新人教版小学数学五年级上册第五单元《简易方程》教材分析及归纳总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版小学数学五年级上册第五单元《简易方程》教材分
析及归纳总结
第5单元简易方程
单元分析
【教材分析】
本单元主要学习的是用字母表示数、运算定律、计算公式和数量关系,学习方程的意义、等式的基本性质和解简易方程,以及在解决一些
实际问题中简易方程的运用。在学生已有的算术和代数知识的基础上学
习简易方程,有助于培养学生的抽象概括能力,发展他们思维的灵活性,并且能够巩固和加深所学的算术知识。
【学情分析】
用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。特别是用含有字母的式子来表示数量关系,更让学生感到困难。
让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学
生来说是认识上的一个飞跃。因此在教学中,教师要充分利用学生原有
的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。
学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x 元,2+x 既表示苹果价格与香
蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个
式子,不是结果。而这正是学生学习简易方程的基础,所以要先学习用
字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表
示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的
式子表示数量和数量关系,这样由易到难,便于学生在数学认知上有更
高的飞跃。
【教学目标】
知识技能:使学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简
易方程。
数学思考:培养学生根据具体情况,灵活选择算法的意识和能力。
问题解决:能列简易方程来解决生活中的实际问题。
情感态度:使学生感受到数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。
教学重点:用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的习惯。
教学难点:用含有字母的式子表示数量关系,列方程解决实际问题【课时划分】20课时
1.用字母表示数……………………………6课时
2.解简易方程………………………………12课时
3.整理和复习………………………………2课时
象,提出问题:怎样才能用一个式子表示一般情况呢?由此引出含有字母的式子。使学生看到用含有字母的式子表示,不仅简单明了,而且具有一般性,经历抽象概括的过程。
(2)渗透函数思想。让学生体会:a+30随着a的变化而变化,它们之间一一对应,以渗透函数思想。
(3)取值范围。关于字母的取值范围应该让学生明确,在一个实际问题中,字母的取值范围是由实际情况决定的。
(4)代入求值。代入求值是由一般到具体的过程,通过正反两个思维过程,帮助学生进一步理解,含有字母的式子也可以表示一个具体的数量。如:当a是一个具体的岁数时,a+30也是一个具体的岁数。
2.例2:乘除的数量关系。
(1)编排和例1相同。同样是从具体到一般的抽象、归纳过程,再从一般到具体的代入求值。
(2)介绍字母与数相乘的习惯写法。
3.例3:运算定律、计算公式。
(1)体会数学符号语言的优越性。对比用语言描述和用字母表示运算定律,体会到:用字母表示,一目了然,准确、简明、易记。
(2)代入求值。以正方形的面积和周长为例,教学怎样用字母表示计算公式,怎样把已知数据代入公式求值。介绍平方的书写方法,数与字母相乘的书写习惯。
4.例4:两级运算。
例4例4和例5是新增的,目的是让学生学会用含有字母的式子表示稍复杂的数量关系,为后面列方程解决实际问题作准备。
这里数量关系比前面进了一步,含两级运算,重点是还是用含有字母的式子表示数量关系和一个量。有了前面学习的基础,这里可以让学生独立思考,写出代数式,代入求值。
5.例5:两积之和(ax+bx)。
(1)借助直观图帮助学生理解并用含有字母的式子表示。
(2)引导学生化简式子。根据乘法分配律进行化简,学生熟练后可以直接写出7x。
