八年级数学上册 期末试卷培优测试卷
人教版八年级数学上册 期末试卷培优测试卷

人教版八年级数学上册期末试卷培优测试卷一、八年级数学全等三角形解答题压轴题(难)1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.【答案】(1)42m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【解析】【分析】(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论.【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩; (2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD=OA =4,OB =2,∴由勾股定理可得:AB =BD =25,∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB=2∴NB﹣FB=2×2=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.2.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵AE CGA BOG AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵BE BGEBF GBF BF BF=⎧⎪∠=∠⎨⎪=⎩,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+CF=AE+CF+DE+DF=AD+CD=10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.3.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.4.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.5.如图,在平面直角坐标系中,A、B坐标为()6,0、()0,6,P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM ON=,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD OP⊥,交OP、OA分别于F、D两点,E为OA上一点,且PEA BDO=∠∠,试判断线段OD与AE的数量关系,并说明理由.【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)OD=AE,理由见解析【解析】【分析】(1)连接OP.只要证明△PON≌△PAM即可解决问题;(2)作AG⊥x轴交OP的延长线于G.由△DBO≌△GOA,推出OD=AG,∠BDO=∠G,再证明△PAE≌△PAG即可解决问题;【详解】(1)结论:PM=PN,PM⊥PN.理由如下:如图1中,连接OP.∵A、B坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P为AB的中点,∴OP=12AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,∴∠OPA=90°,在△PON 和△PAM 中,ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD=CD,即AD=12BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于12BC.理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=12BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.8.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
河南省信阳市息县2023_2024学年人教版八年级数学上学期期末培优卷(有答案)

河南省信阳市息县2023_2024学年人教版八年级数学上学期期末培优卷一、选择题(本题共10小题,共30分)1.以下四家银行的标志图中,不是轴对称图形的是( )A. B. C. D.2.若长度为,,的三条线段能组成一个三角形,则的值可能为( )x 23x A. B. C. D. 65133.下列计算正确的是( )A. B. C. D. (a −1)2=1a 2(−a 3)2=−a 6(a m )n =a m +n a 3÷2a =2a 24.如图,和中,,,添加下列哪一个条件无法证明≌△ABC △DEF AB =DE ∠B =∠DEF △ABC( )△DEF A. B. C. D. BE =CF ∠A =∠D AC =DF AC//DF5.等腰三角形的一个角是,它的底角的大小为( )70°A. B. C. 或 D. 或70°40°70°40°70°55°6.下列正确的是( )A. B. 2a 2b ⋅3a 2b 2=6a 6b 30.00076=7.6×104C. D. −2a(a +b)=−2a 2+2ab (2x +1)(x−2)=2x 2−3x−27.把代数式中的,同时扩大倍后,代数式的值( )x 2y x−y x y 2A. 扩大为原来的倍 B. 扩大为原来倍 C. 扩大为原来的倍D. 缩小为原来的一半1248.如图,在中,、分别是、边上的高,在上截取,在的延长线上截△ABC BE CF AC AB BE BD =AC CF取,连接、,则下列结论错误的是( )CG =AB AD AG A. B. AD =AG AD ⊥AGC. 为等腰直角三角形D. △ADG ∠G =∠ABD9.如图,在等边三角形中,是中线,点,分别在,上,且,ABC BD P Q AB AD BP =AQ =QD =1动点在上,则的最小值为( )E BD PE +QE A. B. C. D. 234510.如图,已知,点是的平分线上的一个定点,点,分别在射线和射线∠AOB =120°D ∠AOB E F OA 上,且下列结论:是等边三角形;四边形的面积是一个定值;OB ∠EDF =60°.①△DEF ②DEOF 当时,的周长最小;当时,也平行于其中正确的个数是( )③DE ⊥OA △DEF ④DE//OB DF OA.A. 个 B. 个 C. 个 D. 个1234二、填空题(本题共5小题,共15分)11.杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是______.12.如图,中,平分,于点,于点,,,,△ABC BD ∠ABC DE ⊥AB E DF ⊥BC F S △ABC =18AB =8BC =4则______.DE =13.若是完全平方式,则的值为______ .x 2+2(m−1)x +16m 14.如图,的度数是______ .∠A +∠B +∠C +∠D +∠E +∠F 15.已知关于的分式方程.x 3x x−1=m x−1+2若,分式方程的解为______ ;(1)m =4若分式方程无解,则的值为______ .(2)m 三.解答题(本题共8小题,共75分)16.分计算:(8);.(1)(−a )3⋅a 2+(2a 4)2÷a 3(2)(2x−1)2−(x +3)(x−3)17.分解分式方程:(8);.(1)3x 2−3x −1x−3=2x (2)12x−1+34x−2=1218.分先化简,再求值:,从-2,0,1,2,3这5个数中选一个你(9)(1−1a−1)÷a 2−4a 2−2a +1喜欢的数代入求值.19.9分如图,三个顶点的坐标分别为,,.()△ABC A(1,1)B(4,2)C(3,4)请写出关于轴对称的的各顶点坐标;(1)△ABC x △A 1B 1C 1请画出关于轴对称的;(2)△ABC y △A 2B 2C 2在轴上求作一点,使点到、两点的距离和最小,(3)x P P A B 请标出点,并直接写出点的坐标______ .P P 20.分认真观察下面这些等式,按其规律,完成下列各小题:(10);①42−22=4×3;②62−42=4×5;③82−62=4×7______ ;④…将横线上的等式补充完整;(1)验证规律:设两个连续的正偶数为,为正整数,则它们的平方差是的倍数;(2)2n 2n +2(n )4拓展延伸:判断两个连续的正奇数的平方差是的倍数吗?并说明理由.(3)821.10分永州市万达广场筹建之初的一项挖土工程招标时,接到甲、乙两个工程队的投标书,()每施工一天,需付甲工程队工程款万元,付乙工程队工程款万元,工程领导小组根据甲、乙2.4 1.8两队的投标书测算,可有三种施工方案:方案一甲队单独完成这项工程,刚好按规定工期完成:()方案二乙队单独完成这项工程要比规定工期多用天;()6方案三若由甲、乙两队合作做天,剩下的工程由乙队单独做,也正好按规定工期完工.()5请你求出完成这项工程的规定时间;(1)(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.()1 22.10分当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,例如,由图,(a+2b)(a+b)=a2+3ab+2b2可得等式:.(1)2由图,可得等式:______ .(2)(1)a+b+c=12ab+bc+ac=28利用中所得到的结论,解决下面的问题已知,,求a2+b2+c2的值.()△ABC∠B=60°D BC AD=AC11分在中,,是上一点,且.(1)1BC E CE=BD AE.AB=AE如图,延长至,使,连接求证:;(2)2AB F DF=DB AF=BC如图,在边上取一点,使,求证:;(3)3(2)P BC PA PF PA=PF PC BD如图,在的条件下,为延长线上一点,连接,,若,猜想与的数量关系并证明.23.答案1.【正确答案】B2.【正确答案】D 解:由题意得:,即,3−2<x <3+21<x <5则的值可能是,x 33.