材料摩擦学和表面润滑

合集下载

摩擦、磨损与润滑概述

摩擦、磨损与润滑概述

1、摩擦是引起能量损耗的主要原因。
2、摩擦是造成材料失效和材料损耗的主要原因。
3、摩擦学:
关于摩擦、磨损与润滑的学科(Tribology)
4、润滑是减小摩擦和磨损的最有效的手段。
§4-2 摩 擦
一、摩擦的概念:
正压力作用下,相互接触的两物体受切向外力的影 响而发生相对位移,或有相对滑动的趋势时,在接触 表面上就会产生抵抗滑动的阻力-摩擦。
Ff Ar B
Ar Ari A a b
干摩擦理论:
机械理论: 摩擦力是两表面凸峰的机械啮合力的总和。
分子理论: 产生摩擦的原因是表面材料分子间的吸引力作用。
分子-机械理论: 摩擦力是由两表面凸峰的机械啮合力和表
面分子相互吸引力两部分组成。
粘附理论:
阿蒙顿摩擦定律:
第一定律:摩擦力与法向载荷成正比。
R —0.4两粗糙面3.的0 综合不平混度合摩擦
3~4
流体摩擦
( 1 时,不平度凸峰为总载荷的30%)
流体摩擦:
1、定义:
当两摩擦面间的油膜厚度大到足以将两表面的不平凸峰完全 分开,这种摩擦叫液体摩擦。
2、特点:
3~4
①、油分子大都不受金属表面的吸附作用的支配,而能完全移动。
件上。润滑脂还可以用于简单的密封。
常用的润滑装置
常用润滑装置
一、间歇润滑装置
常用润滑装置
一、间歇润滑装置
常用润滑装置
二、间歇润滑装置
§4-5 流体润滑原理简介
英国的雷诺于1886年继前人观察到的流体动压现象流,体润总滑1 结出流体动压润滑理 论。20世纪50年代普遍应用电子计算机之后,线接触弹性流体动压润滑的理论开 始有所突破。

摩擦与润滑概述

摩擦与润滑概述

润滑剂、添加剂和润滑方法 润滑剂、
一、润滑剂 动植物油、矿物油、合成油。 润滑油 :动植物油、矿物油、合成油。 粘度是润滑油的主要质量指标,粘度值越高,油越稠,反之越稀; 粘度是润滑油的主要质量指标,粘度值越高,油越稠,反之越稀;
( 粘度的种类有很多, 粘度的种类有很多,如:动力粘度、运动粘度、条件粘度等。 具体说明) 动力粘度、运动粘度、条件粘度等。 具体说明)

三、 4种滑动摩擦状态
摩 擦2

1. 干摩擦是指表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。 干摩擦是指表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。 2. 边界摩擦是指摩擦表面被吸附在表面的边界膜隔开,其摩擦性质取决 边界摩擦是指摩擦表面被吸附在表面的边界膜隔开, 于边界膜和表面的吸附性能时的摩擦。 于边界膜和表面的吸附性能时的摩擦。 3.流体摩擦是指摩擦表面被流体膜隔开,摩擦性质取决于流体内部分子 流体摩擦是指摩擦表面被流体膜隔开, 间粘性阻力的摩擦。流体摩擦时的摩擦系数最小,且不会有磨损产生, 间粘性阻力的摩擦。流体摩擦时的摩擦系数最小,且不会有磨损产生,是 理想的摩擦状态。 理想的摩擦状态。
பைடு நூலகம்


摩 擦3
4.混合摩擦是指摩擦表面间处于边界摩擦和流体摩擦的混合状态。混 混合摩擦是指摩擦表面间处于边界摩擦和流体摩擦的混合状态。 合摩擦能有效降低摩擦阻力,其摩擦系数比边界摩擦时要小得多。 合摩擦能有效降低摩擦阻力,其摩擦系数比边界摩擦时要小得多。 边界摩擦和混合摩擦在工程实际中很难区分, 边界摩擦和混合摩擦在工程实际中很难区分,常统称为不完全液体 摩擦。 摩擦。 随着科学技术的发展,关于摩擦学的研究已逐渐深入到微观研究 随着科学技术的发展, 领域,形成了微-纳米摩擦学理论,引发出许多新的概念, 领域,形成了微-纳米摩擦学理论,引发出许多新的概念,比如提出 了超润滑的概念等。从理论上讲,超润滑是实现摩擦系数为零的摩擦 了超润滑的概念等。从理论上讲, 状态,但在实际研究中,一般认为摩擦系数在0.001量级 或更低) 量级( 状态,但在实际研究中,一般认为摩擦系数在0.001量级(或更低)的 摩擦状态即可认为属于超润滑。关于这方面的研究也是目前微-纳米 摩擦状态即可认为属于超润滑。关于这方面的研究也是目前微- 摩擦学研究的一个重要方面。 摩擦学研究的一个重要方面。

摩擦与润滑

摩擦与润滑

摩擦与润滑1、基本概念基本概念基本概念基本概念摩擦学:摩擦学(Tribology)一词是1966年才开始使用的,是研究相互作用表面发生相对运动时的有关科学、技术和实践的一门综合性科学技术,其基本内容就是研究机械中的摩擦、磨损和润滑问题。

