输电线路雷击故障查找方法及运用

合集下载

浅析输电线路雷击故障与防雷措施

浅析输电线路雷击故障与防雷措施

浅析输电线路雷击故障与防雷措施输电线路的防雷工作是保证其得以正常工作的根本。

环境和发展机制。

输电线保护是我国电力产业发展中不容忽视的问题,对于电力事业的稳定运行以及我国经济的健康持续发展具有不可估量的重要意义为了保证供电线路的正常稳定运行。

本文主要描述输电线路雷击故障,分析说明现有防雷措施的运用情况,为今后提高和改进防雷措施提供经验。

标签:输电线路;雷击故障;防雷措施一、概述在自然界,雷电是一种无法避免,也不可能避免的现象。

输电线路必定会受到雷电的破坏,如何做好相应的防雷措施,提升高压输电线路的保护率就成为关键所在。

为了确保安全,相关的电力部门需要高度重视防雷工作,特别是雷电多发区域。

在防雷措施的选择上,应该根据线路的实际情况来选择合理、科学的措施,才是保障输电线路安全运行的重要措施。

没有最安全的安装,只有最安全的防护,输电线路防雷工作不是单靠某项防雷措施就能搞好,而是需要根据具体情况采取综合性的防雷措施,才能提高线路的耐雷水平,降低输电线路的雷击故障率。

即便如此,仍然不能完全保证输电线路不会发生雷击故障。

因此,我们只有不断地研究、实践和总结经验,深入掌握雷电活动和探索防雷措施,才能尽量减少雷击故障的发生,将雷害带来的损失降低到最低。

二、输电线路雷击故障分析输电线路雷击故障实际上是由于在输电线路上产生了过电压,引起绝缘子闪络,发生工频短路的故障。

输电线路上出现的雷电过电压主要有两种,一是直击雷过电压,二是感应雷过电压。

(一)直接雷过电压直接雷过电压是指雷直接击中杆塔、避雷线或导线,雷电流在接地电阻上或导线的阻抗上的电压降叫直击雷过电压,其值可达几百万伏以上。

1、雷击杆塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。

如果升高塔体电位和相导线感应过电压合成的电位差超过输电线路绝缘闪络电压值,导线与杆塔之间就会发生闪络,这种称为反击。

2、在有避雷线的情况下,雷电击中导线,称为绕击。

浅析输配电线路的雷击故障及防雷措施

浅析输配电线路的雷击故障及防雷措施

浅析输配电线路的雷击故障及防雷措施摘要:输配电线路遭受雷击会造成电网运行不稳定的现象,严重的话会造成更加严重的安全问题,此外,雷击也会对输配电线路的故障定位工作和线路检修带来一定的影响。

雷击在击中输配电线路的时候,会引起雷击电流而导致输配电线路设备出现故障,从而导致断电或是跳闸的现象。

本文就对输配电线路的雷击故障及防雷措施进行深入探讨。

关键词:输配电线路;雷击;防范;措施输配电线路遭受雷击会很大程度影响到输配电线路的正常工作,为广大用户的供电产生较大的影响,严重影响到了输电线路的运行安全与稳定。

因此,有必要对于引起雷击故障的原因进行详细的分析,结合分析所得出的结果与实际的经验制定出有效的防范措施,确保输配电线路的安全、稳定运行,进一步推动我国电力产业的发展。

1、输配电线路中雷击故障的诱因分析输配电线路的雷击故障,主要从以下四个诱因进行,一是,在发生雷击情况的时候,雷电击中输电线路导线时,就会导致高电压的出现,此时当电压超过绝缘子耐压强度的时候,线路就会出现故障,发生掉闸等情况;二是,雷击故障的诱因也与架空线路中的绝缘子好坏存在一定的联系,绝缘子作为一种比较特殊的绝缘控件,在架空线路中占据着重要的地位,其主要的作用就是股东导线,绝缘子的实际运行情况会很大程度影响到绝缘子的耐压水平。

三是,输配电线路的电阻的质量也会导致雷击电流的泄露,从而导致闪络或者掉闸现象的出现。

四是,影响雷击线路产生的故障的因素还有绕击区与避雷线,避雷线就相当于在输配电线路上安装了很多避雷针,避雷线与外侧导线的连接垂直夹角,会对绕击区域的面积产生影响,夹角的逐渐增加绕击面积也就会增大,因此,通常会将夹角设置为三十度左右,避免绕击。

2、线路遭受雷击的形式及危害线路遭受雷击的形式主要包括感应雷、直击雷、逆流雷。

雷击对线路的危害非常大。

造成绝缘子串闪络,电源开关跳闸,严重时引起绝缘子串炸裂或绝缘子串脱开,从而形成永久性的接地故障;雷击导线引起绝缘闪络,造成单相接地或相间短路,其短路电流可能把导线、金具、接地引下线烧伤甚至烧断;架空地线档中落雷时,在与放电通道相连的那部分地线上,有可能灼伤、断股、强度降低,以致断地线;当线路遭受雷击时,由于导线、地线上的电压很高,还可能把交叉跨越的间隙或者杆塔上的间隙击穿。

输电线路雷击故障的分析与故障查找

输电线路雷击故障的分析与故障查找

输电线路雷击故障的分析与故障查找摘要:我国的社会经济在不断发展进步,电力需求越来越大,输电线路是电力建设中的最要组成部分,输电线路的雷击故障分析与查找工作与电网的供电能力、供电系统中的安全性有很大关系。

保证电网正常运行的关键就是必须做好雷击故障点的查找工作,避免雷击造成严重的损害,进而才能保证电网的安全建设。

本文针对输电线路雷击故障的分析与故障查找进行了简要的分析,以期为保证电网工程的顺利开展和人们的用电需求提供更多借鉴和参考。

关键词:输电线路;雷击故障;分析;查找引言:随着科学技术的进步和人们对生活需求的提升,输电线路运行的雷击防治越来越受到关注。

若输电线路的雷击故障防治得不到重视,就会影响电力企业的经济效益,严重情况还会危及人身财产安全。

电力行业是推动我国经济建设发展的重要产业,其直接影响我国国民经济的健康发展。

因此这就需要相关部门和工作人员重视安全管理,尤其是输电线路作业项目中的雷击故障问题,对存在的问题进行合理控制,进行有效的施工技术管理,让电网安全运行,从而促进电力行业的发展。

1.输电线路故障的原因分析1.1自然因素一方面,由于输电线路常常会受到外界自然因素的影响,受到风力、雷击、雨雪的影响较大,雷电引起的断线和跳闸是输电线路固有的问题,严重损害输电线路设备,这给电网安全运行带来了极大地威胁,不仅加速了相关设备的老化程度,还给线路的检修、维护工作带来了很大的难度。