【正确答案】A 解:,此选项计算正确,故符合题意;A.∵(a −1)2=a −2=1a 2∴B.,此选项计算错误,故不符合题意;∵(−a 3)2=a 6∴C.,此选项计算错误,故不符合题意;∵(a m )n =a mn ∴D.,此选项计算错误,故不符合题意;∵a 3÷2a =12a 2∴4.【正确答案】C 5.【正确答案】D 解:当这个角是顶角时,底角;①=(180°−70°)÷2=55°当这个角是底角时,另一个底角为,顶角为.②70°40°6.【正确答案】D 解:,原选项计算错误,不符合题意;A.2a 2b ⋅3a 2b 2=6a 4b 3B.,原科学记数法表示错误,故此选项不符合题意;0.00076=7.6×10−4C.,原选项计算错误,不符合题意;−2a(a +b)=−2a 2−2ab D. ,计算正确,符合题意,(2x +1)(x−2)=2x 2−3x−27.【正确答案】C 解:将,同时扩大倍,得:,x y 2(2x )2⋅2y 2x−2y =8x 2y 2(x−y)=4⋅x 2y x−y 即扩大为原来的倍;48.【正确答案】D 解:、分别是、两边上的高,∵BE CF AC AB 垂直定义,∴∠AFC =∠AEB =90°()同角的余角相等,∴∠ACG =∠DBA()在与中,∴△ABD △GCA ,{BD =AC ∠ACG =∠DBA AB =CG ≌,∴△ABD △GCA(SAS),,∴∠AGC =∠DAB AD =GA∵∠CGA+∠GAF=90°,∴∠GAF+∠BAD=90°AD⊥AG,即.∴△ADG是等腰直角三角形.B故选项A,,C正确,9.【正确答案】BBC P'BP'=BP=1PP'P'Q EP'解:如图,在上其一点,使,连接,,,∵△ABC BD⊥AC D是等边三角形,于点,∴BD△ABC P'P BD AC=2AD 直线是的对称轴,点与点关于对称,,∴PE=P'E,∴PE+QE=P'E+QE≥P'Q,∴PE+QE P'Q的最小值为线段的长,∵AQ=QD=1,∴AC=2(AQ+QD)=2×2=4,∵△ABC是等边三角形,∴AC=BC∠C=60°,,∵AQ=BP'=1,∴CP'=CQ,∴△CP'Q是等边三角形,∴P'Q=CQ,∵CQ=AC−AQ=4−1=3,∴PE+QE3的最小值为,10.【正确答案】CD DM⊥OB M DN⊥OA N解:过点作于点,于点,如图所示:∵D∠AOB点是的平分线上的一点,,∴DM =DN ,,∵∠AOB =120°∠DNO =∠DMO =90°,∴∠MDN =60°,∵∠EDF =60°,∴∠EDN =∠FDM ≌,∴△DEN △DFM(ASA),∴DE =DF 是等边三角形;故正确;∴△DEF ①,∵S △DEM =S △DFN ,∴S △DEM +S 四边形DEON =S 四边形DEON +S △DFN 即,S 四边形DEOF =S 四边形DMON 点是的平分线上的一个定点,∵D ∠AOB 四边形的面积是一个定值,∴DMON 四边形的面积是一个定值,故正确;∴DEOF ②,∵DE ⊥OA 点与重合,∴E N 垂线段最短,∵的值最小,∴DE 当最小时,的周长最小,DE △DEF 当时,最小,的周长最小,故正确,∴DE ⊥OA DE △DEF ③,,∵DE//OB ∠D =∠DFB =60°,∵∠AOB =120°,∴∠DFB ≠∠AOB 一定与不平行,故错误.∴DF OA ④11.【正确答案】三角形的稳定性12.【正确答案】3解:是的平分线,于点,于点,∵BD ∠ABC DE ⊥AB E DF ⊥BC F ,∴DE =DF ,∵S △ABC =S △ABD +S △BDC =12AB ⋅DE +12BC ⋅DF =18即,12×8⋅DE +12×4⋅DE =18解得:,DE =313.【正确答案】或5−3解:,∵x 2+2(m−1)x +16=(x ±4)2=x 2±8x +16,∴2(m−1)=±8或.∴m =5−314.【正确答案】360°解:如图:,,∵∠E +∠A =∠1∠B +∠F =∠2,∵∠1+∠2+∠C +D =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°15.【正确答案】x =23解:当时,原方程即为:,(1)m =43x x−1=4x−1+2去分母得:,3x =4+2x−2解得:,x =2检验:当时,,x =2x−1≠0是原方程的根;∴x =2故;x =2方程去分母得:(2)3x =m +2x−2化简,得,x =m−2当时,分母为零,分式方程无解,x =1即,解得,m−2=1m =3时,方程无解.∴m =316.【正确答案】解:(1−1a−1)÷a 2−4a 2−2a +1=a−1−1a−1⋅(a−1)2(a +2)(a−2)=a−21⋅a−1(a +2)(a−2),=a−1a +2当时,原式.a =3=3−13+2=2517.【正确答案】解:解:(1)(−a )3⋅a 2+(2a 4)2÷a3=−a 3⋅a 2+4a 8÷a 3=−a 5+4a 5;=3a 5解:(2)(2x−1)2−(x +3)(x−3)=4x 2−4x +1−(x 2−9)=4x 2−4x +1−x 2+9.=3x 2−4x +1018.【正确答案】解:,(1)3x 2−3x −1x−3=2x ,3−x =2(x−3)解得:,x =3检验:当时,,x =3x(x−3)=0是原方程的增根,∴x =3原方程无解;∴,(2)12x−1+34x−2=12,2+3=2x−1解得:,x =3检验:当时,,x =34x−2≠0是原方程的根.∴x =319.【正确答案】(2,0)解:与关于轴对称,(1)∵△ABC △A 1B 1C 1x 点,,.∴A 1(1,−1)B 1(4,−2)C 1(3,−4)如图,即为所求.(2)△A 2B 2C 2如图,点即为所求,(3)P 点的坐标为.P (2,0)20.【正确答案】102−82=4×9解:由题意得:;(1)102−82=4×9故;102−82=4×9.(2)(2n +2)2−(2n )2=(2n +2+2n)(2n +2−2n)=4(2n +1)为正整数,∵n 为正整数,∴2n +1若两个连续的正偶数为,为正整数,则它们的平方差是的倍数;∴2n 2n +2(n )4是;理由:(3)设两个连续的正奇数为,为正数.2m−12m +1(m )(2m +1)2−(2m−1)2=[(2m +1)−(2m−1)][(2m +1)+(2m−1)]=2×4m.=8m 为正整数,∵m 两个连续的正奇数的平方差是的倍数.∴821.【正确答案】解:设完成这项工程的规定时间为天,则甲工程队需天完成这项工程,乙(1)x x 工程队需天完成这项工程,(x +6)根据题意得:,5×(1x +1x +6)+x−5x +6=1解得:,x =30经检验,是原方程的解,且符合题意.x =30答:完成这项工程的规定时间为天.30选择方案三,理由如下:(2)方案一需付工程款:万元;2.4×30=72()方案二不能如期完工,不符合题意;方案三需付工程款:万元.2.4×5+1.8×30=66(),∵72>66选择方案三.∴22.【正确答案】(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc解:,(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 故;(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,,(2)∵a +b +c =12ab +bc +ac =28∴a 2+b 2+c 2=(a +b +c )2−2(ab +ac +bc)=122−2×28.=8823.【正确答案】证明:,(1)∵AC =AD ,∴∠ADC =∠ACD ,∴180°−∠ADC =180°−∠ACD 即,∠ADB =∠ACE 在和中,△ABD △AEC ,{AD =AC ∠ADB =∠ACE BD =CE ≌,∴△ABD △AEC(SAS);∴AB =AE 延长到,使,由知,,(2)CE E CE =BD (1)AB =AE ,∴∠E =∠B =60°,∴∠EAB =180°−∠E−∠B =60°是等边三角形,∴△ABE 同理,是等边三角形,△DBF ,∴AB =BE.BF =BD =CE ,∴AB−BF =BE−CE 即;AF =BC 猜想:,(3)PC =2BD 理由如下:在上取点,使,连接,CP E CE =BD AE 由可知:,(1)AB =AE,∴∠AEB =∠B =60°,∴∠AEP =180°−∠AEB =120°,,∵DF =DB ∠DFB =∠B =60°,∴∠PDF =∠DFB +∠B =120°,∴∠AEP =∠PDF 又,∵PA =PF ,∴∠PAF =∠PFA ,∵∠APE =180°−∠B−∠PAF =120°−∠PAF ,∠PFD =180°−∠DFB−∠PFA =120°−∠PFA ,∴∠APE =∠PFD 在和中,△APE △PFD ,{∠APE =∠PFD ∠AEP =∠PDF PA =PF ≌,∴△APE △PFD(AAS),∴PE =DF 又,∵DF =DB ,∴PE =DB 又,∵PC =PE +CE .∴PC =2BD。
人教版八年级数学上册期末试卷培优测试卷

人教版八年级数学上册期末试卷培优测试卷一. 八年级数学全等三角形解答题压轴题(难)1. 如图,在ABC 中,ΛABC = ^5, AD 9BE 分别为BC t AC 边上的高,连接DE,过点 D 作DF 丄DE 与点F, G 为BE 中点,连接AF, DG ・(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】⑴详见解析;(2)AF=2DG,且AF 丄DG,证明详见解析.【解析】【分析】(1) 利用条件先△ DAE 今ADBF,从而得出AFDE 是等腰直角三角形,再证明AAEF 是等腰直角 三角形,即可•⑵延长DG 至点M,使GM=DG,交AF 于点H,连接BM,先证明△ BGM^∆EGD,再证明 ΔBDM^ΔDAF 即可推岀.【详解】解:(I)证明:设BE 与AD 交于点H ・・如图,VAD z BE 分别为BC Z AC 边上的髙,ΛZBEA=ZADB=90o.V ZABC=45°,ΛΔABD 是等腰宜角三角形. Λ AD=BD.∖∙ ZAHE=ZBHD zΛ ZDAC=ZDB H .∙.φZADB=ZFDE=90°, ∙∙∙ ZADE=ZBDRΛ∆DAE^∆DBF.ABF=AE z DF=DE.ΛΔFDE是等腰直角三角形.ΛZDFE=450.VG为BE中点,Λ BF=EF.Λ AE=ER.,.∆AEF是等腰直角三角形.∙∙∙ZAFE=45°・∙∙∙ ZAFD二90。