摩擦:两个相互作用的物体在外力作用下发生相对运动时所产生的阻碍运动的阻力称为“摩擦力”,这种现象称之为“摩擦”。

磨损:摩擦副之间发生相对运动时引起接触表面上材料的迁移或脱落过程称之为磨损。

润滑:在两物体相对运动表面之间施加润滑剂,以减少接触表面间的摩擦和磨损。

2、基本原理:摩擦原理的早期认识及基本观点:答:凹凸说:1、认为摩擦的起因是一个凸凹不平的表面沿另一‘表面上的微凸物体上升所作的功,也就是说摩擦是由于表面凸凹不平而引起,即摩擦的凹凸学说。

2、库仑在解释摩擦起因时,他认为首先是接触表面凹凸不平的机械啮合力,其次是分子之间的粘附力。

虽然,他已认识到粘附在摩擦于可能起一定作用.但是次要的,粗糙表面的微凸体才是主要的。

粘附说:1、摩擦粘附说:认为摩擦力的真正原因在于接触摩擦区两表面之间的分子粘附作用。

2、表面分子吸引力理论:认为摩擦是接触表面分子间相互排斥力与相互吸引力的作用结果。

3、分子机械摩擦理论:认为机械与分子吸附是摩擦之源。

摩擦与接触面微凸体的弹塑性变形、微凸体相遇时的剪切、犁沟以及接触面分子吸引有关。

4、近代被公认的摩擦粘附理论:认为表观接触面积与真实接触面积差别很大,而且真实接触面积还会随摩擦条件而变化,两微凸体之间因存在吸附力而形成接点。

摩擦力应为剪断金属之间接点所需的力与硬金属表面微凸体在软金属表面犁沟所需力之和。

这一理论最初应用于两种金属之间的摩擦,现在,已深入到非金属等许多其他材料。

第一章表面性质与表面接触1、为什么在选择润滑剂时希望其表面张力越低越好?答:液体的表面张力越小,接触角越小,固体表面就越容易被液体表面浸润。

一般认为,液体的表面张力小于固体的表面张力即可润湿固体表面,所以在选择润滑剂时希望其表面张力越低越好。

《机械设计》第三节-摩擦-磨损-润滑

《机械设计》第三节-摩擦-磨损-润滑

t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体

混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2

摩擦学与润滑研究

摩擦学与润滑研究

摩擦学与润滑研究摩擦学和润滑研究是物理学和工程技术学科中的两个核心领域。

在机械工程、材料科学、面包车等工程学科中,摩擦和润滑是关键性问题。

本文将从以下几个方面介绍摩擦学和润滑研究的现状,问题和发展方向。

一、摩擦学的定义和研究领域摩擦学是研究固体表面之间相互作用及其一物体相对于另一物体沿接触面运动时所发生的摩擦现象的科学。

自然界中的摩擦,使得许多生物和机械系统能够正常运行。

但在许多情况下,摩擦是一件不希望的事情,它导致不必要的热量和能量损失,使机械设备的运行效率降低,甚至还会导致设备的故障和损坏。

基于解决这些问题,摩擦学的研究主要关注以下几个领域:1. 摩擦学基本原理和理论摩擦学理论是摩擦学的基础,它涉及摩擦现象的机制、影响因素、计算模型等问题。

目前,摩擦学理论主要包括经典摩擦学、摩擦表面物理学、统计摩擦学、纳米摩擦学、分子动力学摩擦学等研究分支。

这些理论为机械设备的设计、制造和维修提供了理论基础。

2. 摩擦学实验技术摩擦学实验技术是确定摩擦学性质的关键,它包括表征摩擦学性能的试验方法、测试设备、测试标准等。

目前,快速发展的纳米技术为摩擦实验提供了新的实验手段,例如原子力显微镜、扫描隧道显微镜等。

3. 摩擦学应用摩擦学的应用非常广泛,主要包括摩擦学材料、润滑油液、轴承技术、微机电系统、电子设备热管理等。

摩擦学在制造业、航空航天、交通运输、军事等领域都有重要的应用。

二、润滑研究的定义和研究领域润滑是减少摩擦及其相关损害的一种方法,它通过在两个物体的接触界面处插入一个润滑介质(例如油、脂、液态金属等)来降低摩擦系数并减少磨损。

润滑学是研究液体、气体和固体之间的摩擦和润滑现象的学科。

润滑学研究的内容包括:1. 液态和固态润滑介质液态润滑介质是液体,通常包含油和脂。

液体作润滑剂时具有较好的黏滞性和流动性。

固态润滑介质主要是基于润滑层的存在而减小摩擦力,例如润滑薄膜的形成和固体润滑剂的使用。

2. 润滑机理润滑机理包括分子间吸附、润滑膜形成、固体润滑剂作用等。

金属加工润滑基础知识之一摩擦学

金属加工润滑基础知识之一摩擦学

金属加工润滑基础知识之一摩擦学金属加工润滑基础知识之一摩擦学摩擦学的三个方面:摩擦、磨损、润滑摩擦:相互接触的物体在相对运动时或具有相对运动的趋势时,接触面间发生阻碍相对运动的现象,称为摩擦。