另一方面,输电线路涉及内容具有很强的特殊性和专业性,并且工作范围广泛、危险系数也很高。

如果不坚持制度、不遵守规定,就会出现电力安全事故,造成巨大的经济损失。

因此遇到雷雨天气一定要做好防雷措施,妥善解决雷击断线路问题,并且定期对设备和线路进行维护管理,使得输电线路能够正常运行。

1.2人为因素在进行电网建设工程施工前,必须做好输电线路的合理规划,只有有了科学合理地规划方案,才能做好充分的准备,保证电力系统的运行。

由于输电线路极为复杂,施工环节繁琐,影响施工进程的不定性因素有很多,然而很多供电企业对输电线路的设计没有引起足够的重视,没有做好施工前的准备工作,如果不坚持制度、不遵守规定,这样就会导致故障频发,影响工程进展和质量,对工作人员的安全难以保证,大大降低了施工的效率和质量。

输电线路雷击故障分析及雷电定位系统应用

输电线路雷击故障分析及雷电定位系统应用

输电线路雷击故障分析及雷电定位系统应用摘要:雷电定位系统作为指导故障巡视的重要手段,可以帮助电力企业在较短的时间内查找雷害故障位置,做出事故分析,并根据情况制定有效的反事故措施,其对雷电活动资料的掌握也可以帮助输电线路的雷击情况做出预见性分析。

对此,本文分析了线路雷击故障,提出了输电线路中防止雷击的重要举措,探讨了雷电定位系统在输电线路的应用。

关键词:输电线路;雷击故障;雷电定位系统众所周知,输电线路相当于整个电力网络的动脉,一旦输电线路发生故障将直接导致整个电网陷入瘫痪,直接造成电力用户产生经济损失,而雷击造成输电线路发生故障的后果更为严重,所以如何能及时排除输电线路故障是能将因输电线路故障造成的损失降到最低的最有效的办法。

通过雷电定位系统的应用,一方面可以提高电网的生产管理水平,提升电网在雷雨季节遭受雷害时应对故障的判断能力;另一方面,通过雷电定位系统对雷电故障范围及性质进行判定,可以有效缩短故障查找与处理时间,而故障点的快速准确定位则是保证故障点及时排除的先决条件。

最后,通过雷电定位系统应用可以对雷电活动的进行统计分析,寻找雷电活动的规律,为电网防雷提供科学依据,对确保电力网络安全稳定运行都有着重要意义。

1线路雷击故障的分析(1)输电线路电压等级越高,其耐雷水平越高,雷击跳闸率相对越低。

(2)线路雷击跳闸故障集中出现在每年的4~9月份。

(3)输电线路遭受雷击后,都存在明显的雷击点。

如山区或山背豁口位置,水田与山脚的交叉处,空旷地带等都易发生雷击。

(4)输电线路在雷击处留下的痕迹有以下明显特征可以观察到:在一般情况下,雷击很少重复闪络,雷电流一般沿绝缘子串爬闪,易造成连续数片绝缘子闪络。

并在线夹与防振锤之间导线上留下痕迹,由于作用时间较短,导线烧伤面积较大;雷击闪络还能烧伤导线挂线金具、避雷线悬挂点以及避雷线的放电间隙,由于接地引下线的连接螺栓松动或接地电阻值较大,会在接地螺栓处留下明显的烧伤痕迹,甚至在拉线楔形线夹、UT线夹、UT线夹与拉棒联接处留下烧伤痕迹。

输电线路雷击跳闸故障分析及措施

输电线路雷击跳闸故障分析及措施

输电线路雷击跳闸故障分析及措施摘要:高压输电线路具有输送距离长,沿线地形地貌跨度变化大和气象条件复杂等特点,遭受雷击的概率较高,直接影响电网正常运行。

雷击引起的线路跳闸事故占据日益主要的地位,不仅影响线路、设备的正常运行,而且极大地影响了日常的生产、生活。

本文分析了雷击跳闸故障,并介绍总结了各种防雷措施,以提高架空输电线路的耐雷水平。

关键词:输电线路;雷击跳闸;防雷措施1线路雷击跳闸故障分析1.1线路雷击跳闸率的计算以雷击有避雷线线路的跳闸为例。

在下列情况下,线路将要跳闸:(1)雷击杆塔顶部发生闪络并建立电弧;(2)雷绕过避雷线击于导线发生闪络并建立电弧。

运行经验证明,雷击避雷线的档距中间且与导线发生闪络引起跳闸的情况是极罕见的,可不予考虑。

雷绕击导线时,耐雷水平I2可由下式求出:I2=u50%/100,有避雷线线路的跳闸率可按下式计算:N=NLη(gP1+PαP2)式中:N为跳闸率,次/(100km.a);I 为雷电流幅值,η为建弧率;g为击杆率;P1为超过雷击杆塔顶部时耐雷水平的雷电流概率;P2为超过雷绕击导线时耐雷水平的雷电流概率;Pa为绕击率(包括平原和山区)。

击杆率g与避雷线根数和地形有关,一般可采用表1所列数据。

1.2线路反击雷分析雷击杆、塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。

杆塔上绝缘承受的过电压最大值为(1):如u1.i.m大于绝缘子串的50%冲击放电电压u50%,则发生闪络。

取u1.i.m=u50%,即可求出雷击杆塔顶部时的耐雷水平I1,如取固定波头长度τt=2.6μs,则a=I1/2.6,此时耐雷水平为(2):式中:u50%为绝缘子串50%冲击闪络电压,k为导线线间耦合系数,k0为导线与地线间的耦合系数,β为杆塔分流系数,Ri杆塔冲击接地电阻,Lt为杆塔电感,hg为地线平均高度,hc为导线平均高度,ht为杆塔高度,ha为横担对地高度。

输电线路雷击故障点查找分析与研究

输电线路雷击故障点查找分析与研究

输电线路雷击故障点查找分析与研究随着电网稳定性的需求越来越高,当输电线路发生雷击故障时,如何快速有效的找到故障点,并恢复送电,保证电网的稳定运行显得尤为重要。

首先通过几种线路故障原因的分析,然后对雷击引起的线路故障进行深入的分析与研究,探讨出快速查找雷击故障点的方法。

标签:输电线路;故障点;雷击1 输电线路故障的原因分析输电线路在运行与维护中,难免会出现线路故障,引起线路跳闸。

从以往的运行与维护实践经验中,发现引起跳闸的原因大致可以分为以下几类:(1)树障:当树木与导线的距离小于《线路安规》相应电压等级的安全距离时,导线与树木之间会产生发电,引起线路开关自动拉开,即所谓的线路跳闸。