出卩 AFlDR(2)AF=2DG,且AF丄DG•理由涎长DG至点使GM=DG J交AF于点H,连接BM,VZBGMZEGD zΛ∆BGM^∆EGD ・∙∙∙ ZMBE=ZFED=45o,BM=DE.AZMBE=ZEFD Z BM=DRVZDAC=ZDBE Z∙∙∙ ZMBD=ZMBE+ZDBE=450+ZDBE.∖∙ ZEFD=45o=ZDBE+ZBDR∙∙∙ ZBDF二45°-ZDBE・∙/ ZADE=ZBDF,∙∙∙ ZADF=90o-ZBDF=45°+ZDBE=ZMBD.VBD=AD ZΛ∆BDM^ΔDARΛ DM=AF=2DG z Z FAD= ZBDM ・VZBDM+ZM DA=90o,AZMDA+ZFAD=90o.∙∙∙ZAHD=90°.∙∙∙AF 丄 DG ・∙∙∙AF=2DG,且 AFlDG【点睛】本题考查三角形全等的判左和性质,关键在于灵活运用性质.2.如图1,在平而直角坐标系中,点D(“,m+8)在第二彖限,点3 (0> n)在y轴正半轴上,作M丄X轴,垂足为儿已知QA比OB的值大2,四边形AOBD的而积为12.(1)求m和门的值・(2 )如图2, C为AO的中点,DC与AB相交于点F, AF±BD,垂足为F,求证:AF=DE.(3)如图3,点G在射线AD上,且GA = GB, H为GB延长线上一点,作ZHAN交y轴于点M且ZHAN=上HBO,求NB-HB的值.Irl = -4【答案】(1)< C (2)详见解析;(3) NB- FB=4 (是定值),即当点H在GB的n = 2延长线上运动时,NB-HB的值不会发生变化.【解析】【分析】(1)由点D,点3的坐标和四边形AOBD的而积为12,可列方程组,解方程组即可:(2)由(2)可知,AD=OA = 4, 0B=2,并可求出AB=BD= 2卡,利用SAS可证△DAC也AAOB,并可得ZAEC= 90°,利用三角形而积公式即可求证:(3)取OC=OB,连接AC,根据对称性可得ZABC= ZACB, AB=AC,证明∆ABH^ΛCAN,即可得到结论.【详解】-m -/7 = 2解:(1)由题意Qi, OW、,-(n + m + 8)(-m) = 12W 2IrI = -4解得< :H = 2由(1)可知,Λ ( -4t0) , β (0, 2) , D ( -4, 4), :.AD=OA=4. OB=2,・•・由勾股泄理可得:AB = BD= 2炳,9: AC=OC=2,AC=OB99:ZDAC= ZAOB=90°, AD=OA9:.ADAC^AAOB (SAS),∙∙∙ ZADC=ZBAO.T ZADC^ZACD=90∖∙∙∙ZE4C+ZACE=90°,∙∙∙ZAEC= 90°,9:AF±BD. DE±AB.1 1•∙SχD8= —^AB^AE=—∙BD∙√4F,2 29: AB = BD,:.DE=AF ・(3)解:如图,取OC=OB,连接AC,根据对称性可得ZABC=ZACB. AB=AC.9:AG=BG./.ZGAB=ZGBA fTG为射线AD上的一点,•••AG〃y 轴,:.ZGAB=ZABC.:.ZACB=ZEBA.Λ180o - ZGBA = I80° - ZACB,即ZABG=Z ACN99: ZGAN=ZGBO,:.ZAGB=ZANC f∕±,∆ABG与"CN 中,ZABH=ZACN< ZAHB = ZANC ,AB = AC:.AABH^AACN (AAS) t:.BF= CN9:.NB - HB=NB ・ CN=BC=IOB9VOB=2:∙NB- FB=2χ2=4 (是定值),即当点H在GB的延长线上运动时,NB - HB的值不会发生变化.【点睛]本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.3.在四边形ABCD中,F为BC边中点.(I )已知:如图,若处平分ZBAD. Z AED=90o f点F为AD上一点,AF=AB.求证:(1)Δ ABE^ AFE↑ (2) AD=AB+CD(∏)已知:如图,若处平分Z BAD. DE平分ΛADC. Z AED二120。
广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)

广西南宁市2024—2025学年八年级数学上学期阶段培优卷(一)一、单选题1.以下生活现象不是利用三角形稳定性的是()A .B .C .D .2.如图,在ABC V 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且32ABC S =△,则阴影部分面积是()A .6B .4C .8D .103.如图,四个图形中,线段BE 是ABC 的高的图是()A .B .C .D .4.若3,6,x 是某三角形的三边长,则x 可取的最大整数为()A .10B .9C .8D .75.在三角形纸片ABC 中,9020,∠=︒∠=︒A C ,点D 为AC 边上靠近点C 处一定点,点E 为BC 边上一动点,沿DE 折叠三角形纸片,点C 落在点C '处,①如图1,当点C '落在BC 边上时,40ADC '∠=︒;②如图2,当点C '落在ABC V 内部时,40''∠+∠=︒ADC BEC ;③如图3,当点C '落在ABC V 上方时,40''∠-∠=︒BEC ADC ;④当C E AB '∥时,35CDE ∠=︒或125CDE ∠=︒,以上结论正确的个数是()A .1B .2C .3D .46.如图,已知P 是△ABC 内任一点,AB =12,BC =10,AC =6,则PA+PB+PC 的值一定大于()A .14B .15C .16D .287.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B ,C 两点的坐标分别是()A .(﹣2,4),(1,3)B .(﹣2,4),(2,3)C .(﹣3,4),(1,4)D .(﹣3,4),(1,3)8.如图,Rt ACB △中,90,ACB ACB ∠=︒ 的角平分线,AD BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ∠=︒;②AD PF PH =+;③DH 平分CDE ∠;④74ABP ABDE S S =四边形△,其中正确的结论有()个A .1B .2C .3D .49.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为()s 时,能够使△BPE 与△CQP全等.A .1B .1或4C .1或2D .310.用四种边长相等的正多边形地砖铺地,每个顶点处每种正多边形各一块拼在一起,刚好能完全铺满地面.已知正多边形的边数为1m ,2m ,3m ,4m ,则12341111m m m m +++的值为()A .1B .14C .12D .1311.如图,在锐角三角形ABC 中,60BAC ∠=︒,将三角形ABC 沿着射线BC 方向平移得到三角形A B C '''(平移后点A ,B ,C 的对应点分别是点A ',B ',C '),连接CA '.若在整个平移过程中,ACA ∠'和CA B '∠的度数之间存在2倍关系,则ACA ∠'的度数不可能为()A .20︒B .40︒C .100︒D .120︒12.如图,ABC V 中,60ACB ∠=︒,AG 平分BAC ∠交BC 于点G ,BD 平分ABC ∠交AC 于点D ,AG 、BD 相交于点F ,BE AG ⊥交AG 的延长线于点E ,连接CE ,下列结论中正确的有()①若70BAD ∠=︒,则5EBC ∠=︒;②BE CE =;③AB BG AD =+;④BFG AFD S BF S AF=△△.A .4个B .3个C .2个D .1个二、填空题13.如图,在ABC V 中,90ACB ∠=︒,6AC =,8BC =.点P 从点A 出发,沿折线AC CB -以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC CA -以每秒3个单位长度的速度向终点A 运动,P 、Q 两点同时出发.分别过P 、Q 两点作PE l ⊥于E ,QF l ⊥于F ,设运动时间为t ,当PEC 与QFC V 全等时,t 的值为.14.如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为个.15.如图,在ABC V 中,点D 是AB 边上一点,:3:1AD DB =,连接CD ,点E 是线段AC 上一点,:1:2AE EC =,连接BE ,CD 与BE 交于点F ,若8AC =,9BC =,则BDF V 与CEF △面积之和的最大值是.16.现有长分别为4,5,7,9,22(单位:cm )的五根直木条,从中选出四根围一个四边形木框,则该木框的对角线最长可以取到的整数是.17.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123101111a a a a ++++ 的值为.18.如图,在Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线,AD BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论①135APB ∠=︒;②PF PA =;③30F ∠=︒;④::ACD ABD S S AC AB =△△;⑤AH BD AB +=,正确的序号是.三、解答题19.如图,在平面直角坐标系中,点A 和点B 分别在x 轴、y 轴上移动,BE 是ABO ∠的平分线,AF 是BAO ∠的平分线,M 是BE 与AF 的交点.在移动过程中,AMB ∠的大小是否发生变化?