所产生阻碍其相对运动的阻力称之为摩擦力。

特征:摩擦阻力、摩擦热量、材料磨损摩擦种类:(按摩擦副表面的润滑状态分类)1、干摩擦:在没有任何润滑剂的条件下,两物体表面间的摩擦。

2、液体摩擦:又称流体摩擦。

是发生在液体内部的一种摩擦现象,包括纯液体流动时的摩擦和液体将金属表面隔开时的摩擦。

一般来讲,这层液体的厚度在2微米以上。

3、边界摩擦:当固体表面不是被一层液体隔开,而是被一层很薄的吸附油膜隔开,或是被一层具有分层结构和润滑性能的边界膜隔开时的摩擦,称为边界摩擦。

这层膜的厚度一般在0.1-1微米以下。

4、混合摩擦:物体相对运动时,由于它的表面粗糙度不同,当凸起较高的部分发生边界摩擦时,凸起较低的部分处于液体摩擦状态或半液体摩擦中,当凸起较低的部分处于边界摩擦时,凸起较高的部分因挤压较剧烈会导致边界膜破烈,其表面直接接触发生局部干摩擦、半干摩擦。

磨损:定义:相互接触的物体在相对运动时,表层材料不断发生的损耗的过程,或者产生残余变形的现象。

磨损的三个阶段:磨合、稳定磨损、急剧磨损磨损的类型:1、粘附磨损:接触表面相对运动时,由于分子间的吸引力作用而产生粘附连接,致使材料从表面脱掉的磨损。

2、磨料磨损:接触表面相对运动时,由于硬质颗粒或较硬表面上的微凸体,在摩擦过程中的“梨削”“切削”“磨削”作用引起表面擦伤,表层材料脱落或分离出碎屑和其他磨粒。

3、疲劳磨损:两个相互作用的摩擦表面,由于表层材料疲劳,产生微观裂纹并分离出磨粒和碎片剥落,形成凹坑,造成磨损。

4、腐蚀磨损:摩擦副在第三介质的作用下发生的腐蚀磨损,比如:润滑油酸化变质产生的酸性油泥;手汗;潮湿空气中的氧、二氧化硫、硫化氢等等。

磨损的影响因素:1、润滑对磨损的影响(降低摩擦系数,液体润滑时能防止粘附磨损,洁净润滑能减少磨料磨损;有防锈性能的润滑剂能减少腐蚀磨损)2、材料性能对磨损的影响(材料的硬度和韧性;硬度决定表面抵抗能力,过高硬度易产生碎屑,产生磨料磨损。

摩擦与润滑整理资料

摩擦与润滑整理资料

Chap 11.外摩擦:发生在工件和工具接触面之间,阻碍金属流动的摩擦,称外摩擦,是影响材料变形的重要因素之一。

2.研究摩擦的意义:全世界工业能源的1/3被摩擦损耗掉,失效零件的80%是由于磨损造成的。

因此,发展摩擦学可以有效的节约能源。

Chap21.金属塑性成形过程中摩擦的特点和作用如何?特点:(1)在高压下产生的摩擦;(2)较高温度下的摩擦;(3)伴随着塑性变形而产生的摩擦;(4)摩擦副(金属与工具)的性质相差大。

作用:(1)不利的方面:(a)改变物体应力状态,使变形力和能耗增加;(b)引起工件变形与应力分布不均匀;(c)恶化工件表面质量,加速模具磨损,降低工具寿命,而且降低制品的表面质与尺寸精度;(2)利用:(a)增大摩擦改善咬入条件,强化轧制过程;(b)增大冲头与板片间的摩擦,强化工艺,减少起皱和撕裂等造成的废品。

