数控车床的程序编制

合集下载

数控车床零件程序编制及模拟加工实训

数控车床零件程序编制及模拟加工实训

数控车床零件程序编制及模拟加工实训数控技术是近年来发展最为迅猛的高新技术之一,数控机床作为数控技术的重要应用领域,已经成为工业化生产中不可或缺的先进设备。

而数控车床作为数控机床的重要代表之一,除了为企业带来高效率的生产外,还为人们提供了更加精准、稳定、高质量的生产工具。

在学习数控车床的时候,程序编制及模拟加工实训是非常重要的环节,下面就来详细介绍一下。

一、数控车床零件程序编制1.确定数控车床工艺路线和加工方法数控车床零件编程前,需要根据零件的特点、工件材料和要求等因素,确定加工工艺路线和加工方法。

比如,确定零件需要进行的工艺流程,以及每道加工工序所使用的刀具和刀具的选用规则等等。

2.确定工件坐标系和基准点位置确定好加工的工艺路线之后,需要确定的就是工件坐标系和基准点位置。

在编写数控程序时,必须精确地规定工件坐标系及各工件表面的位置、形状、尺寸和位置关系。

3.确定切削参数根据零件的特点和工件材料确定切削参数,包括切削速度、切削深度、进给速度等。

4.建立加工刀具库数控车床零件编程,涉及到很多种刀具的选用,因此建立加工刀具库非常重要。

建立加工刀具库包括确定刀具的外形、长度、直径、刀头半径等。

5.编写加工程序这是最重要的一步,也是整个数控车床零件编程最为重要的环节。

在编写数控程序的时候,需要对加工坐标系、切削参数、工件坐标系、刀具库等方面进行设置。

二、数控车床模拟加工实训数控车床模拟加工实训是数控车床零件程序编制的一个重要环节,既可以前期预先评估程序的正确性,又可以及时调整程序,精调程序,同时也为后期工件的成功加工提供了把握。

数控车床模拟加工实训的步骤如下:1.安装模拟加工软件首先需要安装适合自己使用的模拟加工软件,一般选择的软件有VERICUT、UG等,然后根据需求进行设置。

2.加载数控程序在软件中加载零件数控程序,并且导入刀具库和工件坐标系。

软件会给出程序的加工路径,以便进行模拟加工。

3.进行模拟加工进行模拟加工的同时需要监控加工过程中的切削力、切削温度等情况。

数车编程数控车床的程序编制高级教学

数车编程数控车床的程序编制高级教学
F
每转进给量
内容展示
10
主轴转速功能(S)指令
主轴转速功能(S)指令用于控制主轴转速。 特殊形式: 恒线速控制 编程格式 G96 S_ m/min
如图中所示的零件,为保持A、B、C各点的线速度在150 m/min, 则各点在加工时的主轴转速分别为多少?
最高转速限制 编程格式 G50 S_ r/min
内容展示
42
• 程序延时
G04 P/X ❖ 子程序
程序中固定顺序或重复出现的程序单独抽出来,编 成一个程序,供主程序调用,这类程序叫做子程序。
M98 P__ __ M99
内容展示
43
内容展示
44
典型零件的程序编制 (1)
内容展示
45
内容展示
46
(2) 加工如图所示的零件,退刀槽槽深为2㎜(直径方向),槽宽3mm, 已知毛坯尺寸为φ30棒料,对零件图进行工艺分析,
确定装夹方案、加工顺序,制定数控加工刀具卡及加工工序卡, 编制加工程序.
图 加工实例
内容展示
47
内容展示
48
数控加工刀具卡
产品名称及代 号 序号 刀具号
1 T01
刀具规格名称 35°硬质合金外圆偏刀
零件 名称

数量 加工表面
粗精车外 1 圆表面及
端面
零件 图号
KS-01
刀尖半 径(mm

备注
20X20
内容展示
37
简单螺纹切削循环指令G92
简单螺纹切削循环指令G92可以用来加工圆柱螺纹和圆锥螺纹。该指令 的循环路线与前述的G90指令基本相同,只是F后面的进给量改为螺纹螺距即 可。格式:G92 X(U)_Z(W)_I/R_F_;