如果保持不变,请求出AMB ∠的度数;如果发生变化,请求出变化范围.20.已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40︒.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40︒”,那么满足这一条件,且彼此不全等的三角形共有__________个.21.如图,在平面直角坐标系中,O 为坐标原点,A B 、两点的坐标分别为(),0A m 、()0,B n且40m n --+,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA OB 、的长;(2)连接PB ,若POB V 的面积不大于4且不等于0,求t 的范围;(3)过P 作直线A 的垂线,垂足为C ,直线PC 与y 轴交于点D ,在点P 运动的过程中,是否存在这样的点P ,使DOP AOB ≌?若存在,请求出t 的值;若不存在,请说明理由.22.如图,在ABC 中,A 是中线,10cm AB =,6cm AC =.(1)求ABD 与ACD 的周长差.(2)点E 在边A 上,连接ED ,若BDE 与四边形ACDE 的周长相等,求线段AE 的长.23.如果a b c 、、的长度之和为32cm ,且754a b b c a c +++==,那么这三条线段能围成一个三角形吗?24.如图①,在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 是AE 上一点,且FD ⊥BC 于D 点.(1)试猜想∠EFD ,∠B ,∠C 的关系,并说明理由;(2)如图②,当点F 在AE 的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②25.(规律探究题)如图,在ABC V 中,80A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线交于点2A ,得2A ∠;⋯;7A BC ∠与7A CD ∠的平分线交于点8A ,得8A ∠.求8A ∠的度数.26.已知,AB CD ∥,直线MN 交AB 于点M ,交CD 于点N ,(BMN DNM ∠>∠点E 是线段MN 上一点(不与M 、N 重合),P 、Q 分别是射线MB 、ND 上异于端点的点,连接PE 、EQ ,PF 平分MPE ∠交MN 于点F ,QG 平分DQE ∠交直线PF 于点G .(1)如图1,PE EQ ⊥,42MPE ∠=︒,点G 在线段PF 上.①求EQN ∠的度数;②求PGQ ∠的度数;(2)试探索PGQ ∠与PEQ ∠之间的数量关系;(3)已知404270PGQ MPE MND ∠=︒∠=︒∠=︒,,.直线PE 、GQ 交于点K ,直线M N '从与直线MN 重合的位置开始绕点N 顺时针旋转,旋转速度为每秒4︒,当M N '首次与直线CD 重合时,运动停止,在此运动过程中,经过t 秒,M N '恰好平行于PGK 的其中一条边,请直接写出所有满足条件的t 的值.。
2022-2023学年苏科版数学八年级上册期末培优检测试题(含答案)

2022-2023学年苏科版数学八年级上册 期末培优检测试题一、单选题1.平面直角坐标系内,点P (-3,-4)到y 轴的距离是( )A .3B .4C .5D .-3或72.如图,有一个圆柱,它的高等于12cm ,底面上圆的周长等于18cm ,在圆柱下底面的点A 处有一只蚂蚁,它想吃到上底面与点A 相对的点B 处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是( )A .15cmB .17cmC .18cmD .30cm3.作AOB ∠的角平分线的作图过程如下,作法:(1)在OA 和OB 上分别截取OD ,OE ,使OD OE =;(2)分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ;(3)作射线OC ,OC 就是AOB ∠的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是( )A .SASB .SSSC .AASD .ASA4.若点 ()P a b , 在第二象限,则点 ()Q b a -,所在的象限是( ) A .第一象 B .第二象限 C .第三象限 D .第四象限5.已知点P 位于x 轴上方,到x 轴的距离为2,到y 轴的距离为5,则点P 坐标为( ) A .(2,5)B .(5,2)C .(2,5)或(-2,5)D .(5,2)或(-5,2)6.以下函数中,属于一次函数的是( ) A .2x y =- ; B .y kx b =+ ; C .11y x =+ ; D .21y x =+ . 7.已知一次函数 (12)3y m x =+- ,函数值 y 随自变量 x 的增大而减小,那么 t 的取值范围是( )A.12m≤-B.12m≥-C.12m<-D.12m>-8.如图,在ABC中,运用尺规作图的方法在BC边上取一点P,使PA PB BC+=,下列作法正确的是()A.B.C.D.9.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣0.5,0)、B(2,0),则不等式(kx+b)(mx+n)<0的解集为()A.x>2B.﹣0.5<x<2C.0<x<2D.x<﹣0.5或x>210.如图,三角形纸片ABC中,∠A=80°,∠B=60°,将纸片的角折叠,使点C落在∠ABC内,若∠α=30°,则∠β的度数是()A.30︒B.40︒C.50︒D.60︒二、填空题11.已知图中的两个三角形全等,则∠1等于.12.等腰三角形的一边长是2cm ,另一边长是4cm ,则底边长为 cm.13.如图,ABC 中,=60B ∠︒,90C ∠=︒,在射线BA 上找一点D ,使ACD 为等腰三角形,则ADC ∠的度数为 .14.如图,AD 是∠ABC 的角平分线,若AB =2AC ,则S ∠ABD ∠S ∠ACD =15.Rt∠ABC 中,∠BAC=90°,AB=AC=2.以AC 为一边,在∠ABC 外部作等腰直角三角形ACD ,则线段BD 的长为 .三、计算题16.计算下列各题(1)计算: +2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a ).四、解答题17.如图,AD∠BC ,AD=CB .求证:E 为AC 中点.18.如图,圆柱形容器的高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,求壁虎捕捉蚊子的最短距离.19.已知a,b,c是ABC的三边,a=4,b=6,若三角形的周长是小于16的偶数,判断ABC的形状.20.如图,D为∠ABC外一点,∠DAB=∠B,CD∠AD,∠1=∠2,若AC=7,BC=4,求AD的长.21.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l 上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(∠)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(∠)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ∠l于点Q,当OQ=PQ时,试用含t的式子表示m.答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】A5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】D10.【答案】C11.【答案】58°12.【答案】213.【答案】75°或120°或15°14.【答案】215.【答案】4或2 或16.【答案】(1)解:原式=2﹣10+9+1=2 (2)解:原式=a 2+2a+1+2﹣2a=a 2+3.17.【答案】证明:∵AD∠BC ,∴∠A=∠C ,∠D=∠B在∠EAD 和∠ECB 中,A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∠EAD∠∠ECB (ASA )∴EA=EC即E 为AC 的中点.18.【答案】解:如图,将容器侧面展开,作A 关于EC 的对称点A ',连接A 'B 交EC 于F ,则A 'B即为最短距离.∵高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,∴A 'D =50cm ,BD =120cm ,∴在直角A DB '中,A B '=130(cm ).故壁虎捕捉蚊子的最短距离为130cm .19.【答案】解:∵4a =,6b =∴b a c a b -<<+,即210c <<又∵三角形周长是小于16的偶数, a+b=10,∴2<c<6,且边长c 的长也是偶数,∴4c =∴三角形是等腰三角形20.【答案】解:延长AD ,BC 交于点E .∵CD∠AD ,∴∠ADC =∠EDC =90°.在∠ADC 和∠EDC 中12ADC EDC CD CD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴∠ADC∠∠EDC (ASA ).∴∠DAC =∠DEC ,AC =EC ,AD =ED .∵AC =7,∴EC =7.∵BC =4∴BE =11∵∠DAB =∠B ,∴AE =BE =11.∴AD =5.5.答:AD 的长为5.5.21.【答案】解:(∠)①∵点O (0,0),F (1,1),∴直线OF 的解析式为y=x .设直线EA 的解析式为:y=kx+b (k≠0)、∵点E 和点F 关于点M (1,﹣1)对称,∴E (1,﹣3).又∵A (2,0),点E 在直线EA 上,∴02{3k b k b =+-=+ ,解得 3{6k b ==- ,∴直线EA 的解析式为:y=3x ﹣6.∵点P 是直线OF 与直线EA 的交点,则 {36y x y x ==- ,解得 3{3x y == ,∴点P 的坐标是(3,3).②由已知可设点F 的坐标是(1,t ).∴直线OF 的解析式为y=tx .设直线EA 的解析式为y=cx+d (c 、d 是常数,且c≠0).由点E 和点F 关于点M (1,﹣1)对称,得点E (1,﹣2﹣t ).又点A 、E 在直线EA 上,∴02{2c d t c d=+--=+ ,解得 ()2{22c t d t =+=-+ ,∴直线EA 的解析式为:y=(2+t )x ﹣2(2+t ).∵点P 为直线OF 与直线EA 的交点,∴tx=(2+t )x ﹣2(2+t ),即t=x ﹣2.则有 y=tx=(x ﹣2)x=x 2﹣2x ;(∠)由(∠)可得,直线OF 的解析式为y=tx .直线EA 的解析式为y=(t ﹣2m )x ﹣2(t ﹣2m ).∵点P 为直线OF 与直线EA 的交点,∴tx=(t ﹣2m )x ﹣2(t ﹣2m ),化简,得 x=2﹣ t m .有 y=tx=2t ﹣ 2t m .∴点P 的坐标为(2﹣ t m ,2t ﹣ 2t m).∵PQ∠l 于点Q ,得点Q (1,2t ﹣ 2t m ),∴OQ 2=1+t 2(2﹣ t m )2,PQ 2=(1﹣ t m)2,∵OQ=PQ ,∴1+t 2(2﹣ t m )2=(1﹣ t m)2,化简,得 t (t ﹣2m )(t 2﹣2mt ﹣1)=0.又∵t≠0,∴t ﹣2m=0或t 2﹣2mt ﹣1=0,解得 m= 2t 或m= 212t t - .则m= 2t 或m= 212t t- 即为所求.。