2.金属塑性成形过程中摩擦的类型及各自的特征是什么?(1)干摩擦:完全没有润滑,金属与工具之间直接接触。

(2)流体摩擦:较厚的润滑层将金属与工具隔开,摩擦发生在流体内部的分子之间,与接触表面的状态无关,与流体的粘度,速度梯度等。

(3)边界摩擦:介于干摩擦和流体摩擦的一种摩擦类型。

(4)混合摩擦:摩擦表面上既存在干摩擦状态,也存在边界摩擦状态和流体润滑状态的一种摩擦类型。

Chap31.金属表层的结构组成如何?金属材料的表面层结构注意:加工硬化层也叫冷硬层和贝氏体层;氧化层又称污染层。

2.何谓表面粗糙度及表示方法有哪些?加工表面上具有的较小间距和峰谷所组成的微观几何形状特性,称为表面粗糙度。

表征材料表面微观几何形状特征,表面微凸体的高度与分布。

表示方法有:(1)轮廓算术平均偏差Ra 该方法能够充分反映表面微观几何特征但对于测量过于粗糙或光滑的表面不适用。

(2)微观不平度十点高度Rz 该方法测量简便,但只反映峰高,不反映峰的几何特征,受测量者主观影响较大,无周期性的宏观误差。

(3)轮廓最大高度Ry 对控制深加工痕迹有重要意义,保证小零件的表面质量,不如Rz反映的几何特征准确。

金属材料表面润滑与摩擦减磨研究

金属材料表面润滑与摩擦减磨研究

金属材料表面润滑与摩擦减磨研究摩擦磨损是金属材料在接触和相对运动过程中不可避免的现象,它会导致材料的失效和寿命缩短。

为了降低摩擦磨损对金属材料的影响,科学家们进行了大量的研究,并提出了各种表面润滑和摩擦减磨的方法。

本文将探讨金属材料表面润滑与摩擦减磨研究的最新进展。

1. 润滑机制的研究润滑是减小金属材料摩擦磨损的重要手段之一。

科学家们通过研究润滑机制,可以了解金属材料在接触和相对运动过程中的摩擦行为并设计相应的润滑材料。

传统的润滑机制主要包括液体润滑、固体润滑和气体润滑。

液体润滑是通过润滑油或润滑脂在金属表面形成液膜,减小金属材料之间的直接接触,从而减小摩擦和磨损。

固体润滑是将固体材料添加在金属表面形成一层均匀的薄膜,如涂层或涂敷纳米颗粒。

气体润滑则是在接触面之间生成气体膜,减小接触面积,降低摩擦力。

近年来,随着纳米科技的发展,基于纳米颗粒的润滑机制逐渐受到关注。

研究人员通过研究纳米颗粒的表面性质和摩擦行为,设计出了一系列具有优异润滑性能的纳米润滑材料。

2. 润滑材料的开发在金属材料表面润滑和摩擦减磨研究中,润滑材料的开发是至关重要的。

科学家们通过改良传统润滑材料,设计新型润滑材料以满足不同工况下的需求。

在液体润滑领域,研究人员通过改良润滑油的添加剂,使其具有更好的抗氧化性、高温稳定性和抗磨损性能。

同时,还有人开发了基于纳米润滑颗粒的液体润滑材料,提高了润滑材料的润滑效能。

在固体润滑方面,研究人员设计了新型的涂层材料,例如石墨烯涂层、钻石涂层等,这些涂层具有良好的抗摩擦和抗磨损性能。

此外,还有学者在金属表面涂敷纳米颗粒,形成纳米晶体润滑材料,有效减小了金属材料的摩擦系数。

3. 表面改性技术除了润滑材料的开发,表面改性技术也是金属材料表面润滑与摩擦减磨研究中的一项重要内容。

通过改变金属表面的结构和性质,可以改善其摩擦和磨损性能。

一种常用的表面改性技术是离子注入。

离子注入可以改变金属表面的化学成分和微观结构,从而提高其硬度和抗摩擦性能。

摩擦与润滑基础知识

摩擦与润滑基础知识

摩擦与润滑基础知识目录一、摩擦学概述 (3)1. 摩擦定义及分类 (4)2. 摩擦现象产生原因 (5)3. 摩擦学研究内容 (6)二、润滑基础 (7)1. 润滑概念及作用 (8)2. 润滑剂的种类与选择 (9)3. 润滑剂的性能指标 (11)三、摩擦与润滑原理 (13)1. 摩擦原理 (14)(1)干摩擦与湿摩擦 (15)(2)静摩擦与动摩擦 (16)(3)摩擦系数 (17)2. 润滑原理 (17)(1)液体润滑理论 (18)(2)边界润滑理论 (19)(3)混合润滑理论 (20)四、摩擦与润滑影响因素 (21)1. 材料性质影响 (22)2. 载荷影响 (23)3. 速度影响 (24)4. 温度影响 (24)5. 环境影响 (25)五、摩擦与润滑在机械设备中的应用 (26)1. 机械设备中的摩擦现象分析 (28)2. 润滑系统在机械设备中的作用 (29)3. 典型机械设备的润滑设计实例 (30)六、摩擦与润滑的试验方法及设备 (31)1. 摩擦试验方法及设备 (32)2. 润滑试验方法及设备 (33)3. 实验结果分析与评价 (34)七、摩擦与润滑的故障诊断及维护保养 (35)1. 摩擦故障类型及诊断方法 (36)2. 润滑系统故障分析及处理 (38)3. 设备维护保养策略与建议 (39)八、摩擦与润滑的未来发展趋势 (41)1. 新材料在摩擦与润滑领域的应用 (42)2. 智能润滑技术的发展趋势 (43)3. 绿色环保理念在摩擦与润滑领域的应用前景 (44)一、摩擦学概述摩擦学是研究摩擦现象及其产生机理、摩擦过程中的物理和化学变化、摩擦性能和润滑技术的一门科学。