数控机床的加工程序编制

数控机床的加工程序编制
1〕顺序号字
顺序号又称程序段号或程序段序号。位于程序 段之首,由地址符N和后续2~4数字组成。
顺序号的作用:对程序的校对和检索修改;作为 条件转向的目标,即作为转向目的程序段的名称。有 顺序号的程序段可以进展复归操作,指加工可以从程 序的中间开场,或回到程序中断处开场。
顺序号的使用规那么:为正整数,编程时将第 一程序段冠以N10,以后以间隔10递增,以便于修改。
这种从零件图分析到制成控制介质的全部过程, 称为数控加工的程序编制。
数控加工的过程演示如下:加工动画
数控加工流程:
2〕数控程序样本:
O10 N10 G55 G90 G01 Z40 F2000 N20 M03 S500 N30 G01 X-50 Y0 N40 G01 Z-5 F100 N50 G01 G42 X-10 Y0 H01 N60 G01 X60 Y0 N70 G03 X80 Y20 R20 … N80 M05 N90 M30
3〕尺寸字 尺寸字用于确定机床上刀具运动终点的坐标位
置。表示时间暂停的指令也包含在内。其中,用的 较多的尺寸地址符号有3组:
第一组 X,Y,Z,U,V,W,P,Q,R 用 于指令到达点的直线坐标尺寸;
第二组 A,B,C,D,E 用于指令到达点的的 角度坐标尺寸;
第三组 I,J,K 用于指令零件圆弧轮廓的圆心 坐标尺寸。
对于数控车床,其后的数字还兼作指定刀具长 度补偿和刀尖半径补偿用。T后面的数字分2位、4 位、6位。对于4位数字来说,如:
T XX
XX
当前刀具号 刀补地址号
7〕辅助功能字 辅助功能字的地址符是M,后续数字一般为1~3
位正整数,又称为M功能或M指令,用于指定数控 机床辅助装置的开关动作,常用M00~M99见表1 -2。

数控机床的程序编写

数控机床的程序编写

前言现代科学技术的发展极大地推动了不同学科的交叉与渗透,引起了工程领域的技术改造与革命。

在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。

机电一体化主要体现在数控技术及应用上,在这次实训中,感触最深的是了解了数控机床在机械制造业中的重要性,它是电子信息技术和传统机械加工技术结合的产物,它集现代精密机械、计算机、通信、液压气动、光电等多学科技术为一体,具有高效率、高精度、高自动和。

摘要数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高低关系到国家战略地位和体现国家综合国力的水平,近年来,PLC在工业自动控制领域应用愈来愈广,它在控制性能、组机周期和硬件成本等方面所表现出的综合优势是其它工控产品难以比拟的。

随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。

在机床的实际设计和生产过程中,为了提高数控机床加工的精度,对其定位控制装置的选择就显得尤为重要。

FBs系列PLC的NC定位功能较其它PLC更精准,且程序的设计和调试相当方便。

本文提出的是如何应用PLC的NC定位控制实现机床数控系统控制功能的方法来满足控制要求,在实际运行中是切实可行的。

整机控制系统具有程序设计思路清晰、硬件电路简单实用、可靠性高、抗干扰能力强,具有良好的性能价格比等显著优点,其软硬件的设计思路可供工矿企业的相关数控机床设计改造借鉴。

目录第一章:概述1.1、数控机床的发展趋势 (1)1.2、数控机床的发展历史 (2)第二章:数控加工的特点与刀具2.1、数控机床的特点 (3)2.1.1、数控车床的5大特点 (4)2.2、数控机床的常用种类 (4)2.3、数控机床的刀具选择与应用 (5)第三章:数控机床的程序编写3.1、数控机床的编程 (6)3.1.1、数控机床的自动编程内容与步骤 (6)3.1.2、数控机床编程的基本概览 (9)3.2、数控机床常用术语 (9)第四章:数控车床程序编程 (11)第一章概述1.1、数控机传递个发展趋势数控机床数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

第四讲 数控车床的程序编制(G70、G71复合循环指令)

第四讲 数控车床的程序编制(G70、G71复合循环指令)
该零件由外圆柱面外圆锥面及圆弧面组成材料切削性能较好无热处理和硬度要求2加工过程3用g70指令编程精车外形3选择刀具选择硬质合金93右偏车刀用于粗精车零件各面位于t014确定切削用量编程前准备工作加工内容背吃刀量apmm进给量fmmr主轴转速srmin粗车各外形面02800精车各外形面0250081500食品卫生学o001程序名n01t0101选刀调用粗车外圆车刀n05g97g99m03s800f02主轴恒转速主轴转速800rmin刀具每转进给进给速度02mmrn10g00x37z2快速定位至g71粗车循环起点n15g71u2r05外径粗车循环u
(4)精车循环指令(G70) 功能:用于G71、G72、G73粗车完毕后,精加工。
格式:
G70 P(Ns)Q(Nf)
举例:请编制图下图所示零件的加工程序,已知毛坯为Ф35*80的棒 料,材料为45钢
编程前准备工作
(1)工艺分析:该零件由外圆柱面、外圆锥面及圆弧面组成,材料切削性能较好,无热处理和硬度要 求 (2)加工过程 1)对刀,设置编程原点在右端面中心处 2)用G71指令编程粗车外形,X向单边留余量0.25,Z向单边留余量0.2 3)用G70指令编程精车外形 (3)选择刀具 选择硬质合金93°右偏车刀,用于粗精车零件各面,位于T01刀位 (4)确定切削用量
9、说明循环指令G71、G72、G73的区别。 10、说明螺纹切削循环指令G76的使用格式。 11、车刀刀尖半径补偿的意义何在? 12、什么时候应用子程序调用功能?
加工内容
背吃刀量ap/mm
进给量f/mm·rˉ¹
主轴转速s/r·minˉ¹
粗车各外形面
2
0.2
800
精车各外形面
0.25
0.08

