1(· · · (f1(y)))) + (k − 1) = k ≤ |X| = C325,
所以
m
≥
C325
时总是可以办到的
(解题 : )
题 2. 已知:△ABC 中,AD 为角平分线,E 为 AD 上一点,EF 、EG 为 △ABD、△ACD 外接圆 切线,F 、G 分别为切点,CF 交 BG 于 J. 过 J 的 BC 平行线交 DF 、DG、DE 于 H、I、K.
2019年高一数学奥林匹克竞赛决赛试题及答案

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。
个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。
2019年中国数学奥林匹克完整试题及解析

题 5. 数列 {an } 定义如下: 正整数 a1 > 1, an+1 = an + P (an ), n ≥ 1, 其中, P (x) 表示正整数 x 的最 大素因子. 证明: 数列 {an } 中有完全平方数.
题 6. 是否存在正实数 a1 , a2 , · · · , a19 ,使得多项式 P (x) = x20 + a19 x19 + · · · + a1 x + a0 无实数根, 但是任意调换两个系数 ai , aj 形成的新多项式都有实根.
(1)设序列 (ai ) 使 a + b + c + d 取到最大, 令 ci = 根
,下标模 40 理解.
据上一段, ci 满足题目条件, 而且(1) 中目标函数在序列 (ai ) 和 (ci ) 上取值相同, 因此可以只对具有
周期 10 的序列考虑这个最大值. 此时 a = b = c = d.
a20+k = − k (0 ≤ k ≤ 10), a30+k = a40 − k = − − k (0 ≤ k ≤ 5)
时取等.
(解题人:龚 固)
题 2. 已知: △ABC 中, AD 为角平分线, E 为 AD 上一点, EF 、EG 为 △ABD 、△ACD 外接圆 切线, F 、G 分别为切点, CF 交 BG 于 J . 过 J 的 BC 平行线交 DF 、DG 、DE 于 H 、I 、K .
(a29+k + a41 − k ) + (a15 + a35 )
≥ (x − 2k) + (x − 2k) + (x − 18 − 2k) + (x − 20)
2020年(第17届)中国东南地区数学奥林匹克高二年级第二天试题(含答案)

第十七届中国东南地区数学奥林匹克浙江•诸暨高二年级第二天2020 年8 月 6 H 上午8:00-12:001.集合…,2020}.称W={w(a,b)=(a + b) + a〃a,bwJ}c/ 为“吴,填合,Y = {y{a ,h) = (n + b) ah\a. bEI]C\l为“翻”集介.X = wcy为“西子,集合. (I) K求“西子”集合中最大致与最小数之和:(Z)若“越”集合中的元#"=y(%b)(a&b)及小方法不姓一(妇30 = y(l,5) = y(2.3)〉,就称〃为“卓越ST.求“越”亲合中“卓越故’的个数.2.如图,在四边形4BC0中,cKBC - ^ADC < 90\以4C为直径的圆。
与边BC. CD的%一个交点分用为E. F. M为9D的中点,AN LBD尸点M证明:M , N, E, F四点其四.B V3.将所行不含T方国了的正整数从小到大排成数列5,/山3.・・・,/ 证明;存在无方多个正整数八,使得册八一0=2020.4,用•个喷头对一张lx ri的方格方条的条一格进行喷法,当啧头对指定的第«1 WiVn)格喷涂时,该格被染成黑色•同时。
第i格相邻的左例方格和右侧方格(在存在的情况卜)独立地各彳弓的概率也被染成黑色.设在最佳策略卜(使喷涂次数尽可能少),喷完n个方格所需要喷涂的次教期望侑为了(初求7S)的通项公式.第十七届中国东南地区数学奥林匹克浙江•诸暨高二年级第二天2020年8月6日上午8:00T2:001.集合,=口,2,…,2020).称 W = {w(a,b) = (a + b) + aZj|a,b|e/}n/ 为“吴”集合,f = {y(a,d) = (a + d)• ab\a,为“越”集合,X = WAV为••西子”集合.(1)试求“西了”集合中最大数与最小数之和;(2)若“越”集合3的元素n = y(aM(asb)表小”法不唯一(如30 = y(L5) = y(2,3)),就称几为“卓越数”.求“越”集合中“卓越数”的个数.证明:(1)若正整数孤£卬,即有正整数a,b,使得n = a十力十。