(2)导线舞动:导线产生舞动,使得导线间的距离小于安全距离,导致导线之间发生相间短路,线路主保护动作,引起线路跳闸事故。

(3)鸟害,当线路位于树林以及水源丰富的地区,因为鸟巢以及鸟粪导致的线路故障较多。

多次事故都是因为鸟粪,沿悬垂绝缘子串向下流动,导致单相接地事故,也会因为鸟粪造成横担与导线之间引起放电,形成所谓的空气闪络[1]。

(4)外破,是引起线路跳闸的一个重要原因。

从输电线路故障统计当中,因为外力破坏而导致的线路故障,占有线路故障的重大比例。

外力破坏包括工程施工、违章建筑、钓鱼等,这些项目中吊车引起的线路故障最多,故障点一般发生在施工区域,发生线路事故后,导线与吊车上都存在明显的放电痕迹。

(5)污闪,污闪故障主要发生在线路周边有水泥厂、铁厂、公路等污源区域段,一般易发生在久旱后突然降温并出现浓雾或毛毛雨的天气;(6)其他原因如导线接头发热烧断故障、变电站站内设备问题、保护定值计算整定错误、保护误动,线路本体设备问题等等。

(7)雷击。

输电线路雷击引起的线路故障,是输电线路发生故障次数最多的因素,下面将重点进行分析研究。

2 输电线路雷击故障分析与研究输电线路因为雷击引起的跳闸,是输电线路跳闸的首要因素。

每年因为雷击引起的线路跳闸次数,占据线路故障的最大百分比。

探析KV输电线路雷击故障及保护措施

探析KV输电线路雷击故障及保护措施

探析KV输电线路雷击故障及保护措施一、前言KV输电线路是电力系统传输电能的重要组成部分,由于工业领域的快速发展和大规模电力需求,这些输电线路的线路长度和高度不断增加。

这些因素加剧了生产线路雷电故障的风险,对系统的可靠性和稳定运行构成了威胁。

因此,了解KV输电线路雷击故障的原因以及如何有效地保护是十分重要的。

二、KV输电线路雷击故障的主要原因KV输电线路雷击故障的本质是电荷之间的耗散导致放电和由放电带来的大量热量和电磁波辐射,从而使传输线路上的绝缘破坏,引起故障。

2.1 环境因素雷电是KV输电线路雷击故障的主要因素之一。

气象条件是形成气象电场、雷电场的必要条件,温度、湿度、风速、地形和地形地貌等因素也影响着气象电场和雷电场的形成与分布,这些因素的改变都会导致雷电故障的发生。

此外,降雨时的水膜现象以及表面积水等水文条件也会对KV输电线路造成影响。

2.2 输电线路结构因素输电线路的结构设计也是导致KV输电线路雷击故障发生的因素。

例如,属于三相对称式线路首先设计系数,并受到电位升高因素的影响,可能导致线间距离减小,电位提高带来的闪络问题。

设备的尺寸、参数及材质等因素例如输电塔、电缆、隔离开关重要的固定元件的尺寸大小、地线细节处理等也会影响到线路的稳定性。

三、KV输电线路雷击故障的保护措施为了减少KV输电线路雷击故障的风险并保护线路的正常运行,应当采取以下措施:3.1 地线保护地线保护是一种保护输电线路的方法,主要原理是用地线引导雷电流从而减少对输电线路的影响。

目前主要地线保护有高阻抗地线保护、低阻抗地线保护和陶瓷针绝缘子型式进行了大量的研究和应用,且效果明显。

3.2 绝缘材料的选用对于KV输电线路来说,共振点是导致绝缘损坏的最大隐患之一。

如果选择恰当的绝缘材料,将极大地减少颂骋点的影响。

同时,在使用中,需要密切关注绝缘材料的老化情况,如出现老化、老化和损坏的现象,及时更换绝缘材料,防止雷击故障的发生。

3.3 保护装置保护装置是一种机械或电子设备,可以自动监测电力设备,并在发生故障时采取行动。

35kV输配电线路雷击故障及防雷措施

35kV输配电线路雷击故障及防雷措施

35kV输配电线路雷击故障及防雷措施摘要:35kV输配电线路是比较常用的配电线路,在我国电力系统中有着重要地位,但由于35kV输配电线路本身的特征,增加了输配电线遭受雷击闪络或跳闸事故的几率,所以加强35kV输配电线路的防雷措施就显得尤为重要。

这就要求相关技术人员能够排除配电线路防雷措施中的隐患,提升配电线路的安全性,从而保障区域供电的正常运行。

本文主要论述35kV输配电线路防雷措施的重要性、35kV输配电线路雷击故障类型与雷击故障判别类型,以及具体的防雷措施,希望提供读者有价值的信息。

关键词:35kV输配电线路防雷措施;雷击故障类型;故障判别1.35kV输配电线路防雷措施的重要性35kV输配电线路是我国电网系统中主要的配电线路,但由于其本身的性质,使得配电线路在防雷电方面表现的并不理想,增加了遭受雷击的几率。

在我国沿海地区,输配电线出现故障的事情时有发生,其中由雷电引起的配电事故更是占了很大的比重,严重威胁了区域供电的稳定和安全,也影响了居民的用电需要。

因此,相关人员必须加强配电线路的防雷措施,用自身的专业能力去维护配电线路的稳定和安全,保障区域配电的供电需要,为社会的稳定发展作出贡献。

2.35kV输配电线路雷击故障类型与雷击故障判别类型2.1雷电过电压的故障类型与跳闸率问题在配电线路的雷击故障中,雷击的过电压一般分为三种,分别是直击雷过电压、反击雷过电压、感应雷过电压。

专业人员可以通过杆塔位置、闪络位置等进行雷击事故的判别,其中直接雷过电压是指天空的雷云在放电的过程中导致线路产生一定的抗阻,随着电流电压的逐渐升高,线路内产生极强的冲击力,使线路内出现极大的直击雷过电压。

同样,天空的雷云放电的过程中,杆塔中的阻抗与其他线路的阻抗共同作用产生了电压降,由于杆塔顶端高电位的影响,导致线路的电流电压快速升高,绝缘子被击穿的过程就产生了反击雷过电压。

而感应雷过电压也是因为天空中雷云的关系,使线路内产生束缚电荷。

输电线路雷击故障分析及防雷分析

输电线路雷击故障分析及防雷分析

输电线路雷击故障分析及防雷分析摘要:随着社会的不断发展,社会水平不断的提高,科技也在不断的进步,我国电力企业的发展也非常迅速,人们对电力的需求不断的提高,对于电力系统来说,主要的组成构件就是输电线路,输电线路的稳定运行是保证电力运输的关键因素,输电线路遍布交叉,电力的传输途径就是通过输电线路进行,所以要想保证电力系统的稳定安全运行,就要保证输电线路的安全稳定。