它是机械工程、材料科学、物理学和化学等多个学科的交叉领域。

在现代工程实践中,摩擦学对于提高机械效率和可靠性、节约能源、减少磨损和延长设备寿命等方面具有至关重要的作用。

摩擦是一种普遍存在的物理现象,任何相互接触的物体在相对运动时都会产生摩擦。

摩擦与润滑基础

摩擦与润滑基础
Viscosity, cSt 1000 900 800 700 600 500 400 300 200 100 0 -20 -10 0 10 20 30 40 50 60 70 80 90 100
Normal course of a viscosity-temperature curve (parabolic)
滴点 (DIN ISO 2176, ASTM-D 566)
滴点指在标准的测试条件下, 滴点指在标准的测试条件下,润滑脂达到一定 流动性的温度。通常润滑脂在此温度下, 流动性的温度。通常润滑脂在此温度下,增稠剂分 子结构在高温下发生不可逆的破坏 发生不可逆的破坏, 子结构在高温下发生不可逆的破坏,不能再容纳基 础油。 础油。 滴点并不是一个很精确的润滑脂工作上限温度。 滴点并不是一个很精确的润滑脂工作上限温度。 工作上限温度是指润滑脂仍能提供很好的润滑性能 工作上限温度是指润滑脂仍能提供很好的润滑性能 不会剧烈地改变润滑脂的一致性 一致性。 ,并不会剧烈地改变润滑脂的一致性。滴点只是一 个参考值, 个参考值,在很大程度上依赖于增稠剂的类型和质 它的单位为° 量。它的单位为°C 。
润滑油的性能指标- 润滑油的性能指标-闪点和燃点 闪点 在一定的条件下,加热油品使油面上方的油蒸气 在一定的条件下 加热油品使油面上方的油蒸气 与空气的混合气体在同给定的小火焰接触时发 生闪火现象的温度. 生闪火现象的温度 闪点反映出可燃液体燃烧或爆炸的可能性的大 同时也是衡量高温性能的一个参考 也是衡量高温性能的一个参考,但是闪 小。同时也是衡量高温性能的一个参考 但是闪 点不能代表润滑油的实际工作温度的高低. 点不能代表润滑油的实际工作温度的高低 燃点 燃点是油的蒸汽和空气的混合物在点燃后接着 燃烧的温度。 燃烧的温度。

摩擦学中的磨损和润滑研究

摩擦学中的磨损和润滑研究

摩擦学中的磨损和润滑研究一、引言摩擦学是研究摩擦、磨损和润滑等问题的一门重要学科,其涉及到材料学、力学、化学、电子学等多个学科领域。

磨损和润滑是摩擦学研究的关键问题,其研究对于提高机械设备的使用寿命、降低能源消耗、提高生产效率等方面具有重要意义。

本文将重点阐述摩擦学中磨损和润滑的研究现状及未来发展方向。

二、磨损与磨损机理磨损是指摩擦双体之间的材料表面损伤和材料的松散、脱落等现象,它会对机械设备的寿命和性能产生严重影响。

磨损机理包括磨粒磨损、微动磨损、疲劳磨损等。

其中磨粒磨损主要是由于磨粒在摩擦过程中撞击表面而造成的局部磨损。

微动磨损是由微观结构上的相对位移和相互接触引起的。

疲劳磨损是由于表面应力加载和循环变化引起的。

三、润滑与润滑机理润滑是指在两个表面之间形成液体或膜层,降低摩擦系数和磨损的现象。

润滑机理主要分为液体润滑、固体润滑和气体润滑。

液体润滑是指在两个表面之间形成液体膜层,减少表面间的接触和摩擦;固体润滑是指添加固体润滑剂,形成在表面上的保护膜层,减少表面间的接触及摩擦;气体润滑是指利用高压气体形成气体薄层,以减少表面间接触,减轻摩擦力和磨损。

四、研究现状1. 磨损研究在磨损方面,目前的研究主要集中在材料的选择和改性上,包括表面改性、材料合成和涂层技术。

表面改性的方法包括化学改性、物理改性和机械改性等。

化学改性主要是通过表面处理等方法,改变材料表面化学性质以提高耐磨性和耐腐蚀性能。

物理改性是利用离子注入、电子束强化等方法改变材料的物理性能;机械改性主要是通过表面处理、高温等方式增强材料的硬度和韧性。

2. 润滑研究在润滑方面,目前的研究主要集中在润滑剂的开发和润滑机理的研究上。

润滑剂的研究主要包括传统的润滑油和润滑脂的改进,以及新型的润滑剂的研究和应用。

润滑机理的研究主要是将摩擦、粘度、黏度、液态密度等多个参数综合考虑,构建一个更为科学合理的润滑理论体系。

五、未来发展方向未来的磨损和润滑研究将更加注重材料的基础性能和提高材料防磨损和润滑性能。

摩擦学与润滑学研究

摩擦学与润滑学研究

摩擦学与润滑学研究摩擦学和润滑学是机械工程学的重要分支,主要研究摩擦、磨损、润滑和密封等方面的问题。

摩擦学和润滑学在很多领域都有着重要的应用,如机械工业、汽车工业、轨道交通、飞行器、船舶、军事装备等。

在这篇文章中,我将简要介绍摩擦学和润滑学的基本概念和研究内容,以及它们在现代工业中的应用。

一、摩擦学1.1 摩擦的基本概念摩擦是物体相对运动时产生的阻力,也是物体静止时阻碍其运动的力。

摩擦force 是由于接触面之间存在微小颗粒间的力学相互作用引起,是由于表面几何和物质特性,包括材料粗糙度、硬度、弹性、塑性、润湿性等方面。

摩擦力的大小取决于接触面的材料、表面特性、受力面的压力以及相对运动速度等因素。

摩擦力的方向始终垂直于接触面,与运动方向相反。

1.2 摩擦的磨损和热效应摩擦磨损是暴露在环境中的材料被力或微动摩擦力磨损去除的现象,是摩擦过程中产生的不可逆现象,磨损后造成的表面形貌和性质发生变化,特别是体现在磨损面的失效问题,对机械传动、轴承、密封等工程实际应用有着深远的影响。