2022年东南赛高二试卷题头

第十九届中国东南地区数学奥林匹克参考答案江西·吉安 高二年级 第二天2022年8月3日 上午8: 00-12: 005.设,,,a b c d 为非负整数, Sabcd .(1) 若2222022a b cd , 求S 的最小值; (2) 若2222022a b cd , 求S 的最小值.解: (1) 首先,c d 都不为0(否则将有222022a b , 则220(mod3)a b ,于是,a b 均为3的倍数, 但这导致229a b , 与222022a b 矛盾).由于222()2022a b a b , 故45ab.若45ab, 则只能是{,}{0,45}a b (否则22221442022a b , 矛盾).此时22204520223cd , 得3,1c d , 相应有49S.若46ab, 则,a b 同奇偶, 故2cd 为偶数, 于是,c d 中含有偶数, c d 至少为3, 此时46349S(当{,}{1,45},1,2a b c d 时能取到等号).若47ab , 则471149S.综上可知S 的最小值为49. (2) 首先有222017172022, 故(,,,)(0,1,7,17)a b c d 满足条件, 此时S 取到25.以下假设24S .若24cd, 则0a b, 此时22022cd , 注意到2022无平方因子, 故1,2022dc, 与24c d 矛盾.若23c d , 由均值不等式得 3231444()2232227d dd d cd cc cd ,①于是2324723231900272cd .此时222202220221900122a b cd , 所以11a .从而2413c d S a ba , 再利用①知23241321340027cd .于是220224001600a , 得40a S , 矛盾.综上可知S 的最小值为25.注: 第(2)题在估计S 的下界时, 不等关系①起到了重要的作用.事实上, 如果2cd 较大, 则由①知cd 也较大, 导致S 较大; 如果2cd 较小, 则由条件知222022a b cd 较大, 也会导致S 较大.具体的下界估计方法及解答的呈现方式很多, 例如下面也是一种: 假设24S , 则24a, 故222220222022241446cd b a , 由均值不等式得32321224d d cd cdc(①的等价形式),故22c d .于是32233()()3()()()S ab cd a b cd cd222273()223()224ab ab cd 22222727()3()2244a b ab cd 22720223()224ab . 若1a b , 则323272022322244S , 与24S矛盾.故0a b, 则22022cd , 注意到2022无平方因子, 故1,2022dc,此时24S, 矛盾.在鉴别第(2)题S 的下界估计是否有实质进展时, “出现不等关系①或其等价形式”或可作为一个主要观察点.6. 如图所示, 点O 为锐角ABC ∆的外心.P 过,A O 两点, 且//OP BC .点D 和A 在边BC 的两侧, 满足ABD ACD BAC ∠=∠=∠.Q 是以AD 为直径的圆,R 是BCD ∆的外接圆.证明:,,P Q R 交于同一点.证明: 设,AC BD 的延长线相交于点U , ,AB CD 的延长线相交于点V .设R 和UDV ∆的外接圆相交于,D M 两点, 下证M 是,,P Q R 的公共点.取A 关于OP 的对称点A ', 则A '是,O P 的一个交点, 且AA BC '⊥.设N 是BC 的中点.由于ABD ACD BAC ∠=∠=∠, 故AU BU =且AV CV =.而O 是ABC ∆的外心, 故OU AB ⊥且OV AC ⊥, 进而O 是AUV ∆的垂心.于是9090OUV OAB ACB AA B A BC ''∠=∠=-∠=-∠=∠︒︒,即OUV A BC '∠=∠.同理OVU A CB '∠=∠, 因此OUV A BC ∽'∆∆.又由圆周角定理可知,MBC MDC MUV ∠=∠=∠即MBC MUV ∠=∠.同理MCB MVU ∠=∠, 故MBC MUV ∽∆∆.结合OUV A BC ∽'∆∆与MBC MUV ∽∆∆可知(,),A MO BC UV NOA '==即A MO NOA '∠=∠.