数控车床程序编制的基本方法

数控车床程序编制的基本方法

数控车床程序编制的基本方法一、数控车床程序编制差不多方法Ⅰ1.快速移动指令G00用于快速移动并定位刀具,模态有效;快速移动的速度由机床数据设定,因此G00指令不需加进给量指令F,用G00指令能够实现单个坐标轴或两个坐标轴的快速移动。

快速移动指令G00的程序段格式:G00 X_ Z_程序段中X_ Z_是G00移动的终点坐标2.直线插补指令G01使刀具以直线方式从起点移动到终点,用F指令设定的进给速度,模态有效;能够实现单个坐标轴直线移动或两个坐标轴的同时直线移动。

直线插补指令的格式:G01 X_ Z_ F_程序段中X_ Z_是G01移动的终点坐标3.用G94和G95设定F指令进给量单位G94设定的F指令进给量单位是毫米/分钟(mm/min);G95设定的F指令进给量单位是毫米/转(mm/r)。

进给量的换算:如主轴的转速是S(单位为r/min),G94设定的F指令进给量是F(mm/min),G95设定的F指令进给量是f(单位是mm/r),换算公式:F=fS4.编程实例编程实例图刀具表T01 93°外圆正偏刀切削用量主轴速度S 500r/min进给量F 0.2mm/r切削深度a p小于4mm 加工程序程序注释SK01.MPF 主程序名N10 G90 G54 G95 G23 S500 M03 T01 设定工件坐标系,主轴转速为500 r/min,选择1号刀,用G95设定进给量F单位(N10 G90G54G94G23S500 M03 T01)或用G94设定进给量F单位N20 G00 X18 Z2 快速移动点定位N30 G01 X18 Z-15 F0.2 车ø18外圆,进给量F=0.2mm/r(N30 G01 Z-15 F100) 车ø18外圆,进给量F=100mm/minN40 X24 车台阶面N50 Z-30 车ø24外圆长30mm(比零件总长加割刀宽度略长)N60 X26 车出毛坯外圆N70 G00 X50 Z200 快速移动点定位至换刀点N80 M05 主轴停止N90 M02 程序终止二、数控车床程序编制差不多方法Ⅱ1.绝对尺寸G90和增量尺寸G91分别代表绝对尺寸数据输入和增量尺寸数据输入,模态有效。