八年级数学上册期末试卷(培优篇)(Word版 含解析)

八年级数学上册期末试卷(培优篇)(Word 版 含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE是等腰直角三角形.∴∠DFE=45°.∵G为BE中点,∴BF=EF.∴AE=EF.∴△AEF是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF⊥DF.(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,∵点G为BE的中点,BG=GE.∵∠BGM∠EGD,∴△BGM≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF⊥DG.∴AF=2DG,且AF⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.3.如图①,在ABC中,90BAC∠=︒,AB AC=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE⊥于D,CE AE⊥于E.(1)求证:BD DE CE=+.(2)若将直线AE绕点A旋转到图②的位置时(BD CE<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE,理由见解析.【解析】【分析】(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE-CE.【详解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD与DE、CE的数量关系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS,SAS,AAS,HL等.这种类型的题目经常考到,要注意掌握.4.(1)问题发现:如图(1),已知:在三角形ABC∆中,90BAC︒∠=,AB AC=,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点,D E,试写出线段,BD DE和CE之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC∆中, ,,,AB AC D A E=三点都在直线l上,并且BDA AEC BACα∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E是,,D A E三点所在直线m上的两动点,(,,D A E三点互不重合),点F为BAC∠平分线上的一点,且ABF∆与ACF∆均为等边三角形,连接,BD CE,若BDA AEC BAC∠=∠=∠,试判断DEF∆的形状并说明理由.【答案】(1)DE=CE+BD;(2)成立,理由见解析;(3)△DEF为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD,进而根据AAS证明△ABD与△CAE全等,然后进一步求解即可;(2)根据BDA AEC BACα∠=∠=∠=,得出∠CAE=∠ABD,在△ADB与△CEA中,根据AAS证明二者全等从而得出AE=BD,AD=CE,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.5.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
部编数学八年级上册期末培优检测(一)(期末真题精选)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期末培优检测一学校:___________姓名:___________班级:___________考号:___________一.单项选择(共8小题,满分24分,每小题3分)1.(3分)化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是( )A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x试题分析:结果多项式乘法的法则进行计算,然后合并同类项即可.答案详解:解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,所以选:A.2.(3分)已知长方形ABCD可以按图示方式分成九部分,在a,b变化的过程中,下面说法正确的有( )①图中存在三部分的周长之和恰好等于长方形ABCD的周长②长方形ABCD的长宽之比可能为2③当长方形ABCD为正方形时,九部分都为正方形④当长方形ABCD的周长为60时,它的面积可能为100.A.①②B.①③C.②③④D.①③④试题分析:根据正方形定义和长方形的周长公式判断①③,假设长方形的长宽比是2,推导出与已知的矛盾,排除②,根据长方形的周长为60,推导出该长方形的面积大于100,从而说明④错误.答案详解:解:①四边形AEFG、FHKM、SKWC的周长之和等于长方形ABCD的周长;②长方形的长为a+2b,宽为2a+b,若该长方形的长宽之比为2,则a+2b=2(2a+b)解得a=0.这与题意不符,故②的说法不正确;③当长方形ABCD为正方形时,2a+b=a+2b所以a=b,所以九部分都为正方形,故③的说法正确;④当长方形ABCD 的周长为60时,即2(2a +b +a +2b )=60整理,得a +b =10所以四边形GHWD 的面积为100.故当长方形ABCD 的周长为60时,它的面积不可能为100,故④的说法不正确.综上正确的是①③.所以选:B .3.(3分)若分式2x−1x 23的值为正数,则x 需满足的条件是( )A .x 为任意实数B .x <12C .x >12D .x>−12试题分析:易得分母恒为正数,因为整个分式的值为正数,那么分子应为正数. 答案详解:解:∵分式2x−1x 23的值为正数,x 2+3恒为正数,∴2x ﹣1>0,∴x >12.所以选:C .4.(3分)下列运算中,错误的是( )A .a b =ac bc B .−a−ba b=−1C .0.5a b 0.2a−0.3b =5a 10b2a−3b D .y−x y x =−x−y x y试题分析:根据分式的基本性质,逐项判断即可.答案详解:解:∵c =0时,a b =acbc 不成立,∴选项A 符合题意;∵−a−b a b =−(a b)a b=−1,∴选项B 不符合题意;∵0.5a b 0.2a−0.3b =5a 10b2a−3b,∴选项C 不符合题意;∵y−x y x =−x−y x y ,∴选项D 不符合题意.所以选:A .5.(3分)下列计算正确的是( )A .a 3•a 4=a 12B .(﹣2ab 2)2=4a 2b 4C .(a 3)2=a 5D .3a 3b 2÷a 3b 2=3ab试题分析:根据整式的除法、同底数幂的乘法、幂的乘方与积的乘方法则分别对每一项进行分析即可.答案详解:解:A 、a 3•a 4=a 7,故本选项错误;B 、(﹣2ab 2)2=4a 2b 4,故本选项正确;C 、(a 3)2=a 6,故本选项错误;D 、3a 3b 2÷a 3b 2=3,故本选项错误;所以选:B .6.(3分)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,如果乙队单独完成总工程需多少个月?设乙队单独完成总工程共需x 个月,则下列方程正确的是( )A .13+12+1x =1B .13+16+1x =1C .13+12+12x=1D .13+12(13+1x)=1试题分析:设乙队单独施1个月能完成总工程的1x,甲1个月完成的工作量为13,根据甲队完成的任务量+乙队完成的任务量=总工程量(单位1),即可得出关于x的分式方程,此题得解.答案详解:解:设乙队单独施1个月能完成总工程的1x,甲1个月完成的工作量为13,甲和乙半个月完成的工作量为12(13+1x),根据题意得:13+12(13+1x)=1,所以选:D.7.(3分)如图,在△ABC中,AB边的中垂线DE,分别与AB边和AC边交于点D和点E,BC边的中垂线FG,分别与BC边和AC边交于点F和点G,又△BEG周长为16,且GE=1,则AC 的长为( )A.13B.14C.15D.16试题分析:利用线段的垂直平分线的性质解决问题即可.答案详解:解:∵DE是线段AB的中垂线,GF是线段BC的中垂线,∴EB=EA,GB=GC,∵△BEG周长为16,∴EB+GB+EG=16,∴EA+GC+EG=16,∴GA+EG+EG+EG+EC=16,∴AC+2EG=16,∵EG=1,∴AC=14,所以选:B.8.