但是在实际的电力工程的建设中,输电线路会遭受到各种各样的外力破坏,可能是外界环境的破坏,例如雷击,还有可能是一些小动物的破坏。

本文就针对输电线路雷击故障分析,并进行防治输电线路雷击破坏的措施研究。

关键词:输电线路;雷击故障;防雷措施分析,1.引言对于输电线路来说,由于人们的生活离不开电力,而电力的输送又是通过输电线路来进行的,所以输电线路会遍布世界,不仅在我们生活中,有些高压架设输电线路还是在郊区,越过山川等,所以发生故障的频率就很高。

对于输电线路的常见故障来说,主要有四种,第一种是由于输电线路的基本设备问题,基本的电缆设备的问题会造成输电线路的频繁故障;第二种是人为的因素,由于在施工时的不规范操作,人为的偷窃电缆设备等,也会造成输电线路的故障;第三是一些小动物对输电线路的破坏,比如说老鼠,鸟类等,都会对输电线路造成危害;最后一种是自然环境对输电线路的危害,比如说,疾风,暴雨,暴雪,冰雹,雷电等,这些自然界的一些危害会造成输电线路的频繁故障,我们通过对这些故障进行分析研究,可以发现其中雷击对输电线路的影响最大,造成的故障发生率也最高,特别是在一些山区,雷击的可能性会增大,而一旦这些输电线路受到雷击产生故障,就会造成输电网络的中断,维修的难度跟成本都很高,造成了极大的经济损失,也给人们的生活带来了不便。

所以为了避免输电线路雷击故障,造成大范围的电力中断,就要对这些雷击故障进行分析,从而找到输电线路防雷的具体措施,保证输定线路的正常使用功能,确保输电网络的安全稳定运行。

输电线路雷击故障分析与防雷措施

输电线路雷击故障分析与防雷措施

输电线路雷击故障分析与防雷措施摘要:输电线路同企业的工业生产和人民群众的日常生活密不可分,是保证现今社会良好、平稳运行的基础。

基于人们对电力需求程度的日益提高,输电线路的安全保障已经成为电力公司需要重点应对的问题。

本文简单讨论了输电线路雷击故障和防雷措施的分析与策略,首先介从雷击产生过电压的种类入手,进行了雷击性质的分析,然后介绍类防雷接地的重要性和原理以及影响因素,最后从雷击暂态、避雷器的安装、并联放电间隙以及接地电阻改造四个方面介绍了输电线路防雷的具体措施。

希望这篇文章能够在日后的输电线路安管保障工作中起到指导行的作用。

关键词:输电线路;雷击故障;防雷措施一、雷击的性质雷击过电压出现在架空输电线路上存在两种形式:直击雷过电压和感应雷过电压。

测试后发现,输电线路上最高可产生400kV的感应雷过电压,能够明显威胁到35kV以下的线路绝缘,但对大于110kV的线路绝缘无法造成大的威胁。

所以说,能够对于高压输电线路造成严重威胁的是直击雷过电压。

直击雷过电压有绕击和反击之分,都会对线路运行的安全造成伤害。

通过科学的分析雷击性质,采取合适的防雷措施,能有针对性的防止线路遭受雷击。

绕击雷过电压是指雷电击中导线之前绕开了避雷线,造成了雷击过电压,影响因素有导线防雷的保护方式、雷电的强度、杆塔的高度、地形等,通常出现在两边相。

目前主要采取安装避雷器、减小避雷线保护角度等方式来避免绕击雷。

反击雷过电压是指雷电击中避雷线和杆顶引发的过电压,影响因素有杆塔的接地电阻和导线的绝缘强度,通常出现在绝缘弱相,闪络相别不固定。

目前主要采取加强绝缘、减小杆塔接地电阻、提升路线抗雷击水平来较小反击类过电压的损害。

二、防雷的接地1 接地电阻为了对线路绝缘进行有效的保护,需要有效引导雷电流进入大地,所以要保证杆塔接地的可靠性。

提升线路的耐雷能力的一种有效手段是减小杆塔的接地电阻,实践显示,这样做可以有效地减少雷击跳闸率。

想要保证接地电阻满足设计要求,测量杆塔电阻的过程一定要符合运行规程,对接地网的工频接地电阻进行测量之前,必须拆除全部的接地引下线。

110kV输电线路雷击故障原因分析及防范措施

110kV输电线路雷击故障原因分析及防范措施

110kV输电线路雷击故障原因分析及防范措施电力系统中输电线路遭受雷击的现象越来越多,雷击成为引起线路跳闸故障的主要原因之一,严重影响到输电线路的运行安全。

本文针对一起110kV输电线路雷击故障后进行了详细分析,并对雷击故障做了详细的理论计算,最后结合运行实践经验提出了针对性预防措施,为电力运行单位提高输电线路运行可靠性和防雷管理工作提供了借鉴与指导。

标签:输电线路;雷击跳闸;原因分析;防雷措施一、引言浙江桐庐电网35千伏及以上输电线路多分布在山顶或山脊,山势陡峭,线路所经地区起伏变化较大,气象条件十分复杂。

虽然该地区全线都架设双避雷线保护,但由于输电线路距离长、跨度大、高杆塔较多,极易遭受雷击。

近几年的故障跳闸统计资料表明,雷击引起的高压输电线路跳闸次數占总跳闸次数的93%,因此雷击已成为当前输电线路故障跳闸的主要原因,不仅影响线路、设备的正常运行,而且极大地影响了日常的生产、生活。

同时输电线路故障跳闸直接影响功率的输送,也对电网的安全、稳定运行构成了严重威胁,采取有针对性的防范措施,尽最大可能降低输电线路跳闸率,是线路运行单位追求的目标,也是构建“坚强智能电网”的前提和根本。

二、具体故障描述2012年8月5日20:21时,桐庐电网发生了乔方1052线A相故障,距离Ⅱ段,零序Ⅱ段保护动作,重合成功,乔林变测距29.2km(约73#塔左右);根据该局SCADA系统历史事项显示,在这个时间点乔方1052线RTUSOE保护信号8个。

浙江省雷电定位系统线路雷电查询结果显示,8月5日20:20-20:21乔方1052线附近共计落雷点4个,数据如下:表1 浙江省雷电定位系统线路雷电查询结果序号时间经度纬度电流(kA)回击站数最近距离(m)最近杆塔1 20:20:08.958 119:31:11 29:55:54 -13.5 0 14 322.4 72~742 20:20:08.492 119:31:7 29:55:56 -13.8 0 14 250.8 72~743 20:20:08.933 119:31:7 29:55:58 -14.9 0 14 202.0 72~744 20:20:14.098 119:26:56 29:56:14 22.8 1 18 545.1 95,96经现场查找,发现乔方1052线73#塔A相瓷瓶串1片瓷瓶(上至下第2片)雷击破碎,4片瓷瓶有雷击痕迹,导线上有不同程度的雷击痕迹。