数控车床的程序编制

数控车床的程序编制

数控车床的程序编制数控车床是一种高精度、高效率的现代化机械设备,广泛应用于各种制造行业中。

作为一种数控设备,它需要通过编写程序来实现对零件的加工。

因此,程序编制是数控车床加工过程中不可或缺的一部分。

下面,我们将详细介绍数控车床的程序编制。

一、基本概念数控车床的程序编制其实就是将机床轴的位置、刀具路径、加工参数等信息输入到计算机中,使计算机能够自动控制车床进行加工。

其中,程序包括几何程序和加工参数程序。

几何程序是指需要加工零件的图形和轮廓,也就是加工轨迹;而加工参数则包括切削速度、切削深度、进给速度等。

在程序编制过程中,需要使用数控编程软件。

常见的数控编程软件有EdgeCAM、MasterCAM、PowerMill 等。

这些软件种类繁多,但它们的作用都是一样的。

用户通过这些软件可以编制出符合机床条件的加工程序,并输出G代码到数控机床中,即可自动进行加工操作。

二、程序编制步骤数控车床的程序编制主要包括以下步骤:1. 绘制零件图形:首先需要将需要加工的零件进行绘图,用计算机辅助设计(CAD)软件绘制出准确的零件图形。

在绘制的过程中,需要按照一定的标准进行绘制,包括设计尺寸、精度等方面。

2. 确定坐标系:将零件图形中的坐标系与机床坐标系进行对应,确定数控机床中的X、Y、Z三个坐标轴与设计图中的坐标轴的对应关系。

在编程过程中,需要明确这些坐标的位置、初始值、相对数值等参数。

3. 编写几何程序:将零件图形转化为机床轴的运动轨迹,编写出G代码。

这个过程中需要考虑机床加工的工艺,包括加工方式、刀具方向、切削方式、刀具规格等。

4. 编写加工参数程序:根据要加工的材料,确定加工参数,包括进给速度、切削速度、切削深度、冷却液的使用等参数,并将这些参数编写成M代码。

5. 存储程序:将编写好的几何程序和加工参数程序存储到机床中,可以直接使用或在需要时进行修改。

三、常见的几个注意点1. 选取合适的加工路径:加工路径的选取需要考虑到机床刀具和工件的特性,比如刀具材质、切削方向,工件的形状、材料。

数控车床的程序编制步骤

数控车床的程序编制步骤

数控车床的程序编制步骤数控车床程序编制是将零件加工的工艺要求和加工参数转换为机床能够执行的指令序列并载入数控系统,使机床按照程序要求自动完成加工过程。

下面是数控车床程序编制的典型步骤:1.了解零件图纸和工艺要求:仔细研究零件图纸,了解零件的尺寸要求、形状要求以及表面质量要求等,还要确定零件的加工顺序和工艺路线。

2.选择工具和刀具:根据零件的要求和加工工艺,选择合适的车刀、镗刀、钻刀及其加工参数。

3.制定加工工艺:根据零件的尺寸要求和形状要求,制定适当的车削切削参数和轮廓刀补偿值,并确定刀具路径。

4.确定坐标系和参考点:选择适当的坐标系和参考点,并确定零点的坐标位置。

5.数控系统参数设置:根据机床和数控系统的特点,设置数控系统的参数,如坐标系、移动速度、进给量等。

6.编写数控程序:使用数控编程语言,按照零件加工工艺要求,逐步编写数控程序。

7.先练习:在计算机仿真软件中,根据编写的数控程序进行仿真操作,以验证程序正确性。

修正程序错误。

8.载入数控系统:将编写好的数控程序,通过U盘、本地网络等方式,载入数控系统中。

9.导入刀具和工件坐标:确定刀具的初始位置、起刀点和工作零点,导入数控系统中。

10.设置工件坐标系:根据图纸和实际加工需求,设置工件坐标系和坐标偏移。

11.调试程序:使用手动操作或自动操作,对数控系统进行调试,确保程序的安全性和准确性。

12.加工实践:进行实际加工操作,监控加工过程中各项参数的变化,并及时调整。

13.检验零件:完成加工后,根据图纸要求进行零件的测量和检验,确保零件质量满足要求。

14.优化程序:根据实际加工情况,调整和优化数控程序,提高加工效率和质量。

15.存档和备份:将编写好的数控程序进行保存和备份,以备后续使用。

总结起来,数控车床程序编制是一项精细的工作,需要熟悉机床、工具和数控系统的基本原理,同时要具备良好的图纸分析和数控编程能力。

通过以上步骤的严格执行,可以确保数控车床加工过程的准确性和安全性。

机床数控技术第3章数控加工程序的编制

机床数控技术第3章数控加工程序的编制

6. 程序校验和首件试切
程序送入数控系统后,通常需要经过试运行和首 件试切两步检查后,才能进行正式加工。通过试运行, 校对检查程序,也可利用数控机床的空运行功能进行 程序检验,检查机床的动作和运动轨迹的正确性。对 带有刀具轨迹动态模拟显示功能的数控机床可进行数 控模拟加工,以检查刀具轨迹是否正确;通过首件试 切可以检查其加工工艺及有关切削参数设定得是否合 理,加工精度能否满足零件图要求,加工工效如何, 以便进一步改进,直到加工出满意的零件为止。
1—脚踏开关 2—主轴卡盘 3—主轴箱 4—机床防护门 5—数控装置 6—对刀仪 7—刀具8—编程与操作面板 9—回转刀架 10—尾座 11—床身
3.2 数控车削加工程序编制
数控车床主要用来加工轴类零件的内外圆柱面、 圆锥面、螺纹表面、成形回转体表面等。对于盘类零 件可进行钻、扩、铰、镗孔等加工。数控车床还可以 完成车端面、切槽等加工。
3. 程序名

FANUC数控系统要求每个程序有一个程序名,
程序名由字母O开头和4位数字组成。如O0001、 O1000、O9999等
3.2.3 基本编程指令
1. 快速定位指令G00
格式:G00 X(U)_ Z(W)_;
说明:
(1) G00指令使刀具在点位控制方式下从当前点以快移速度 向目标点移动,G00可以简写成G0。绝对坐标X、Z和其增 量坐标U、W可以混编。不运动的坐标可以省略。
3.2.1 数控车床的编程特点
(1)在一个程序段中,可以用绝对坐标编程,也可用 增量坐标编程或二者混合编程。
(2)由于被加工零件的径向尺寸在图样上和在测量时 都以直径值表示,所以直径方向用绝对坐标(X)编程时 以直径值表示,用增量坐标(U)编程时以径向实际位移 量的2倍值表示,并附上方向符号。