(3分)如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE;其中正确的有( )A.1个B.2个C.3个D.4个试题分析:①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12DF,从而可证明②正确;③若DM平分∠ADF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD ≌△DFC,从而得到BE=FC,从而可证明④.答案详解:解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠ADF.故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE=DF BD=DC,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE﹣BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.所以选:C.二.填空题(共8小题,满分24分,每小题3分)9.(3分)计算:a﹣5b﹣3•ab﹣2= 1a4b5 (要求结果用正整数指数幂表示).试题分析:根据单项式乘以单项式的法则计算即可.答案详解:解:a﹣5b﹣3•ab﹣2=a﹣5+1b﹣3﹣2=a﹣4b﹣5a4b5所以答案是:1a4b5.10.(3分)若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为 ﹣2019 .试题分析:原式中括号中利用完全平方公式,单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.答案详解:解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=2019时,原式=﹣2019.所以答案是:﹣201911.(3分)分解因式:3x2+6x+3= 3(x+1)2 .试题分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.答案详解:解:3x2+6x+3,=3(x2+2x+1),=3(x+1)2.所以答案是:3(x+1)2.12.(3分)若m+n=3,则2m2+4mn+2n2﹣4的值为 14 .试题分析:利用完全平方公式分解因式可得2m2+4mn+2n2﹣4=2(m+n)2﹣4,代入可求解.答案详解:解:2m2+4mn+2n2﹣4=2(m+n)2﹣4,∵m+n=3,∴原式=2×9﹣4=14,所以答案是:14.13.(3分)已知a+b=5,ab=3,ba +ab= 193 .试题分析:将a+b=5、ab=3代入原式=b2a2ab=(a b)2−2abab,计算可得.答案详解:解:当a+b=5、ab=3时,原式=b2a2 ab=(a b)2−2abab=52−2×333所以答案是:193.14.(3分)北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从草桥和北京站出发赶往机场乘坐飞机,出行方式及所经过的站点与路程如下表所示:出行方式途径站点路程地铁草桥﹣大兴新城﹣大兴机场全程约43公里公交北京站﹣蒲黄榆﹣榴乡桥﹣大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x 公里/时,根据题意可列方程: 54x −432x =12 .试题分析:若设公交的平均速度为x 公里/时,则地铁的平均速度为2x 公里/时,根据“小贝比小京少用了半小时到达机场”列出方程即可.答案详解:解:若设公交的平均速度为x 公里/时,根据题意可列方程:54x −432x =12.所以答案是:54x −432x =12.15.(3分)如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为 3 .试题分析:利用三角形的面积公式求出BC 即可解决问题. 答案详解:解:∵AE ⊥BC ,AE =4,△ABC 的面积为12,∴12×BC ×AE =12,∴12×BC ×4=12,∴BC =6,∵AD 是△ABC 的中线,∴CD =12BC =3,所以答案是3.16.(3分)如图,在△ABC 中,AB =AC =5,BC =6,AD 是∠BAC 的平分线,AD =4.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是 245 .试题分析:由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,在△ABC 中,利用面积法可求出BQ 的长度,此题得解.答案详解:解:∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .如图,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC =12BC •AD =12AC •BQ ,∴BQ =BC ×AD AC =245,即PC +PQ 的最小值是245.所以答案是:245.三.解答题(共11小题,满分92分)17.(4分)分解因式:x 2m +6xm +9m .试题分析:先提取公因式,再用完全平方公式分解因式.答案详解:原式=m (x 2+6x +9)=m (x +3)2.18.(8分)计算:(1)3a 3b •(﹣2ab )+(﹣3a 2b )2(2)(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2.试题分析:(1)首先计算乘方、乘法,然后计算加法,求出算式的值是多少即可.(2)首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.答案详解:解:(1)3a 3b •(﹣2ab )+(﹣3a 2b )2=﹣6a 4b 2+9a 4b 2=3a 4b 2(2)(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2=4x 2﹣9﹣4x 2+4x +x 2﹣4x +4=x 2﹣519.(4分)化简:2a a 1−2a−4a 2−1÷a−2a 2−2a 1.试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.答案详解:解:原式=2a a 1−2(a−2)(a 1)(a−1)•(a−1)2a−2=2a a 1−2(a−1)a 1=2a 1.20.(10分)已知,关于x 的分式方程a 2x 3−b−x x−5=1.(1)当a =1,b =0时,求分式方程的解;(2)当a =1时,求b 为何值时分式方程a 2x 3−b−x x−5=1无解;(3)若a =3b ,且a 、b 为正整数,当分式方程a 2x 3−b−x x−5=1的解为整数时,求b 的值.试题分析:(1)将a 和b 的值代入分式方程,解分式方程即可;(2)把a 的值代入分式方程,分式方程去分母后化为整式方程,分类讨论b 的值,使分式方程无解即可;(3)将a =3b 代入方程,分式方程去分母化为整式方程,表示出整式方程的解,由解为整数和b 为正整数确定b 的取值.答案详解:解:(1)把a =1,b =0代入分式方程a 2x 3−b−x x−5=1中,得12x 3−−x x−5=1方程两边同时乘以(2x +3)(x ﹣5),(x ﹣5)+x (2x +3)=(2x +3)(x ﹣5)x ﹣5+2x 2+3x =2x 2﹣7x ﹣15x =−1011检验:把x =−1011代入(2x +3)(x ﹣5)≠0,所以原分式方程的解是x =−1011.答:分式方程的解是x =−1011.(2)把a =1代入分式方程a 2x 3−b−x x−5=1得12x 3−b−x x−5=1方程两边同时乘以(2x +3)(x ﹣5),(x ﹣5)﹣(b ﹣x )(2x +3)=(2x +3)(x ﹣5)x ﹣5+2x 2+3x ﹣2bx ﹣3b =2x 2﹣7x ﹣15(11﹣2b )x =3b ﹣10①当11﹣2b =0时,即b =112,方程无解;②当11﹣2b ≠0时,x =3b−1011−2bx =−32时,分式方程无解,即3b−1011−2b=−32,b 不存在;x =5时,分式方程无解,即3b−1011−2b=5,b =5.综上所述,b =112或b =5时,分式方程a 2x 3−b−x x−5=1无解.(3)把a =3b 代入分式方程a 2x 3−b−x x−5=1,得:3b 2x3+x−bx−5=1方程两边同时乘以(2x+3)(x﹣5),3b(x﹣5)+(x﹣b)(2x+3)=(2x+3)(x﹣5)整理得:(10+b)x=18b﹣15∴x=18b−15 10b∵18b−1510b=18(b10)−19510b=18−19510b,且b为正整数,x为整数∴10+b必为195的因数,10+b≥11∵195=3×5×13∴195的因数有1、3、5、13、15、39、65、195但1、3、5 小于11,不合题意,故10+b可以取13、15、39、65、195这五个数.对应地,方程的解x为3、5、13、15、17由于x=5为分式方程的增根,故应舍去.对应地,b只可以取3、29、55、185所以满足条件的b可取3、29、55、185这四个数.21.(10分)某校“数学社团”活动中,小亮对多项式进行因式分解.m2﹣mn+2m﹣2n=(m2﹣mn)+(2m﹣2n)=m(m﹣n)+2(m﹣n)=(m﹣n)(m+2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a3﹣3a2﹣9a+27;(2)因式分解x2﹣4xy+4y2﹣16;(3)已知a,b,c是△ABC的三边,且满足a2﹣ab+c2=2ac﹣bc,判断△ABC的形状并说明理由.试题分析:(1)第一、二项一组,三、四项一组,分别提公因式,再分解.(2)前三项一组,用公式分解.(3)先因式分解找到a,b,c的关系,再判断三角形的形状.