输电线路雷击跳闸事故浅析及防雷事故措施的研究

输电线路雷击跳闸事故浅析及防雷事故措施的研究

输电线路雷击跳闸事故浅析及防雷事故措施的研究输电线路雷击跳闸事故是指由于雷电天气引起的输电线路发生雷击而导致跳闸,从而影响了电力系统的正常运行。

在电力系统运行中,雷击跳闸事故属于常见的故障类型之一,由于雷电活动的不可预测性和突发性,雷击跳闸事故给电力系统运行带来了一定的影响。

对输电线路雷击跳闸事故进行深入的分析和研究,并采取相应的防雷事故措施具有重要意义。

一、输电线路雷击跳闸事故的原因分析1. 雷电天气的频繁发生,雷电活动具有不可预测性和突发性,造成了输电线路雷击跳闸事故的高发生率。

2. 输电线路设备的设计和绝缘等级不足,由于绝缘水平不高和设备老化等原因造成了输电线路容易受到雷击影响。

3. 电力系统的接地电阻不足,接地电阻较高时,雷电击中输电线路后产生的感应电流将无法及时通过接地而造成设备受损。

4. 输电线路跨越山区、河流等自然环境恶劣地带,易受到雷击的影响。

二、输电线路雷击跳闸事故的影响1. 雷击跳闸会使得输电线路停电,影响了用户的用电。

2. 跳闸造成的事故会给设备带来额外的冲击和损坏,影响了电力设备的寿命和运行安全。

3. 雷击跳闸事故还可能引发线路或设备的爆炸和火灾事故,给周围环境和人员造成安全隐患。

三、防雷事故措施的研究1. 提高输电线路设备的设计和绝缘等级,采用高强度、防雷击材料的设备。

2. 加强对输电线路的维护和检测,定期对输电线路进行绝缘子的清洗和检查,及时更换老化的设备。

3. 加大对电力系统接地电阻的改造力度,提高接地电阻等级,减少雷电击中输电线路后对设备的损害。

4. 对于地质恶劣地带的输电线路,可以采取设置避雷针等方式进行防雷保护。

架空输电线路雷击故障查找与分析

架空输电线路雷击故障查找与分析

架空输电线路雷击故障查找与分析摘要:改革后,我国的电力行业在社会发展的影响下不断进步,同时,人们对电力行业的要求也在不断提高。

现阶段,架空输电线路在当今社会的电力系统中发挥着至关重要的作用,但架空输电线路多在高空和山区中,存在着许多不安全的因素,容易遭受雷电的影响,从而导致跳闸、着火等事故,造成电网短路等现象。

而防雷设计在架空输电线路中具有重要的作用,防雷设计可以增强其安全性,提高综合防雷技术,降低对架空输电线路的维护费用。

因此,必须要对架空输电线路防雷设计的措施进行研究,完善其设计措施。

通过对防雷设计的必要性和架空输电线路防雷进行论述,为防雷设计提供理论依据,并且通过对架空输电线路防雷设计的要点和措施进行分析,提出针对性建议,从而优化设计方法,保证架空输电线路安全运行。

关键词:架空输电线路;防雷设计;措施引言架空输电线路作为电网的重要组成部分,架设路径大多为高山、旷野或丘陵,且基本采用高塔架设,大部分暴露在自然环境之中,极易受外界环境影响和破坏。

通过近几年架空输电线路跳闸停电事故调研发现,雷击在输电线路跳闸事故中占较大比重,且大多难于防范。

国内各地区电网在架空输电线路防雷实践应用中大多采用架空避雷线、装设避雷针等单一防雷措施,防雷效果有待进一步检验。

有效筑牢架空输电线路防雷水平,减少雷击停电事故,确保输电线路安全稳定运行,具有重要意义。

1输电线路受到雷击的危害分析通常情况下,雷击类型的差异会对输电线路造成不同的故障问题,例如,雷电直击会引起输电线路的多相故障,而雷电的反击问题会导致下面几种输电路线故障:第一是1次跳闸致使连续杆塔产生闪络异常;第二呈现为三角形态的输电线路上方出现导线异常;第三是横向排序的中线出现异常等,而雷电的绕击一般会引起输电线路的单相故障。

对于输电线路来说,雷电故障对其产生的危害性是比较大的,对于输电线路来说,如果其遭到了雷电的击打,那么将会出现下述故障:其一是线路的跳闸故障;其二是设备的损坏故障;其三是绝缘子的闪络故障等,甚至严重的时候还会对人们的生命以及财产安全造成严重的威胁。

500kV输电线路雷击故障分析与防雷措施研究

500kV输电线路雷击故障分析与防雷措施研究

500kV输电线路雷击故障分析与防雷措施研究摘要:根据输电线路的特征来看,它的分布范围极广,覆盖的地域从一座高山穿过到另一座高山,绵延数百公里甚至长达数千公里。

历经各种各样的气候变化和温湿度,及其复杂的地形、地势使得遭遇雷击的现象更为频繁和更大的破坏力,需要采取特殊的措施进行有效的维护工作。

雷电是造成输电线路故障的主要原因之一,频繁的雷害现象已严重的影响了高压输电线路的安全稳定运行。

本文作者分析了500kV输电线路雷击故障原因,并提出防雷措施。

关键词:500kV;输电线路;雷击故障;防雷措施0、引言500kV输电线路,所经地区主要为山峦起伏、地形剧变、峰高谷深,地质多为岩石,地理环境相当复杂,自然环境恶劣,线路设备大多处在高山大岭地区或雨雾环绕、年均雷爆日为40的中雷电地区。

500kV线路是国家电网大动脉,所以做好高压输电线路雷击事故的分析与防治工作,对于确保电网的安全稳定运行起着重要作用。

1 输电线路雷击跳闸事故的原因分析1.1故障点查找及故障原因初步判定(1)发生线路跳闸后,根据两端变电站保护、故障故障录波、行波计算出故障点测距,以行波测距较为准确。

(2)以计算故障塔位为中心,大小号侧各延5至10基塔进行登塔检查并测量接地电阻,主要查看大小号通道有无树竹放电情况、绝缘子、金具有无灼烧痕迹。

(3)当发现绝缘子、金具有明显灼烧痕迹时,可初步判定为雷击跳闸。

1.2 避雷线的保护角在防雷措施中架设避雷线是高压输电线路最有效的方法。

避雷线的保护角的大小与防雷效果有着密切的联系。

跳闸率随着保护角的增大而增加,绕击率则随着保护角的减小而降低。

当保护角降低到一定程度时甚至可以起到屏蔽作用,保护导线不受到绕击。

因此避雷线的保护角设置不合理是造成雷击故障的原因之一。

1.3 线路的绝缘水平根据相关部门的统计结果,早期投入运行的线路在投运的初期有着很好的防雷效果,但是由于各种原因,运行若干年后,当初的设计方案已经无法抵御如今的雷电袭击,而且由于长期遭受风吹、日晒、沙尘等恶劣自然条件的影响,绝缘能力逐渐下降,由于没有及时有效的维护,随着接地体通流能力的下降,将导致跳闸率明显增加。