数控车床的程序编制步骤

数控车床的程序编制步骤
2023/2/22
〔三〕刀具布置:
• 刀具1:右偏刀,用于车削外圆、球面 和圆锥。
• 刀具2:尖头刀〔主偏角60°, 副偏角 60°〕,用于车削圆弧R15。
2023/2/22
〔四〕、编程分析:
φ28 R15
φ24 SR10
图2
• 1、编程原点设置的原那么是什 M03 —主轴顺时针转动;
刀具2:尖头刀〔主偏角60°, 副偏角60°〕,用于车削圆弧R15。
刀具2:尖头刀〔主偏角60°, 副偏角60°〕,用于车削圆弧R15。
(2)、辅助功能M代码: 〔5〕粗车球部至R10.
IH
2、什么是绝对值编程?什么是增量值编程?什么是混合编程?
E GF
C
A
DB
7
Z
绝对值编程、增量值编程例图 绝对值编程、增量值编程和混合编程举例:
5
5 10 12
增量值方式:G91 G01 X-20 Z-15 F100
G00—点定位; G01 —直线插补; G02 —顺圆弧 插补; G03 —逆圆弧插补;G04 —暂停; G22— 程序循环指令;G33 —螺纹切削,等螺距;G80 — 固定循环注销;G90 —绝对尺寸;M02 —程序结束;
M03 —主轴顺时针转动; M05 —主轴停止。 请思考:
数控程序中程序段的顺序应如何确定的?
解:绝对值方式:G01 X50 Z30 F100
〔5〕精车圆弧R•15mm2。、什么是绝对值编程?什么是
增量值编程?什么是混合编程?
2023/2/22
1:5
7 5 10 12 52
绝对值编程、增量值编程和混 合编程举例:
• 例1:右图中设AB已加工完,要加工BC段,
刀具在B点,试分别写出绝对坐标、增量坐

数控车床程序编制

数控车床程序编制

粗车时使用的刀具
粗加工时的主轴转速
粗加工时的进给速度
Z轴方向精加工余量 X轴方向精加工余量,直径值
精车结束程序段的顺序号
精车开始程序段的顺序号
4.2 数控车床程序编制
4.2 数控车床程序编制
G71使用方法说明: (1)在精加工程序中由循环起点C到A点只 能使用G00或G01指令,并且不能有z轴方向移 动指令。 (2)精加工程序车削的路径必须是单调增 加或减小。不能有内凹的轮廓外形。
粗车刀1号,精车刀2号,刀尖半径为0.6㎜。 精车余量x轴为0.2㎜,z轴为0.05㎜。粗车的切削速度 为150m/min,精车为180m/min。粗车的进给量为 0.2mm/r,精车为0.07mm/r。粗车时的背吃刀量为3㎜。 4.2 数控车床程序编制
例4-10
4.2 数控车床程序编制
O4010 G50 X150. Z200. T0100; G50 S3500; G96 S150 M04; T0101; G00 X84. Z3. M08; G71 U3. R1.; G71 P10 Q20 U0.2 W0.05 F0.2; N10 G00 X20.; G01 G42 Z-20. F0.07 S180; X40. W-20.; G03 X60. W-10. R10.; G01 W-20.; G01 X80.; Z-90.; N20 G40 X84.; G00 X150. Z200. T0100; T0202; X84. Z3.; G70 P10 Q20; G00 X150. Z200.T0000; M30;
4.2 数控车床程序编制
△i 和△k 为第一次车削时退离工件轮廓的距离及 方向,确定该值时应参考毛坯的粗加工余量大小,以 使第一次走刀时就有合理的切削深度。计算方法为: △i =(x轴粗加工余量)— (每一次切削深度) △k=(z轴粗加工余量)— (每一次切削深度) 例如:若x轴方向粗加工余量为6mm,分三次走 刀,每一次切削深度2mm,则: △i =6-2=4 d=3

第3章:数控加工程序的编制

第3章:数控加工程序的编制

刀具中心的走刀路线为:
对刀点1→对刀点2 →b→c→c’→下刀点2→下刀点1
各基点及圆心坐标如下: A(0,0) B(0,40) C(14.96,70) D(43.54,70) E(102,64) F(150,40) G(170,40) H(170,0) O1(70,40) O2(150,100)
10 20 =10
60O
17.321
N18 G90 G00 Z100.;
10 20 =10
60O
17.321
N19 X0. Y0. M05; N20 M30;
10 20 =10
60O
孔加工注意事项:
孔加工循环指令是模态指令,孔加工数据 也是模态值;
撤消孔加工固定循环指令为G80,此外, G00、G01、G02、G03也可起撤消作用;
N016 G01 X45.0 W0 F100;
切槽
N017 G04 U5.0;
延迟
N018 G00 X51.0 W0;
退刀
退刀 N019 X200.0 Z350.0 T20 M05 M09;
N020 X52.0 Z296.0 S200 T33 M03 M08;
N021 G33 X47.2 Z231.5 F1.5;
(5)复杂轮廓一般要采用计算机辅 助计算和自动编程。
二、数控铣床编程中的特殊功能指令
(1)工件坐标系设定指令 G54~G59
G54~G59无需在程序段中给出工件 坐标系与机床坐标系的偏置值,而是安 装工件后测量出工件坐标系原点相对机 床坐标系原点在X、Y、Z向上的偏置值, 然后用手动方式输入到数控系统的工件 坐标系偏置值存储器中。系统在执行程 序时,从存储器中读取数值,并按照工 件坐标系中的坐标值运动。