又//ON AA ', 故180A MO OAA NOA OAA '''∠+∠=∠+∠=︒,于是,,,A O M A '四点共圆, 即M 在P 上.又显然ABU ACV ∠=∠, 故,,,B C U V 四点共圆.由密克点的性质可知AM DM ⊥, 故M 也在Q 上.综上所述, ,,P Q R 共点于M , 结论成立.7.证明: 对任意实数0, 存在n 个正整数12,,,n a a a (2n ), 满足122n na a a , 且对任意1,2,,kn , 均有 12(,)(,)(,)0(mod )k k n k k a a a a a a a ,这里(,)u v 表示正整数,u v 的最大公约数.证明: 取正整数2r 满足2121r r .考虑正整数1221rnbb b 及以下n 个正整数1211222122,,,,2,2,,2r r r rrr n r nb b b b b b , ①这里122r b b b 均为奇素数.对每一个(12)r k k, 显然k b 与①中其余1n 个数互素, 从而12(,)(,)(,)1k k n k k b b b b b b n b1220(mod )rk k bb b b b .②对每一个(21)rk k n , 有1,12,(,),211,,.r r i k i k ib b b i k b ki n因此1212122(,)(,)(,)21rr r k k n k k b b b b b b b b b12221222220(mod )r r rrrrk rk kk b b .③显然22rr b , 故1222221222rrr rrrn r bb b rb b ,于是222rr bnb b .所以12max{,,,}nn b b b b .显然12,,,n b b b 两两不等.将12,,,n b b b 从小到大排列为12,,,n a a a .注意到2121rr , 有211222r nr n n na a ab .结合②、③, 可知n 及12,,,n a a a 满足条件.注: 本题的形式及证明思路由2018年伊朗国家队选拔考试题联想而得, 原题如下:称不同的正整数12,,,n a a a 是“调和的”, 当且仅当11(,)nii j i i j na a a .证明: 存在无穷多个正整数n , 使得存在n 个正整数是调和的.该问题的一种证明方法是将12,,,n a a a 取为如下形式:01312212,2,,2,3,n nnna a a a a q (其中(,6)1q ).对11(,)nii j i ij na a a 进行化简后发现,当4n q时, 题述等式成立.8. 小陶同学玩如下游戏: 取定大于1的常数v ; 对正整数m , 游戏的第m 轮与第1m +轮间隔为2m -单位时长; 第m 轮在平面上有策略地取一个半径为12m -+的圆形安全区域(含边界, 取圆时间忽略不计); 每轮取定的圆形安全区域将在整个游戏剩余时间内保持圆心不动, 半径以速率v 匀速减小(半径减小到零时, 去掉该圆形安全区域); 若可在第100轮之前(含第100轮)的某轮将圆形安全区域取在剩余的安全区域的并集内, 则取得游戏胜利.若小陶同学有必胜策略, 求11v ⎡⎤⎢⎥-⎣⎦的最小值 ([]x 表示不超过x 的最大整数). 解 记01v v +=, +∈⎥⎦⎥⎢⎣⎢-=Z v k 11. 下面证明k 的最小值为18. 记小陶在第m 轮开始时所画的圆为m C , 故在第l m +轮开始时, 它的半径为,011111max(0,(1(1)))max(0,(1(21)))222l m l m l m l r v v -+-=--=--...(1) 注意到由(1)式, 设⎪⎭⎫⎢⎣⎡-∈-+1100021,121l l v ,其中+∈Z l 0, 则在任何一个轮m 开始的时候平面上至多剩下0l 个半径为011(1(21))2l m v ---的圆, 0,...,2,1l l =. 问题变为是否能用这0l 个圆覆盖一个半径为112m -的圆. 也即能否用半径为))12(1(0--l v ,0,...,2,1l l =的圆覆盖一个半径为1的圆.首先, 易知若对于1>v 小陶有必胜策略, 则对于(1,)v v '∈, 小陶也有必胜策略. 