输电线路雷击架空地线断线原因分析及防雷措施

输电线路雷击架空地线断线原因分析及防雷措施

输电线路雷击架空地线断线原因分析及防雷措施输电是用变压器将发电机发出的电能升压后,再经断路器等控制设备接入输电线路来实现。

按结构形式,输电线路分为架空输电线路和电缆线路。

架空输电线路由线路杆塔、导线、绝缘子、线路金具、拉线、杆塔基础、接地装置等构成,架设在地面之上。

雷击架空地线断线原因分析一般而言,对于输电线路的故障,雷击引起的可能性特别大。

架空的输电线路被雷击导致导地线断裂或是悬垂线夹处断线。

这种故障发生的原因如下:1、雷电流的热效应当雷击架空的地线时,雷击点的电流密度达到最大值,雷电弧的温度也处于最高值,可能达到几千K。

一般情况下,当雷电流通过导线时,雷电流引起的热效应不明显。

如果是雷击导体,雷电雨放电通道接触时可以产生无限的高温,可以融化金属,从而导致有些架空地线断股,直接影响输电线的正常供电。

雷电流的携带的巨大能量一般集中在电弧上,但是电弧的作用点太小,雷电流的电弧都直接传给导地线,引起导地线在瞬间升温,达到一定的限度就断股了。

2、雷电流的冲击效应在生活中,我们也常见一些雷击的现象。

例如,大风大雨天气里,有雷击大树的情况,抑或是有些重大雷电直接将建筑物的钢筋混凝土击穿一个洞的现象。

由此可知,雷击具备特别大的冲击力,而且是机械能。

对于这样的天气,输电线处于裸露的自然环境下,就有遭受雷击的危险、如果导地线被雷电击中,雷电冲击波携带的能量超出导体线的承受范围,导地线可能直接被打断。

3、工频短路电流的热效应当雷击架空的地线,在线路断裂的同时会产生绝缘子闪络放电。

由于地线的杆塔阻力比雷击放电的杆塔小,当雷击放电接触的杆塔,几乎所有的工频都会被续流到架空地线,从而出现短路电流,在一定程度上也提高了雷击点的温度。

架空地线短路时的热稳定只能允许较小的电流通过,所以容易使导地线断线。

在地线的悬垂线夹处属于比较薄弱的环节,更加容易断线。

4、设计规程不合理在短路电流的热稳定中,设计规程需要对雷电流和短路电流同时产生作用下的热稳定规定要求。

110kV输电线路雷击故障分析及治理

110kV输电线路雷击故障分析及治理

110kV输电线路雷击故障分析及治理摘要:随着我国电力行业的发展,110kV输电线路应用越来越广泛,而如果出现故障,会给人们的生活以及工业生产带来较为严重的影响。

因此,本文对110kV输电线路中由雷击导致的故障进行分析,确定具体的原因,从而能够有针对性的提出相应的治理方案,对保证11kV输电系统的稳定运行有重要帮助。

0引言随着当前经济的快速发展,对电力供应的要求越来越高,需要输电线路具备较高的运行可靠性。

而雷击会对输电线路带来较大的破坏性,最常见的就是出现跳闸事故。

据相关部门统计,因雷击而导致输电线路出现跳闸问题的次数占总的次数一半以上,因此必须采取相应的应对措施。

1雷击对输电线路的危害性导致输电线路损害的原因有多种,其中由于雷击所导致的故障是主要原因。

110kV输电线路遭受雷击之后,线路会出现跳闸的情况,并且相关设备因雷击,会出现不同程度的损坏。

通过对多种线路故障进分析,发现雷击类型的不同会给输电线路带来不同的故障。

比如,多相故障通常是由雷电直击导致的,而导致单相故障的则是雷电绕机。

如果输电线路的布设区域位于山区中,由于交通不便,一旦出现雷击故障,对线路的巡视以及故障解决有非常大的影响。

此外,出现雷击时整个天气状况也是非常恶劣的,进而对输电线路周围的环境产生较为严重的破坏,如果不能及时处理,会带来较大的经济损失。

2 110kV输电线路的防雷措施在制定输电线路雷击预防方案时,通常有三种,分别为:直接雷防护、侧击雷防护、感应雷防护。

在制定方案的过程中,必须结合实际情况,从而保证采取的方案的有效性。

2.1减小杆塔接地电阻减小杆塔接地电阻是防雷的主要措施,通过将杆塔的冲击接地电阻减小,能够提高杆塔的抗雷能力,从而使输电线具备较高的防雷水平。

在实际操作过程中,主要是对接地电极的运行进行优化,并对埋深进行调整,从而改变接地电阻值的大小。

1.水平外延接地:这种措施有特定的应用情况,当区域存在水平放射的情况时,通过利用水平放射技术,不但能够降低接地电阻,同时还能够降低冲击接地电阻。

架空输电线路雷击故障查找与分析

架空输电线路雷击故障查找与分析

架空输电线路雷击故障查找与分析摘要:防雷设计在架空输电线路中具有重要的作用,防雷设计可以增强其安全性,提高综合防雷技术,降低对架空输电线路的维护费用。

因此,必须要对架空输电线路防雷设计的措施进行研究,完善其设计措施。

关键词:架空输电线路;雷击故障;分析。

引言现如今,许多城市的环境改善需要众多电力,城市的发展也离不开架空输电线路。

中国经济快速发展对能源的需求日益增加,大型油田、矿区分散在几十千米甚至几百千米的范围内,多采用架空输电线路。

但是架空输电线路存在着许多影响因素,尤其是容易受到雷击的影响,导致架空输电线路存在着不安全的现象,容易给人员和财产造成损失。

因此,对架空输电线路防雷设计措施的研究成为了热点,加强对其保护装置和防雷系统的研究,能够提高其供电可靠性,确保架空输电线路正常、稳定工作。

1防雷设计的必要性架空输电线路在当今社会电力运行中占有重要地位,它能够促进社会经济的发展,提高人们的生活水平。

它一旦发生事故,后果也不堪设想,因此架空输电线路的安全运行十分重要。

架空输电线路已经被广泛使用,但在使用过程中经常会因为雷击等事件影响输电线路的安全运行。

雷电属于自然现象,雷云放电通常是在云中或是云间进行的,只有很少一部分电子会对地发生,而雷云相对于其它云较低,再加上架空输电线路的周边没有任何的带其他电性的电荷云层,这样就会对在高空中的架空输电线路造成吸引,之后雷云电子被吸引且会形成电流,这些能够在很短时间内达到最大值,之后再逐渐地衰减下去,其冲击波和雷电流幅值也会达到最大值。