数控车床程序编制

数控车床程序编制
图3.18设定加工坐标端面切削倒角,即由Z轴向X轴倒角,i的正负根据倒角是向X
轴正向还是负向,如图3.19a所示。 其编程格式为 G01 Z(W)~ I±i 。 由端面切削向轴向切削倒角,即由X轴向Z轴倒角,k的正负根据倒角是向Z
轴正向还是负向,如图3.19b所示。 编程格式 G01 X(U)~ K±k。
图3.14 数控车床坐标系
图3.15 直径编程
图3 .16切削起始点的确定
3.2数控车床的基本编程方法
数控车削加工包括内外圆柱面的车削加工、端面车削加工、钻孔加工、螺纹 加工、复杂外形轮廓回转面的车削加工等,在分析了数控车床工艺装备和数控 车床编程特点的基础上,下面将结合配置FANUC-0T数控系统的HM-077数控车 床重点讨论数控车床基本编程方法。
图3.27 刀具补偿编程
单一固定循环
图3.28圆柱面切削循环
图3.29 G90的用法(圆柱面)
图3.30 圆锥面切削循环
图3.31 端面切削循环
图3.32 锥面端面切削循环
图3.33 G94的用法(锥面)
单一固定循环可以将一系列连续加工动作,如“切入-切削-退刀-返回”,用一 个循环指令完成,从而简化程序。 1、圆柱面或圆锥面切削循环
自动对刀是通过刀尖检测系统实现的,刀尖以设定的速度向接触式传感器接近, 当刀尖与传感器接触并发出信号,数控系统立即记下该瞬间的坐标值,并自动修正刀 具补偿值。自动对刀过程如图3.13所示。
图 3.13
数控车床的编程特点
1、加工坐标系 加工坐标系应与机床坐标系的坐标方向一致,X轴对应径向,Z
轴对应轴向,C轴(主轴)的运动方向则以从机床尾架向主轴看,逆 时针为+C向,顺时针为-C向,如图3.14所示:加工坐标系的原点 选在便于测量或对刀的基准位置,一般在工件的右端面或左端面上。 2、直径编程方式

数控车床的程序编制

数控车床的程序编制

二、常用G代码的编程方法
3.刀具补偿
1)刀具偏置补偿
车刀产生偏置的原因
转位刀架上每把刀的 刀尖位置不同存在偏 置量ΔX、ΔZ
刀具刃磨重新装刀后, 刀尖位置变化;
刀具使用过程的磨损。
参考点
第二节 数控车床常用指令的编程方法
二、常用G代码的编程方法
3.刀具补偿
2) 刀尖圆弧半径补偿 (1)刀尖圆弧及其对加工的影响
直线、圆弧插补;圆柱圆锥螺纹;具备简单的外圆、端 面、车螺纹的固定循环功能,能够实现刀具偏置补偿;快速 移动速度多在10m/min以下。
第一节 数控车床的概况与编程特点
二、常用数控车床的功能
2.全功能数控车床
1)结构上 多为倾斜床身结构;采用6—8(立式)、或8—16(卧式)
工位电动或液压刀架。 2)数控系统
4.用G01倒角与倒圆
2)倒圆角 (1)Z→X
格式:G01 Z(W) b R ± r ; b为Z方向无倒角时的终点坐标; r为倒圆半径。
(2)X→Z 格式: G01 X(U) b R ± r ;
b为X方向无倒角时的终点坐标。
第二节 数控车床常用指令的编程方法
例:加工右图工件的倒角的程序编制 …… N20 G00 X10.0 Z23.0; N30 G01 Z10.0 R5.0 F ; N40 X38.0 K-4.0; N50 Z0; ……
G99——每转进给量。单位mm/r,例: G99 G01 X Z F0.14;(F=0.14mm/r)
“*”——G99为通电后优先状态 每分钟进给量(F)与每转进给量(f)的关系:
F=fn 有的FANUC系统每分钟进给量用G94、每转进给量用G95。
第二节 数控车床常用指令的编程方法