故对于任何k , 若存在⎥⎦⎤⎝⎛+∈k k v 1,110使得小陶有必胜策略, 则对于k k '>,亦存在011,1v k k ⎛⎤'∈ ⎥''+⎝⎦使得小陶亦有必胜策略. 我们先证明18=k 时存在1811910≤<v 使得小陶有必胜策略. 在这个时候, 40=l , 故平面上在任何一个时刻至多剩下4个圆, 其半径分别为0000151,71,31,1v v v v ----.考虑一个凸四边形ABCD . 连接对角线AC , 设B 对于AC 的垂足为B H , 设D 对AC 的垂足为D H . 以AB,BC,CD,DA 为直径做圆DA CD BC AB O O O O ,,,, 则直角三角形,,,D B B ADH BCH ABH D CDH 分别被CD DA BC AB O O O O ,,,覆盖. 故凸四边形ABCD 被这4个圆覆盖. 固定四边长度, 我们可以调整四边形ABCD 使得A,B,C,D 四点共圆. 这个圆也必然被CD DA BC AB O O O O ,,,所覆盖. 若这个圆的半径1≥, 则小陶已经获胜. 记角ABC 为θ, 则角ADC 为θπ-.设AB,BC,CD,DA 的长度分别为d c b a ,,,. 则对角线AC 的长度x 满足:)cos(2222θab b a x -+= )cos(2222θπ--+=cd d c x由以上两式我们有:cdab d c ab b a cd x ++++=)()(22222...(2) 即四边形ABCD 的外接圆半径为R, 故该圆也是三角形ABC 的外接圆. 由海伦公式, 我们有))()()((4a x b b x a x b a x b a abxS abx R ABC -+-+-+++==...(3) 由(3), 我们得出1≥R 当且仅当))()()((2222222b a x x b a x b a ---+≥即0)()22(222222224≥-+-+-b a x b a b a x (4)带入)151(2),71(2),31(2),1(2,19100000v a v b v c v d v -=-=-=-==以及(2)进入(4), 我们知道(4)左边严格大于0. 此处可首先考虑1936,1932,1924,198====d c b a . 同时将d c b a ,,,乘以419, 我们得到9,8,6,2''''====d c b a 以及对应的552=x . 只需验证03262194-622-552222222≥+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+而上式左侧的值满足:0361925-144361165510243262194-622-552222222>=+=+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+)(故由连续性, 对于某个略大于191但181<的'0v , (4)依然成立. 故对于这个'0v , 小陶有必胜策略, 且18=k . 下面说明18=k 是最小值. 我们用反证法.若对于某个1710≥v , 即17≤k , 小陶仍然有必胜策略, 则在1710=v 时小陶有必胜策略. 于是我们可以用至多不超过4个半径为0000151,71,31,1v v v v ----的圆, 记为圆21,O O , 43,O O , 覆盖一个半径为1的圆O .下面分两种情况讨论:(A) 设圆O 的边界与4321,,,O O O O 按以起点顺时针顺序交于弧4321,,,L L L L . 则我们必然能找到凸四边形ABCD 使得A,B,C,D 在圆O 上并且,,,AB BC CD DA 分别被包含在圆41,...,O O 内. 故,,,AB BC CD DA 的长度一定小于等于421...,,O O O 的直径, 即),31(2),1(200v b v a -=-=)151(2),71(200v d v c -=-=的某个排列. 我们知道外接圆半径是边长AB,BC,CD,DA 的递增函数, 故若(4)式对于,,,AB BC CD DA 正确, 那对于d c b a ,,,的某个排列必然正确. 然而当1810=v 时, 固定01v a -=, 无论d c b ,,如何排列, (4)式均不成立. 故这种情况下无法满足要求.(B) 存在至少一个圆}4,3,2,1{,∈i O i , 使得该圆和O 的边界不相交. 不妨设为4O . 不妨设圆O 的边界与圆1O 相较于弧1L . 