当雷云在对其放电时,会随着绝缘皮进行横向电压,这样不仅会因为在雷击点的附近没有受到雷击的线路形成电压,而且会造成架空输电线路电压不平衡,导致跳闸并引发一系列的事故。

雷击后电流也会通过输电线路的铁支架传递到地面,可能对当地的居民造成一定的危害。

因此,架空输电线路的防雷设计措施必不可少,必须要对架空输电线路进行防雷设计,保证架空输电线路能够正常、安全运行。

输电线路雷击故障的分析与故障查找

输电线路雷击故障的分析与故障查找

输电线路雷击故障的分析与故障查找输电线路雷击故障时有发生,曾一度占输电线路故障的首位,在实际的线路运行中往往对雷击事故分析不到位,对该采用何种防雷措施没有加以仔细的研究,致使加装的防雷措施没有发挥应有的作用,本文主要就雷击故障发生的机理及采取相应防雷措施加以分析,并对故障巡线时,如何查找故障加以论述,希望能对输电线路运行,减小雷击事故起到帮助作用。

1 雷击故障发生的原因输电线路在夏秋季节经常会发生雷击事故,对输电线路导线及绝缘产生伤害,雷击故障发生的原因有输电线路本体设备不合格所造成,也有外部环境因素的影响。

归纳起来有以下几点:1)杆塔接地体电阻不合格。

2)接地通道有锈蚀,致使接地通道的接地电阻增大,泄流不畅通。

3)线路的绝缘子老化,出现低值零值绝缘子,致使绝缘下降,耐雷水平降低。

4)避雷线保护角偏大。

5)雷电过电压时,绝缘子串风偏角过大。

6)雷击时雷电流超过设计水平。

7)防雷措施针对性不强等多个方面的原因。

另外雷击的发生与输电线路导线的排列方式、杆塔高度也有密切关系。

雷击发生后,线路运行人员应即时查找故障点,分析故障的原因,判别雷击的类型,以便于采取相应的治理措施。

2 雷击故障类型的分析在线路发生雷击时应首先分析雷击闪络造成的原因,根据原因对雷击闪络的形式进行有效的判别,雷击故障的类别有反击和绕击两种形式。

1)反击闪络主要是由于塔顶电位升高,造成塔顶电位高于绝缘子串的耐雷水平,放电方向从塔身沿绝缘子串放电,造成单相接地故障,线路跳闸,如果是瞬时故障,重合闸成功,如果是多重雷击可能造成永久故障。

显然反击闪络取决于塔顶电位和线路耐雷水平两方面的因素。

塔顶电位与哪些因素有关呢?①塔顶电位的高低可以用下列公式来表示:Utd=βIchRch+L。

从式中分析可以得出,塔顶电位升高与杆塔的冲击接电阻、冲击雷电流的大小和杆塔的分流系数成正比,还与杆塔的电感及雷电流的变化率的乘积成正比。

而运行单位可控项只有接地电阻,接地电阻的升高往往是反击闪络的主要原因。

输电线路雷击故障分析及措施

输电线路雷击故障分析及措施

输电线路雷击故障分析及措施摘要:架空输电线路长度有时达数百公里或更多,分布面广,杆塔高出地面数十米到几十米,并暴露在旷野、高山,很容易遭受雷击,雷击是造成线路跳闸停电的主要原因,线路跳闸将会严重影响电力系统供电的可靠性。

因此,应采取可靠的防雷保护措施,以保证供电的安全。

关键词:输电线路;雷击事故;防雷措施;电磁感应;杆塔1输电线路雷击故障简析雷害事故在现代电力系统的跳闸停电事故中占有很大的比重。

特别是伴随着科学技术的发展,开关和二次保护的产生,电力系统内部过电压的降低及其导致的事故的减少,雷击引起的线路跳闸事故日益占据主要的地位,不仅影响线路、设备的正常运行,而且极大地影响了人们的日常生产、生活。

线路的雷击事故在电力系统总的雷电事故中占有很大的比重。

据统计,因雷击线路造成的跳闸事故占电网总事故的60%以上。

输电线路防雷保护的目的就是尽可能减少线路雷害事故的次数和损失。

2输电线路雷击的分类输电线路上出现的雷电过电压主要有两种,即为直击雷过电压和感应雷过电压。

前者由雷击线路引起,后者由雷击线路附近地面而产生电磁感应引起。

2.1直击雷输电线路未架设避雷线的情况下,雷击线路的部位只有两个:①雷击导线、绝缘子;②雷击杆塔顶。

有避雷线时直击雷过电压,雷直击于带避雷线的线路有三种情况,即雷击杆塔顶部,雷击避雷线档距中央和雷击导线(即绕击)。

2.2感应雷输电线路感应雷过电压,当雷击线路附近的大地时,由于电磁感应,在导线上将产生感应过电压。

感应过电压的形成如图1所示,hd为导线高度(m),S为雷击点离导线的距离(m)。

3输电线路的防雷措施3.1架设避雷线引导雷电向避雷线放电,通过杆塔和接地装置将雷电流引入大地,从而使被保护物体免遭雷击。

能够有效地防止直接雷击导线;分流减少经杆塔入地电流,降低塔顶电位;降低感应过电压。

110kV以上应全线架设避雷线。

同时还应设置保护角。

220kV及以上电压等级输电线路应全线架设避雷线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输电线路雷击故障查找方法及运用
供电企业输电线路非常容易出现跳闸故障,引发这一故障问题的主要原因就是雷击。

本文结合“三维定一点”雷击故障点快速查找方法与输电线路故障测距方法两大技术内容探讨了它们在实际故障排查中的有效应用过程。

标签:输电线路;雷击故障;查找方法;“三维定一点”;故障测距
对于输电线路故障的排查与运行维护需要做到及时、准确、可靠,保证故障定位重心围绕故障原因分析展开,最终再制定针对性防护措施方案,避免此生故障的再次产生,确保电网运行安全。

一、广西某地区输电线路雷击故障现状
本文以广西某地区为例,该地区的输电线路经常出现雷击故障,特别是一到每年的雷雨季节其遭受雷击事故非常频繁,例如跳闸事故,它对电网的安全稳定运行造成了严重影响。