在摩擦过程中,能量被转化为热能,因此摩擦产生的热效应也是摩擦学研究的重要方面。

当摩擦面受到外力作用时,摩擦面的材料开始发热。

当发热时,热量被摩擦面从接触点周围传递到大规模边界层(FBL),然后扩散到热影响区域(TIR)。

热效应对于不同的摩擦材料和运动速度有不同的影响,在液体中,摩擦发热可被通过润滑来控制。

1.3 摩擦的控制和应用摩擦能量损失造成能源和材料的浪费以及系统效率的降低。

因此,降低摩擦力和磨损是摩擦学的主要目标。

摩擦学研究的主要内容包括摩擦学理论、材料摩擦和磨损机理、摩擦学测试技术和摩擦学应用控制等。

摩擦学的应用涉及到润滑学、机械制造、材料科学、表面和界面科学等多个领域。

随着现代制造和工程学的不断发展,摩擦学的研究越来越受到关注。

二、润滑学2.1 润滑的基本概念润滑是表面之间存在的液体、固体或气体薄膜作为分离媒体,以减小摩擦、磨损和热效应,从而对不同的运动副表面进行的交互减摩或消耗能量等措施。

摩擦学在材料表面处理中的应用

摩擦学在材料表面处理中的应用

摩擦学在材料表面处理中的应用第一章概述摩擦学是研究摩擦、润滑、热、磨损和涂层等摩擦副作用的科学。

材料表面处理是指对物体表面进行物理化学的处理,以改变其表面性质达到一定需求的工艺。

材料表面处理中不可避免与摩擦学产生交集,特别是在表面涂装、减少磨损方面。

本文旨在探讨摩擦学在材料表面处理中的应用。

第二章摩擦学在涂层中的应用涂层是为了改善金属材料表面性质而采取的一种表面处理。

如何提高涂层的耐磨损性是一个重要的问题。

其中,摩擦学是解决这一问题的重要方法。

利用涂层材料自身的摩擦系数,可以有效地改善金属材料表面的耐磨损性。

例如,某些涂层材料具有较高的摩擦系数,经过涂层后,磨损过程中摩擦系数显著变化,从而提高金属材料的耐磨损性。

另外,采用涂层复合技术也是提高涂层材料性质的一种有效途径。

常见的涂层复合技术包括物理气相沉积、化学气相沉积等。

第三章摩擦学在表面抛光中的应用表面抛光是指通过物理或化学方法,对金属表面进行处理,形成高亮度表面,具有很高的美感和耐腐蚀性。

表面抛光最重要的问题就是如何处理表面缺陷(如划痕、凹陷、气孔等),使其具有较好的表面质量。

此时,摩擦学技术的应用成为关键。

常见的处理方法包括抛光、磨光、切削等方法。

其中,抛光是一种最常用的表面抛光方法。

抛光过程中,通过研磨剂的作用,将表面微弱划伤或其余不理想的表面结构去除,从而形成高质量的表面。

此时,研磨剂选择和砂纸编号的合理使用成为影响抛光质量的重要因素。

第四章摩擦学在电解抛光中的应用电解抛光是低温、低压、低电流密度下进行的一种表面抛光方法。

电解抛光是一种绿色表面抛光方法,具有去除表面凹凸不平度、提高表面光泽度、减少表面缺陷的功能。

其优势包括去除材料的压印和其它几何结构、消除金属表面的残余应力、去除化学物质或碳化物等杂质。

电解抛光的方法操作简单,成本也比较低。

其在表面抛光过程中常使用金属离子、有机酸和氧化物等作为抛光剂。

常见的抛光液体系是碳酸钠、碳酸氢钠、硫酸钠等。

机械设计的摩擦学与润滑技术

机械设计的摩擦学与润滑技术

机械设计的摩擦学与润滑技术摩擦学和润滑技术是机械设计中非常重要的一部分,它们对于机械系统的性能、寿命和效率都有着直接的影响。

摩擦学主要研究机械表面之间的相互作用和摩擦现象,润滑技术则是为了减少摩擦和磨损而采取的措施。

本文将从摩擦学和润滑技术的基本原理、常见问题以及未来发展方向等方面进行探讨。

1. 摩擦学的基本原理摩擦是指两个物体相对运动时由于黏附和阻碍而产生的相互阻力。

摩擦力的大小取决于物体表面的粗糙程度、接触面积以及施加在物体上的压力等因素。

摩擦学通过研究摩擦系数、摩擦力和摩擦磨损等参数,来理解和优化摩擦现象。

2. 摩擦学的应用摩擦学的应用非常广泛,例如在机械传动系统中,通过合理选择润滑方式和材料来减少能量损失和磨损,提高传动效率和寿命;在轴承和密封件中,采用润滑剂和润滑膜形成的摩擦系统可以降低摩擦和磨损,减少能量损失;在工具刀具中,通过表面涂层和处理等方式,可以降低切削力和磨损,提高切削效率和使用寿命。