答案详解:解:(1)a3﹣3a2﹣9a+27=a2(a﹣3)﹣9(a﹣3)=(a2﹣9)(a﹣3)=(a﹣3)(a+3)(a﹣3)=(a+3)(a﹣3)2;(2)x2+4y2﹣4xy﹣16=(x2﹣4xy+4y2)﹣16=(x﹣2y)2﹣42=(x﹣2y﹣4)(x﹣2y+4);(3)△ABC是等腰三角形,理由如下:∵a2﹣ab+c2=2ac﹣bc,∴a2﹣2ac+c2﹣ab+bc=0,∴(a﹣c)2﹣b(a﹣c)=0,∴(a﹣c)(a﹣c﹣b)=0,∵a,b,c是△ABC的三边,∴a﹣c﹣b<0.∴a﹣c=0,∴a=c,∴△ABC是等腰三角形.22.(8分)从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为900km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.试题分析:设特快列车平均速度为xkm/h,则高铁列车平均速度为2.5xkm/h,根据高铁列车运行900km比特快列车运行1800km的时间减少了16h,列方程求解.答案详解:解:设特快列车的平均速度为x km/h,根据题意可列出方程为1800x=9002.5x+16,解得x=90.检验:当x=90时,2.5x≠0.所以x=90是方程的解.答:特快列车的平均速度为90km/h.23.(8分)如图,在△ABC中,已知AC=BC,E是AB边上一点,BE=BC,BD平分∠CBE,分别交CE,AC于点D,F,连接EF.(1)若∠ACB=100°,求∠BEC和∠FEC的度数.(2)若∠ACB=90°,求证:AE=CF.试题分析:(1)由等腰三角形的性质可求∠CAB=∠CBA=40°,∠BEC=∠BCE=70°,由“SAS”可证△EBF≌△CBF,可得∠BCF=∠BEF=100°,可求解;(2)由全等三角形的性质可得EF=CF,∠BCF=∠BEF=90°,可得∠AFE=∠CAB=45°,可证AE=EF=CF.答案详解:解:(1)∵AC=BC,∠ACB=100°,∴∠CAB=∠CBA=40°,∵BE=BC,∴∠BEC=∠BCE=70°,∵BD平分∠CBE,∴∠CBF=∠EBF,又∵BE=BC,BF=BF,∴△EBF≌△CBF(SAS),∴∠BCF=∠BEF=100°,∴∠FEC=∠BEF﹣∠BEC=30°;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵△EBF≌△CBF,∴EF=CF,∠BCF=∠BEF=90°,∴∠AFE=90°﹣45°=45°,∴∠AFE=∠CAB=45°,∴AE=EF,∴AE=CF.24.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1 (﹣1,1) ,B1 (﹣4,2) ,C1 (﹣3,4) ;(2)若P为x轴上一点,则PA+PB(3)计算△ABC的面积.试题分析:(1)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得;(2)作出点A 的对称点,连接A 'B ,则A 'B 与x 轴的交点即是点P 的位置,则PA +PB 的最小值=A ′B ,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.答案详解:解:(1)如图所示,△A 1B 1C 1即为所求,由图知,A 1的坐标为(﹣1,1)、B 1的坐标为(﹣4,2)、C 1的坐标为(﹣3,4);(2)如图所示:作出点A 的对称点,连接A 'B ,则A 'B 与x 轴的交点即是点P 的位置,则PA +PB 的最小值=A ′B ,∵A ′B ==∴PA +PB 的最小值为(3)△ABC 的面积=3×3−12×3×1−12×1×2−12×2×3=72,所以答案是:(﹣1,1),(﹣4,2),(﹣3,4),25.(10分)已知,在△ABC 中,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D ,E.(1)如图1,求证:DE=AD+BE;(2)如图2,点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.试题分析:(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,AD=CE;(2)如图2,连接OC,由等腰直角三角形的性质可得AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,由“SAS”可证△DCO≌△EBO,△ADO≌△CEO,可得EO=DO,∠EOB=∠DOC,∠AOD=∠COE,可证△DOE是等腰直角三角形.答案详解:(1)证明:如图1,∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∠E=∠D∠EBC=∠DCA,BC=AC∴△CEB≌△ADC(AAS),∴BE=DC,AD=CE.∴DE =DC +CE =AD +BE ,即DE =AD +BE ;(2)△DOE 等腰直角三角形,理由如下:如图2,连接OC ,∵AC =BC ,∠ACB =90°,点O 是AB 中点,∴AO =BO =CO ,∠CAB =∠CBA =45°,CO ⊥AB ,∴∠AOC =∠BOC =∠ADC =∠BEC =90°,∵∠BOC +∠BEC +∠ECO +∠EBO =360°,∴∠EBO +∠ECO =180°,且∠DCO +∠ECO =180°,∴∠DCO =∠EBO ,且DC =BE ,CO =BO ,∴△DCO ≌△EBO (SAS ),∴EO =DO ,∠EOB =∠DOC ,同理可证:△ADO ≌△CEO ,∴∠AOD =∠COE ,∵∠AOD +∠DOC =90°,∴∠DOC +∠COE =90°,∴∠DOE =90°,且DO =OE ,∴△DOE 是等腰直角三角形.26.(10分)尺规作图及探究:已知:线段AB =a .(1)完成尺规作图:点P 在线段AB 所在直线上方,PA =PB ,且点P 到AB 的距离等于a 2,连接PA ,PB .在线段AB上找到一点Q 使得QB =PB ,连接PQ ,并直接回答∠PQB 的度数;(2)若将(1)中的条件“点P 到AB 的距离等于a 2”替换为“PB 取得最大值”,其余所有条件都不变,此时点P的位置记为P′,点Q的位置记为Q′,连接P′Q′,并直接回答∠P′Q′B 的度数.试题分析:(1)作线段AB的垂直平分线DE,D为垂足,在射线DE上截取DP=12a,连接PA,PB即可解决问题.(2)作等边三角形P′AB即可解决问题.答案详解:解:(1)如图,点P即为所求.∵BP=BQ,∠PBA=45°,∴∠PQB=∠BPQ=67.5°.(2)如图,点P′即为所求.当P′B取得最大值时,△ABP′是等边三角形,△BQP′是等边三角形,∴∠P′QB=60°.27.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 90 度;(2)如图2,如果∠BAC=60°,则∠BCE= 120 度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之间的数量关系,不用证明.试题分析:(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD≌△CAE,可得∠ABC=∠ACE=45°,可求∠BCE的度数;(2)由条件可得△ABC为等边三角形,由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE=60°,则可得出结论;(3)①由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论.答案详解:解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,所以答案是:90;(2)∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,所以答案是:120.(3)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.。
最新人教版八年级数学上册期末培优卷(附答案)

最新人教版八年级数学上册期末培优卷(附答案)1、在中,分式的个数有(4)个。
2、三角形一边上的中线把原三角形分成两个(面积相等的三角形)。
3、在下列各式的计算中,正确的是(a+b=a+b)。
4、下列图形中,不是轴对称图形的是(2-1-1-1)。
5、已知P(a,3)和Q(4,b)关于x轴对称,则(a+b)2016的值为(-1)。
6、花粉的质量很小,一粒某种植物花粉的质量约为0.毫克,已知1克=1000毫克,那么0.毫克可以用科学记数法表示为(3.7×10^-5克)。
7、函数y=2x-3的自变量x的取值范围是(全体实数)。
8、用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是(SAS)。
9、如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于(130°)。
10、若m=2100,n=375,则m、n的大小关系正确的是(m>n)。
11、若m+n=3,则2m+4mn+2n﹣6的值为(0)。
12、如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为(110°)。
13、AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是(2<AD<10)。
14、△ABC中,AB=AC≠BC,在△ABC所在平面内有点P,且使得△ABP、△ACP、△BCP均为等腰三角形,则符合条件的点P共有(8个)。
15、补充条件为AB=DF。
16、已知a+b=c,则a=(c-b)。
17、已知,则x=3.18、正确的是②和④。
①不一定成立,③由于AD不一定垂直于BC也不一定成立。