数控车床程序的编制及操作

数控车床程序的编制及操作

数控车床程序的编制及操作数控车床是一种将数字化程序与机械系统相结合的机床,它可以通过程序控制工件在旋转的工作台上实现各种加工操作。

数控车床的编制和操作是现代制造业中非常重要的一环,下面将详细介绍数控车床程序的编制及操作。

一、数控车床程序的编制1.确定工件的加工要求:首先需要明确工件的尺寸、形状、加工方式等基本要求。

2.设计加工工艺:根据工件的要求,设计出合适的加工工艺,包括加工顺序、刀具的选择和切削参数的设定等。

3.编写数控程序:根据设计好的加工工艺,将其转化为数控程序。

数控程序包括程序头、工件坐标系、刀具半径补偿、各种指令和参数等。

4.数控程序的调试:将编写好的数控程序加载到数控系统中,并进行调试,确保程序的正确性和可靠性。

二、数控车床程序的操作1.将数控程序加载到数控系统中:将编写好的数控程序上传到数控系统中,通常会使用USB、网络连接等方式进行传输。

2.设置加工工件坐标系:按照数控程序中设定的工件坐标系进行相应的参数设置,包括工件起点、刀库位置等。

3.安装刀具和夹具:根据加工工艺的要求,选择适当的刀具和夹具,并进行安装和调整。

4.开始加工:调试完毕后,可以开始加工了。

通常会将机床切换到自动模式,并按照数控程序的要求进行操作。

数控系统会自动控制工件的运动轨迹、刀具进给速度等。

5.监测加工过程:在加工过程中,需要时刻监测工件的加工情况,包括切削力、切削温度等。

可以通过控制面板上的显示和报警信息来监测和调整加工过程。

6.完成加工:当加工完成后,数控系统会自动结束加工,并将机床切换到手动模式。

此时可以将加工好的工件取出,并进行检查和质量评估。

三、常见问题及解决方法在数控车床程序的编制和操作过程中,可能会出现一些问题,常见的问题及解决方法如下:1.程序错误:在编写程序时可能会出现语法错误或逻辑错误。

可以通过调试程序来查找错误所在,并进行修正。

2.程序冲突:如果多个程序同时运行可能导致程序冲突。

可以通过调整程序执行顺序或增加程序之间的时间间隔来解决冲突。

数控车床编程基础

数控车床编程基础

FANUC公司目前生产的CNC装置有:F0、F10、F11、F12、
F15、F16、F18。F00、F100、110、120、150系列是在F0、
10、11、12、15的基础上加了MMC功能,即CNC、PMC、MMC三
位一体的CNC。
2. SIEMENS数控系统
SIEMENS数控系统是德国西门子公司开发研制的,
一个零件的轮廓可能由许多不同的几何要素所组成,各
几何要素之间的连接点称为基点。基点坐标是编程中重要数
据,可以直接作为其运动轨迹的起点和终点。
上一页 下一页 返回
第6章 数组
6.1 一维数组 6.2 二维数组 6.3 字符数组 6.4 数组程序举例
6.1 一维数组
6.1.1一维数组的定义方式
3.1 数控车床程序编制概述
3.1.3 数控系统主要功能
数控系统可以通过硬件和软件的结合,实现许多功能,
其中包括以下功能:
⑴ 准备功能。准备功能也称G功能,用来指挥机床动作
方式。包括基本移动、程序暂停、平面选择、坐标设定、刀
具补偿、基准点返回、固定循环、公英制转换等。
⑵ 插补功能。CNC装置通过软件插补,其中数据采样插
言编程。
上一页 下一页 返回
3.1 数控车床程序编制概述
② CAD/CAM计算机辅助编程
利用CAD/CAM计算机辅助编程是以零件CAD模型为基础的
一种加工工艺规划及数控编程为一体的自动编程方法。
CAD/CAM软件采用人机交互方式,进行零件几何建模,对车床
刀具进行定义和选择,确定刀具相对于零件的运动方式、切
6.1.3一维数组的初始化
给数组赋值的方法除了用赋值语句对数组元素逐个赋值外, 还可采用初始化赋值和动态赋值的方法。数组初始化赋值是 指在数组定义时给数组元素赋予初值。数组初始化是在编译 阶段进行的。这样可以减少运行时间,提高效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控车床的程序编制
一、数控车床的编程特点
数控车床的编程有如下特点:
(1)在一个程序段中,依据图样上标注的尺寸,可以采纳肯定值编程、增量值编程或二者混合编程。

(2)由于被加工零件的径向尺寸在图样上和测量时都是以直径值表示,所以用肯定值编程时,X以直径值表示;用增量值编程时,以径向实际位移量的二倍值表示,并附上方向符号(正向可以省略)。