3. 润滑技术的基本原理润滑是通过在摩擦表面之间形成润滑膜,减少直接接触而减小摩擦和磨损的过程。

润滑技术主要包括干润滑和液体润滑两种形式。

干润滑通常是利用一些固体润滑剂,如固体脂肪酸、陶粒等,形成润滑膜来减小摩擦;液体润滑则是利用润滑油、润滑脂等液体材料来形成润滑膜。

4. 润滑技术的应用润滑技术在机械设计中起着至关重要的作用。

在发动机等高温高速摩擦系统中,润滑油可以起到降低摩擦、冷却和清洁的作用;在轴承和齿轮传动系统中,润滑油和润滑脂可以减少摩擦和磨损,提高传动效率和使用寿命;在光学器件、半导体制造等领域,可以利用特殊的润滑技术来保持系统的稳定性和精度。

5. 摩擦学与润滑技术的未来发展方向随着机械设计和制造的不断发展,摩擦学和润滑技术也在不断创新和改进。

未来的发展方向主要包括以下几个方面:发展更高效的润滑剂和润滑脂,以适应更高速、更高温和更重载的工况要求;研发基于纳米技术的新型润滑材料和润滑技术,以实现更小摩擦和更长使用寿命;研究润滑液的微观结构和流变性质,深入理解润滑膜的形成和破坏机制。