(3)拓展例题。将式子改为4x-3x,让学生说出它的含义,再说出化简的结果。这时将出现数与字母相乘的特殊情况,即“1与字母相乘,1可省略”,可用来检查前面学习的书写习惯。
(二)解简易方程
1.方程的意义。
方程是含有未知数的等式,因此教学方程的概念要从认识等式开始。教材采用连环画的形式,通过天平演示,经历由数的等式到含有未知数的等式,通过不等到相等的比较,为引入方程提供丰富的感性认知基础。
教学时,可制作动画或自制的天平教具来演示。因为精密的天平仪器小,学生不易看清,也不容易取得平衡。
通过实物演示得到了一个方程,接下来再通过图示得出第二个方程。然后以两个方程为例,给出方程概念的描述。为了丰富对方程的感知,让学生自己写出一些方程,并呈现三个同学在黑板上写的方程,初步感知方程的多样性。
2.等式的性质。
原来没有直接出示等式性质,但是解方程时不利于学生的描述,这次正式总结出。通过插图演示天平平衡的实验,探究等式基本性质。
用连环画式的插图,一方面提示教师可以怎样演示,另一方面也给学生思考、感悟天平保持平衡的变化规律,提供了直观的观察材料。要注意的是,教具演示能使学生看到动态的过程,获得实实在在的真切感受。但演示过后,呈现在学生眼前的,只剩最后的结果状态。而连环画式的插图,没有实物演示那么生动,但可以保留初始状态和结果状态,便于学生观察、比较。
教学中注意引导学生双向观察,可以丰富学生的感性认识。同时引导学生自己总结规律。等式性质1的演示过程中可以用等式来表示,这样从直观演示过渡到等式,帮助总结。等式的性质2可以放手让学生自己总结,通过交流完善对0的补充说明。
3.解方程。
(1)例1:解形如x+a=b的方程。
利用等式性质解方程,理解解方程和方程的解的概念。
①这里借助三幅天平演示图展现了解方程的完整思考过程。为了便于通过图示说明解方程的全过程,这里的数据比较小。但是学生可能一眼就能看出结果,为提高学习掌握新方法的积极性,可以明确指出,要根据等式性质来解方程。在这里要暂时避开算法多样化的讨论。
②结合解方程的过程给出方程的解和解方程的概念,不再单独编排。
③检验。由小精灵给以提示,介绍了验算的全过程,就是前面所学的代入求值的过程。
(2)例2:解形如ax=b的方程。
编排思路同例1。练习中尝试解形如x÷a=b的方程。
(3)例3:解形如a-x=b的方程。
这是新增的,解方程的类型更全面。
重点突出转化思想。教材以20-x=9为例,讨论形如a-x=b的方程的解法,思路是转化为x +b=a,即转化为例1的形式。这里不再依靠天平的图示,意在及时抽象,启发学生直接依据等式性质进行转化。a÷x=b类型的方程让学生自主探索。
教学中注意让学生积累解方程的经验。完成基本类型的方程求解后,小精灵提示学生总结解方程的思考方法(利用等式性质)、解题步骤、要注意的问题。
(4)例4:解形如ax+b=c的方程。
(5)例5:解形如a(x+b)=c的方程。
这两种都是新增的稍复杂的类型。同样也是利用转化的方法,将解较复杂的方程转化为前面的基本类型来求解。教学重点是把什么看作一个整体。
4.实际问题与方程。
(1)例1:基本类型。
①经历列方程解决实际问题的基本方法。这里的问题比较简单,容易发现数量关系。学生也比较容易直接利用算术方法求解,教材在这里尊重学生的经验,先出示了算术解法。以此鼓励学生自己想方法解决问题的积极性。接下来引出列方程的方法来解决。这是学生第一次接触列方程解答实际问题,对将所求数量设为x,对未知数参加列式,都会感到不习惯。所以,教材引导学生将未知数设为x,
列出方程。
②体会列方程解决问题的特点:用字母表示未知数,未知数参与列式。其中寻找等量关系是列方程的关键,教材用色块予以凸显,但它不是解题书写的要求,主要是帮助学生列方程。
③淡化算术方法和列方程方法的对比。这里的数量关系简单,体现不出列方程的优势,重在经历一般方法,规范书写格式。
(2)例2:列方程解形如ax±b=c的问题。
①体会优越性。这里的问题如果用算术方法解决需要逆思考,思维难度较大,学生容易出现先除后减的错误。而用方程解,思路比较顺,体现了列方程解决问题的优越性。
②注重数量关系的分析。这里的数量关系,学生常有不同的分析(如下)。学生有必要的话,可以画线段图帮助分析。如:
黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
③总结列方程解决实际问题的基本步骤。教材给出了基本步骤,提升学生的学习经验。