(3)为提高工件的径向尺寸精度,X向的脉冲当量取Z向的一半。

(4)由于车削加工常用棒料或锻料作为毛坯,加工余量较大,所以为简化编程,数控装置常具备不同形式的固定循环,可进行多次重复循环切削。

(5)编程时,常认为车刀刀尖是一个点,而实际上为了提高刀具寿命和工件表面质量,车刀刀尖常做成一个半径不大的圆弧,因此为提高加工精度,当编制圆头车刀程序时,需要对刀具半径进行补偿。

数控车床一般都具有刀具半径自动补偿功能(G41,G42),这时可直接按工件轮廓尺寸编程。

(6) 很多数控车床用X、Z表示肯定坐标指令,用U、W表示增量坐标指令。

而不用G90、G91指令。

数控车床的机床原点定义为主轴旋转中心线与车床端面的交点,图3-1中的O即为机床原点。

主轴轴线方向为Z轴,刀具远离工件的方
向为Z轴正方向。

X轴为水平径向,且刀具远离工件的方向为正方向。

为了便利编程和简化数值计算,数控车床的工件坐标系原点一般选在工件的回转中心与工件右端面或左端面的交点上。

二、车削固定循环功能
由于车削的毛坯多为棒料和铸锻件,因此车削加工多为大余量多次走刀。

所以在车床的数控装置中总是设置各种不同形式的固定循环功能。

如内外圆柱面循环,内外锥面循环,切槽循环和端面循环,内外螺纹循环以及各种复合面的粗车循环等。

各种数控车床的掌握系统不同,因此这些循环的指令代码及其程序格式也不尽相同。

必需依据使用说明书的详细规定进行编程。

1. 圆柱面切削循环
编程格式: G90 X(U) — Z(W) — F—;
其中:X、Z — 圆柱面切削的终点坐标值;
U、W— 圆柱面切削的终点相对于循环起点坐标重量。

2. 圆锥面切削循环
编程格式G90 X(U) — Z(W) — I — F —;
其中:X、Z — 圆锥面切削的终点坐标值;
U、W — 圆柱面切削的终点相对于循环起点的坐标;
I — 圆锥面切削的起点相对于终点的半径差(假如切削起点的X向坐标小于终点的X向坐标,I值为负,反之为正)
3. 平面端面切削循环
编程格式G94 X(U) — Z(W) — F0—;
其中:X、Z— 端面切削的终点坐标值;
U、W—端面切削的终点相对于循环起点的坐标。

4.锥面端面切削循环
编程格式:G94 X(U) — Z(W) — K— F—;
其中:X、Z — 端面切削的终点坐标;
U、W— 端面切削的终点相对于循环起点的坐标;
K — 端面切削的起点相对于终点在Z轴方向的坐标重量(当起点Z 向坐标小于终点Z向坐标时K为负,反之为正)。

5. 外圆粗车循环
适用于外圆柱面需多次走刀才能完成的粗加工。

程序段格式为:
G71 U(Dd)R(e);
G71 P(ns)Q(nf)U(Du)W(Dw)F_ S_ T_ ;
N(ns)……
……
N(nf)……
式中△d— 背吃刀量,为半径值,无正负号;
e— 退刀量;
ns— 精加工程序段中的开头程序段号;
nf— 精加工程序段中的结束程序段号;
△u— X轴方向精加工余量;
△w— Z轴方向精加工余量。

外圆粗车循环的加工路线如图3-3所示。

C为粗车循环的起点,A是毛坯外径与轮廓端面的交点,Du/2是X向精车余量,Dw 为Z向精车余量,e为退刀量,Dd为背吃刀量。

6.端面粗切循环
端面车加工循环指令G72的程序段格式为
G72 U(Dd)R(e);
G72 P(ns)Q(nf)U(Du)W(Dw)F_ S_ T_;
N(ns)……
……
N(nf)……
式中各参数的含义与外圆粗车循环程序段中的参数含义相同。

端面粗车循环的加工路线如图3-3所示。

7. 基本(单行程)螺纹切削指令
编程格式:G32 X(U) — Z(W) — F—;
其中:X(U)、Z(W) — 螺纹切削的终点坐标值;
X(U)省略时为圆柱螺纹切削;Z(W)省略时为端面螺纹切削X(U)、Z(w)均不省略时为锥螺纹切削。

F— 螺纹导程。

螺纹切削应留意在两端设置足够的升速进刀段δ1和降速退刀段δ2 。

8.螺纹切削循环指令
编程格式: G92 X(U)— Z(W) — I — F—;
其中:X(U)、Z(W) — 螺纹切削的终点坐标值;
I —螺纹部分半径之差,即螺纹切削起始点与切削终
点的半径差。

加工圆柱螺纹时,I=0。

加工圆锥螺纹时,当X向切削
起始点坐标小于切削终点坐标时,I为负,反之为正。

相关文档
最新文档