根据统计结果发现,从2014~2017年4年间该地区的输电线路故障跳闸超过60次,其中有43次是由雷击所引起的,雷击成为当地输电线路故障跳闸事故发生的主要原因。

在输电线路被雷击后,当地供电局技术人员也第一时间确定了遭受雷击的杆塔位置,并通过各种技术手段消除线路故障,恢复供电。

不过考虑到雷击事件存在极大的破坏性、随机性和隐蔽性,所以对故障点的定位非常困难,容易导致线路事故的严重隐患。

就目前来看,该地区电力系统已经启用了调度SCADA实时监控系统、雷电定位系统等等作为主力雷击判断设备,专门针对雷击点进行全面搜查,但耗费了相当长的时间与相当大的精力,得不偿失。

因此,总结输电线路累计点查找工作经验,积极创新思考新的查找方法,实现技术灵活运用是非常有必要的[1]。

二、广西某地区输电线路雷击故障的查找方法运用
为了有效规避传统中盲目的“地毯式”故障排查方法,为供电企业节约大量人力、物力與财力,当地就专门提出了“三维定一点”雷击故障点快速排查方法,它能够结合计算机系统信息来有效缩小故障排查范围,提高工作效率,有效缩短输电线路雷击点的目标查找时间。

(一)对“三维定一点”快速排查方法的技术要点阐述
所谓“三维定一点”,首先它的一点即为雷击点,而第一维就是雷电定位系统。

传统中雷击地点无法准确定位,发生时间突然,一旦发生必将在短时间内就造成线路跳闸事故,所以巡线人员需要从头到尾排查线路故障问题,必要时还要登杆塔查事故原因,这种做法显然费时费力且危险系数较高。

目前为了有效缩短雷击
故障点查找时间,专门采用了雷电定位系统进行累计点排查,它会设置以R为半径的疑似雷击区域,对R半径内的雷电范围信息进行收集、统计并予以加权平均处理,结合累点信息确定疑似雷击区域范围。

其次第二维为杆塔GPS经纬度坐标仪,通过它可进一步缩小雷击区域范围。

广西该地区供电企业就专门在全局位置增加了78处基杆塔,再配合GPS经纬度坐标仪进行测取,优化完善杆塔GPS经纬度的定位坐标资料,补充所测取杆塔GPS经纬度的坐标信号,将其转换为坐标仪系统的特定格式,再导入雷电定位系统。

一般情况下,杆塔GPS经纬度坐标两侧会被疑似为雷电区,它要缩小到线路两侧位置,呈现一个范围更小的矩形区域,再通过系统对雷电范围信息实施加权平均计算,最后可将疑似泪点区域缩小到平均2k㎡的范围内。

最后第三维为SCADA实时监控系统,它结合GPS时钟数据共同使用,可实现对雷击点的快速锁定。

具体来讲,结合所引入的时间数据对故障点进行判定,调度SCADA实时监控系统与雷电定位系统实施联动,利用时间数据配合GPS 时钟完成数据采集过程。

该SCADA实时监控系统对历次的雷电区雷击事故都能进行合理判断,并不断缩小雷电区平均雷击点落雷范围,利用杆塔即可快速排查雷击故障点。

(二)对“三维定一点”快速排查方法的实际应用
要合理利用“三维定一点”雷击故障点快速排查方法,再结合雷电定位系统与杆塔GPS经纬度坐标仪,随时调度SCADA实时监控系统,分析GPS时钟中的相关数据内容,以达到精确判断雷击故障范围。

为此,技术维护人员专门对该方法进行了相应方案改进,特别对输电线路的架空输电线路雷击故障进行分析,避免出现过流跳闸问题与重合组成问题。

在下达带电巡线调度命令以后,则要引进杆塔GPS经纬度坐标仪,配合雷电定位系统构建数据库,此时调度SCADA实时监控系统也会发生作用,准确判断雷电故障跳闸相关信息,一经发现疑似雷击点就要快速进行现场核实、排查,由调度人员汇报状况并解决问题,实现快速查找雷击故障点目的[2]。

三、广西某地区输电线路雷击故障的测距方法应用
广西某地区为了实现技术进一步优化,还在输电线路雷击故障测距方法应用方面展开了相关研究,进一步提高故障点发现效率,提高测距精度。

这里主要介绍当地所常用的两种雷击故障测距方法。

(一)对故障分析法的应用
首先采用到了故障分析测距算法,它比较传统,是过去常见的故障定位方法,该方法运用到今天也有了一定的技术改进,例如它会利用到故障线路测量已知条件配合工频电流、电压列出方程,求解故障线路的测量分析过程,最后获得从故障点到测量点点距。

关系该地区所采用的故障分析法就包括了单端电气测量法与双端电气测量法两种。

这里以双端电气测量方法为例,它合理利用到了存在于电
缆线路两端的测量点结合电压、电流工频量进行测量,结合微分方程准确计算故障点位置。

同时双端测量法中还采用到了两端数据通信通道,结合两端数据同步测距算法完成测距过程。

最后就是结合GPS时钟同步数据,解决双端电气测量中可能存在的原理性误差,充分考虑到线路沿线地质条件、气候条件变化问题,它们都会造成大地电阻率的分布不均匀,因此需要克服这一问题以精确化定位结果。

(二)对行波测距法的应用
为了解决故障分析法中的技术缺陷,可采用行波测距法提升定位结果精确度。

行波测距法利用到了暂态行波传输理论,它会对线路故障进行测距,并在故障点位置产生向线路两侧传播的电流行波与电压行波。

比如说可采用单端行波法来测量输电线路雷击故障,给出故障测距原理示意图,如图1。

如图1,在M端设置测距装置线路,当线路发生雷击故障以后,其故障点f 必然会产生面向线路两端传播的暂态行波,此时设置故障初始行波应该全面浪涌到M端测量点,行波测量点时刻为t1,那么如果故障行波浪涌到N端母线后就会发生行波反射,它会反射到故障点上形成折射,折射波会再从M端测距装置传播行波,其行波线路长度为L,行走时间为t2,行波在该线路中的传播波速为v,此时应该计算从故障点到M端的距离x,如下:
通过上述的单端行波测距就可以快速准确检测判断出雷击故障点的初始行波浪涌,以及它与初始测量点之间的距离,基于此对所接收的反射行波浪涌进行辨识,准确查找判定雷击故障点位置[3]。

总结:
本文结合“三维定一点”与行波测距方法两大技术内容分析了输电线路被雷击后的故障查找方法及有效运用。

两点技术都证明了它们所具备的测量精确性与科学优越性,值得被广泛推广应用。

参考文献:
[1]谢斌,谢一.输电线路雷击故障点快速排查法[J].重庆电力高等专科学校学报,2012(4):69-71.
[2]高艳丰.基于电流行波的输电线路雷击识别和故障定位方法研究[D].华北电力大学;华北电力大学(北京),2016.
[3]吴昊,肖先勇,邓武军.输电线行波测距中雷击与短路故障的识别[J].高电压技术,2007(6):63-67.。

相关文档
最新文档