由于圆1O 的半径小于圆O , 必然存在对直径点,E F 使得他们都不被圆1O 覆盖, 而另外的圆32,O O 每个至多能覆盖,E F 中的一个(已经假设,E F 不在4O 当中). 那么32,O O 必然与圆O 的边界相交,设为弧32,L L . 不妨假设32,1,,L L L 起始点以顺时针依次排列. 于是必然能找到顺时针三个点,,A B C 都在圆O 的边界上, 使得,,AB BC CA 分别在圆321,,O O O 之内. 故AB,BC,CA 的长度)71(2),31(2),1(2000v c v b v a -=-=-=≤.另)151(200v d -≤=并且D 与C 重合. 我们易知同样在1810=v 时(4)不成立, 故圆O 的半径R 必然1<. 矛盾. 所以k 的最小值为18.。
2019年第十六届中国东南地区数学奥林匹克高一试题

第十六届中国东南地区数学奥林匹克1. 求最大的实数k ,使得对任意正数a ,b ,均有()()()211a b ab b kab +++≥. 2. 如图,两圆1P ,2P 交于A ,B 两点,C ,D 为1P 上两点,E ,F 为2P 上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1P ,2P 分别交于点()K C ≠,()L F ≠,DE 与1P ,2P 分别交于点()M D ≠,()N E ≠.证明:若ALM ∆的外接圆与BKN ∆的外接圆相切,则这两个外接圆的半径相等.3. 函数:f N N **→满足:对任意正整数a ,b 均有()f ab 整除(){}max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论.4. 将一个25⨯方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示.现有一个固定放置的918⨯方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.第十六届中国东南地区数学奥林匹克 江西吉安高二年级 第一天2019年7月30日 上午8:00-12:001. 对任意实数a ,用[]a 表示不超过a 的最大整数,记{}[]a a a =−.是否存在正整数m ,n 及1n +个实数0x ,1x ,…,n x ,使得0428x =,1928n x =,110105k k k x x x m +⎡⎤⎧⎫=++⎨⎬⎢⎥⎣⎦⎩⎭(0k =,1,…,1n −)成立?证明你的结论. 2. 如图,在平行四边形中ABCD ,90BAD ∠≠︒,以B 为圆心,BA 为半径的圆与AB ,CB 的延长线分别相交于点E ,F ,以D 为圆心,DA 为半径的圆与AD ,CD 的延长线分别相交于点M ,N ,直线EN ,FM 相交于点G ,直线AG ,ME 相交于点T ,直线EN 与圆D 相交于点()P N ≠,直线MF 与圆B 相交于点()Q F ≠.证明:G ,P ,T ,Q 四点共圆.3. 今有n 人排成一行,自左至右按1,2,…,n 的顺序报数,凡序号为平方数者退出队伍;剩下的人自左至右再次按1,2,3,…的顺序重新报数,凡序号为平方数者退出队伍;如此继续.在此过程中,每个人都将先后从队伍中退出.用()f n 表示最后一个退出队伍的人在最初报数时的序号.求()f n 的表达式(用n 表示);特别地,给出()2019f 的值.4. 在55⨯矩阵X 中,每个元素为0或1.用,i j x 表示中第行第列的元素(,,…,).考虑的所有行、列及对角线上的元有序数组(共个数组):(,1i x ,,2i x ,...,,5i x ),(,5i x ,,4i x ,...,,1i x ,)(1i =,2, (5)(1,j x ,2,j x ,...,5,j x ),(5,j x ,4,j x ,...,1,j x )(1j =,2, (5)(1,1x ,2,2x ,…,5,5x ,),(5,5x ,4,4x ,…,1,1x ),(1,5x ,2,4x ,…,5,1x ),(5,1x ,4,2x ,…,1,5x ).若这些数组两两不同,求矩阵X 中所有元素之和的可能值.第十六届中国东南地区数学奥林匹克 江西吉安高一年级 第二天2019年7月31日 上午8:00-12:005. 称集合{}1928192919301949S =⋯,,,,的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由.6. 