材料摩擦学的研究与应用

材料摩擦学的研究与应用

材料摩擦学的研究与应用随着人们对材料科学的深入研究,材料摩擦学越来越受到人们的关注。

材料摩擦学是研究固体在相互接触时的摩擦和磨损现象的一门学科,它是机械、电子、汽车、航空、能源等多个领域的基础性科学。

本文将介绍材料摩擦学的研究和应用。

一、材料摩擦学的基础理论材料摩擦学的基础理论主要包括两方面,即固体摩擦学和润滑学。

固体摩擦学是研究干摩擦、滑动摩擦和滚动摩擦等现象的基础科学;而润滑学则是研究在接触面上加入润滑剂后所形成的润滑膜,以及液体摩擦学和气体摩擦学等问题的科学。

材料摩擦学的理论研究主要涉及两个方面,即材料的性质和表面几何形状,它们在相互接触时会产生接触形变和化学作用,从而影响摩擦性能。

例如,材料的硬度、抗磨损性和表面的粗糙程度都会影响摩擦学性能,而材料表面的温度、湿度、氧气含量和化学反应等因素也会影响摩擦学性能。

二、材料摩擦学的应用1. 机械领域在机械制造中,摩擦是一项非常重要的考虑因素。

因此固体摩擦学和润滑学的理论研究在这个领域是必不可少的。

例如在轴承、齿轮、链条等机械装置中,摩擦学的理论研究可用于预测耗能损失、角接触和平面接触等问题,从而优化机械结构设计和减少机械损失。

此外,在摩擦材料的选择方面,材料的摩擦系数、强度、耐磨性、温度和密度等因素是非常重要的。

例如在飞机零件制造中,有些部件需要选择摩擦系数较低的材料,以便减少磨损和能量损失,同时,材料强度和耐磨性也需满足要求。

2. 电子领域在电子材料制造方面,摩擦学的理论研究是十分关键的。

例如,半导体芯片生产过程中,需要进行大量摩擦接触以将薄膜固定在晶片表面,同时,晶片和薄膜的摩擦性能也会直接影响芯片的电气性能。

此外,在磁盘驱动器的制造中,摩擦学的理论研究也很重要。

原因是磁盘制造过程中,需要用一种液体来润滑磁头与磁盘之间的接触。

而液体会对磁盘表面造成化学反应及纹理留下痕迹,这些因素都会影响磁头的读取性能和磁盘寿命。

3. 能源领域材料摩擦学在能源领域也有很多应用。

机械工程中的摩擦学与润滑技术研究

机械工程中的摩擦学与润滑技术研究

机械工程中的摩擦学与润滑技术研究摩擦学与润滑技术是机械工程领域中不可或缺的重要内容。

摩擦学与润滑技术的研究,不仅深刻影响着机械设备的性能与寿命,也与环保和能源消耗密切相关。

1. 摩擦学的基本概念摩擦学是研究固体在相对运动时所产生的阻力及其规律的一门学科。

在机械运动中,摩擦作用常常导致能量损耗、磨损和噪音等问题。

因此,减小摩擦力,提高机械效率,是摩擦学研究的重要目标之一。

2. 摩擦学的研究内容与方法摩擦学研究的内容丰富多样,包括固体摩擦学、液体摩擦学、气体摩擦学等。

通过实验、数值模拟和理论分析等手段,摩擦学研究人员可以深入探索摩擦阻力产生的原因、传递机制和控制方法。

3. 摩擦学在机械工程中的应用摩擦学研究应用于各个机械系统中,包括发动机、齿轮传动、轴承等。

例如,在发动机研发中,通过降低摩擦力,可以提高燃油效率和减少污染物排放;在齿轮传动中,适当的润滑与润滑剂选择能够延长齿轮使用寿命。

4. 润滑技术的基本原理润滑技术是摩擦学的重要分支,它通过在接触表面形成充分的润滑膜来减少摩擦和磨损。

常见的润滑方式包括干摩擦、边界润滑、混合润滑和完全润滑。

不同的润滑方式对于减小摩擦力和延长机械寿命都起到关键作用。

5. 润滑技术在工程中的应用不同机械系统中的润滑技术应用也具有自身特点。

例如,在高速运动的摩擦副中,边界润滑常常起到关键作用;而在航空航天器械中,由于极端工况下的温度和压力,润滑系统需要经过特殊设计和优化。

6. 摩擦学与润滑技术的挑战和前景随着科技的不断进步,机械工程领域对于更高效、更节能、更环保的技术需求日益增长。

摩擦学与润滑技术的研究面临着新的挑战,并在应对挑战的过程中取得了一系列创新成果。

例如,新型润滑剂的开发、表面涂层技术的应用和纳米材料在摩擦学中的研究等,为机械工程领域提供了新的发展方向。

总结起来,摩擦学与润滑技术在机械工程中具有重要地位与作用。

通过深入研究摩擦学与润滑技术,能够提高机械设备的性能与寿命,降低能源消耗和环境污染。

摩擦学与润滑理论

摩擦学与润滑理论

一、表面形貌(续)
一、表面形貌(续)
二、表面性质
晶体结构
体心
面心
密排六方
二、表面性质(续)
金属表面的晶格缺陷
二、表面性质(续)
二、表面性质(续)
三、表面的真实接触(续)
三、表面的真实接触(续)
接触面积计算
单一球体同光滑平面接触(赫兹接触)
简单模拟粗糙表面接触
结论:微凸峰的变形在
弹性条件下,真实接触面积与载荷的2/3次方成正比完全塑性条件下,真实接触面积与载荷成线性关系
粘着和犁沟理论
粘着{冷焊-剪断-剪切强度}
犁沟/变形{机械理论}
无润滑状态下金属副摩擦可忽略不计
一般,为[0.2,0.3],与实际情况不同原因是未考虑剪切作用对接触面积的影响,并
其他模型静电力模型
摩擦的影响因数
表面膜
减摩材料和摩阻材料
减摩材料
(粘着、剪切)
滑动轴承合金、复合材料摩阻材料
钢-钢
磨料磨损
磨料磨损
(1)磨料磨损形式
两体磨料磨损:
凿削式
三体磨料磨损:
高应力碾碎式
0.8 1.3
表面疲劳磨损
疲劳磨损
(1)材料硬度(2)润滑介质(3)环境(水分)
氧化、磨料、粘着磨损交替
(1)温度与环境气氛
温度升高,形成保护层较厚,
(2)循环次数、
(5)改善结构设计
硬度提高
有利于抗微动磨损
冲蚀磨损(3)冲击角度
(5)环境温度与介质气蚀磨损
耐磨设计
耐磨设计
摩擦学与润滑理论
粘压性
牛顿流体
粘温性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料摩擦学和表面润滑
随着工业发展的不断推进,材料摩擦学和表面润滑成为了现代工业制造的重要
组成部分。

材料摩擦学是材料科学中的一个重要分支,旨在研究材料的摩擦和磨损行为,以便制造出更加耐用、高效的材料。

而表面润滑则是通过给机器零部件表面涂上润滑油或润滑剂,减少摩擦和磨损,从而提高机器的使用寿命和运转效率。

材料摩擦学的研究范围很广泛,主要涉及材料表面的磨擦、磨损、失效等问题。

在工业制造领域里,经常遇到各种材料之间的接触和摩擦问题,这些问题如不加以处理,就会导致机器部件的磨损和失效。

因此,材料摩擦学的发展,旨在通过研究材料分子间的相互作用、磨损机制等等,以制造出更加耐磨耐用的材料。

表面润滑是为了解决材料磨损问题而采用的一种有效的手段。

在机器零部件的
曲面接触处喷涂一层润滑油或润滑剂,能够有效降低接触的摩擦阻力和磨损。

润滑剂及其性能的选择与设计是表面润滑技术的关键。

通常情况下,我们需要考虑润滑剂的黏度、稳定性、化学性能、沸点等因素,以便达到预期的润滑效果。

材料摩擦学和表面润滑的研究不仅仅局限于工业领域。

在生物医学中,运用表
面润滑技术也取得了很好的效果。

人体内部的大部分组织和器官都需要润滑,否则就会导致疾病和损伤。

比如,人体的关节就是一种典型的润滑机制,通过关节腔内滴入适当量的关节液,能够有效降低骨骼之间的摩擦和磨损,从而达到更好的缓解疼痛和减轻关节炎症状的目的。

除了在生物医学领域,材料摩擦学和表面润滑的应用也渗透到了日常生活中的
许多领域。

例如,衣物洗涤时添加的洗涤液、润滑油,汽车引擎加油时加入的润滑油等。

这些润滑油不仅能减少材料的磨损和失效,也能延长机器的使用寿命,降低维修成本。

总的来说,材料摩擦学和表面润滑在现代工业生产中具有十分重要的意义。


些技术的应用不仅能够提高生产效率,保障机器的高效稳定运转,也能降低生产过
程中的磨损和失效,最终减少生产成本。

同时,在生物医学和日常生活等领域里的应用,也为我们提供了更加健康、舒适的生活体验。

未来,材料摩擦学和表面润滑的研究仍会不断深入,我们有理由相信这些领域的发展将给我们带来更多的惊喜和便利。

相关文档
最新文档