设a ,b ,c 为给定的三角形的三边形.若正实数x ,y ,z 满足1x y z ++=,求axy byz czx ++的最大值.7. 设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形''''A B C D ,使得点P 在直线AB 与''A B 上,点Q 在直线BC 与''B C 上,点R 在直线CD 与''C D 上,点S 在直线DA 与''D A 上.8.对于正整数1x >,定义集合()(){}=v mod 2x p S P P x P x x αααα=为的素因子,为非负整数,,且 其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =.今给定正整数m .设正整数数列1a ,2a ,…,n a ,…满足:对任意整数n m >,()()(){}11max ,1,...,n n n n m a f a f a f a m +−−=++.(1)证明:存在常数A ,B ()01A <<,使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有n N *∈,n a Q <. 第十六届中国东南地区数学奥林匹克江西吉安高二年级 第二天5. 对任意正整数n ,用n a 表示三边长均为整数且最长边的长为2n 的三角形的个数.(1)求n a 关于的表达式;(2)设数列{}n b 满足:()()11n n k k n k n k C b a n N −*=−=∈∑.求使2019n n b a ≤成立的正整数n 的个数.6. 在ABC ∆中,AB AC >,ABC ∠的平分线交AC 于点D ,ACB ∠的平分线交AB 于点E ,过A 作ABC ∆的外接圆的切线,交ED 的延长线于点P .已知AP BC =.证明://BD CP .7. 甲、乙两人从0,1,2,…,81中轮流挑选互不重复的数,甲先选,每次每人从剩下的数中选1个数.当这82个数被选定完之后,记A 为甲选择的所有数之和,B 为乙选择的所有数之和.在挑选数的过程中,甲希望A ,B 的最大公约数越大越好,而乙希望A ,B 的最大公约数越小越好.在甲、乙各自的最佳策略下,求挑选完毕之后A ,B 的最大公约数.8. 对于正整数1x >,定义集合()(){}=v mod 2x p S P P x P x x αααα=为的素因子,为非负整数,,且其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =.今给定正整数m .设正整数数列1a ,2a ,…,n a ,…满足:对任意整数n m >,()()(){}11max ,1,...,n n n n m a f a f a f a m +−−=++.(1)证明:存在常数A ,B ()01A <<,使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数N ,l ,使得对所有n N ≥,1n n a a +=成立.。
第十五届中国东南地区数学奥林匹克获奖名单(高一年级)

程锐诚 杨天行 张瑾
高一 高一 高一
二 二 二
115
陕西西安铁一中学
谢泽钰 高一
二
116 117 118
四川成都嘉陕祥西外西国安语铁学一校中(学含北城、成 华、达州四、川锦省江绵、阳郫中县学校区 )
王可尚 吴思宏 王力
高一 高一 高一
二 二 二
119
泰国代表队
NATCHAN 高一
魏欣悦
高一
一
9
广东华南师大附属中学
饶睿
高一
一
10
广东华南师大附属中学
唐语阳
高一
一
11
广东华南师大附属中学
李其璋
高一
一
12
广东深圳实验学校高中部
张泽豪
高一
一
13
广东深圳外国语学校
李东睿
高一
一
14 15 16
广州大学附属中学(大学城、黄华路校 广州大学附属中学区()大学城、黄华路校
河北衡水区第)一中学
曾相如 李思博 肖振超
第十五届中国东南地区数学奥林匹克获奖名单(高一年)
序号
学校名称
学生姓名 年级 获奖等第
1
安徽合肥一六八中学
陈昶旭
高一
一
2
北京第十二中学(含钱学森学校)
毕寅奥
高一
一
3
北京四中
魏泽明
高一
一
4
福建莆田一中
陈路晰
高一
一
5
福建莆田一中
杨智杰
高一
一
6
福建泉州五中
林冠儒
高一
一
7
福建师大附中