19、(1) 0.08;(2) -7;(3) 0;(4)。
20、(1)4(a-4);(2)3(x-4)。
21、x=1或x=-3.22、XXX平均每小时骑行15千米。
23、(1)利用BD=CD、CE⊥AB、CF⊥AD可证明△BCE≌△DCF;(2)利用三角形内角和定理和已知条件可证明AB+AD=2AE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册期末试卷培优测试卷一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).【答案】(1)过程见解析;(2)MN= NC﹣BM.【解析】【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵BD CDMBD ECD BM CE,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,在△DMN与△DEN中,∵MD DEMDN EDN DN DN,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵BM CEMBD ECD BD CD,∴△BMD≌△CED(SAS),∴DM= DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN =∠NDE=60°,在△MDN和△EDN中∵ND NDEDN MDN ND ND,∴△MDN≌△EDN(SAS),∴MN =NE=NC﹣CE=NC﹣BM.【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①△BPD ≌△CQP ,理由见解析;②V 7.5Q =(厘米/秒);(2)点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD ,再根据∠B =∠C 证得△BPD ≌△CQP ;②根据V P ≠V Q ,使△BPD 与△CQP 全等,所以CQ =BD =10,再利用点P 的时间即可得到点Q 的运动速度;(2)根据V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程,设运动x 秒,即可列出方程1562202x x ,解方程即可得到结果. 【详解】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,∴BD =10(厘米)又∵PC =BC ﹣BP =16﹣6=10(厘米)∴PC =BD∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中, BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS),②因为V P≠V Q,所以BP≠CQ,又因为∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=8,即△BPD≌△CPQ,故CQ=BD=10.所以点P、Q的运动时间84663BPt(秒),此时107.543QCQVt(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得156220 2x x,解得x=803(秒)此时P运动了8061603(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.3.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.4.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.5.如图,ABC∆是等边三角形,点D在边AC上(“点D不与,A C重合),点E是射线BC上的一个动点(点E不与点,B C重合),连接DE,以DE为边作作等边三角形DEF∆,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且,C F在直线DE的同侧时,过点D作//DG AB,DG交BC于点G,求证:CF EG=;(2)如图2,当DE反向延长线与AB的反向延长线相交,且,C F在直线DE的同侧时,求证:CD CE CF=+;(3)如图3,当DE反向延长线与线段AB相交,且,C F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.【答案】(1)证明见详解;(2)证明见详解;(3)CF=CD+CE,理由见详解.【解析】【分析】(1)由ABC∆是等边三角形,//DG AB,得∠CDG=∠A=60°,∠ACB=60°,CDG∆是等边三角形,易证∆ GDE≅∆ CDF(SAS),即可得到结论;(2)过点D作DG∥AB交BC于点G,易证∆ GDE≅∆ CDF(SAS),即可得到结论;(3)过点D作DG∥AB交BC于点G,易证∆ GDE≅∆ CDF(SAS),即可得到结论.【详解】(1)∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG∆是等边三角形,∴DG=DC.∵DEF∆是等边三角形,∴DE=DF,∠EDF=60°,∴∠CDG-∠GDF=∠EDF-∠GDF,即:∠GDE=∠CDF,在∆ GDE和∆ CDF中,∵DE DFGDE CDFDG DC=⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE≅∆ CDF(SAS),∴CF EG=;(2)过点D作DG∥AB交BC于点G,如图2,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠CDE=∠EDF-∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE =,∴CD CG CE GE CE CF ==+=+(3)CF =CD +CE ,理由如下:过点D 作DG ∥AB 交BC 于点G ,如图3,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC=GC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG+∠CDE=∠EDF+∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE ==GC+CE=CD+CE.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.8.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AF与BD在(1)中的结论成立,理由如下:如图2中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.9.如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E .(1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.10.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC中,30B∠=︒,AD和DE是ABC的三分线,点D在BC边上,点E在AC边上,且AD BD=,DE CE=,设c x∠=︒,则x所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90° 又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片边长为a 的正方形,B 中纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请问两种不同的方法求图2大正方形的面积.方法1:s =____________________;方法2:s =________________________; (2)观察图2,请你写出下列三个代数式:()222,,a b a b ab ++之间的等量关系. _______________________________________________________;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,11a b a b +=+=,求ab 的值;②已知()()22202020195a a -+-=,则()()20202019a a --的值是____.【答案】(1)()2a b +,222a ab b ++;(2)()2222a b a ab b +=++;(3)①7ab =,②2- 【解析】 【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b )2,a 2+b 2,ab 之间的等量关系;(3)①依据a+b=5,可得(a+b )2=25,进而得出a 2+b 2+2ab=25,再根据a 2+b 2=11,即可得到ab=7;②设2020-a=x ,a-2019=y ,即可得到x+y=1,x 2+y 2=5,依据(x+y )2=x 2+2xy+y 2,即可得出xy=()222()2x y x y +-+=2-,进而得到()()20202019a a --=2-.【详解】解:(1)图2大正方形的面积=()2a b +,图2大正方形的面积=222a ab b ++ 故答案为:()2a b +,222a ab b ++;(2)由题可得()2a b +,22a b +,ab 之间的等量关系为:()2222a b a ab b +=++故答案为:()2222a b a ab b +=++; (3)①()()2222a b a b ab +-+=2251114ab ∴=-=7ab ∴=②设2020-a=x ,a-2019=y ,则x+y=1, ∵()()22202020195a a -+-=, ∴x 2+y 2=5,∵(x+y )2=x 2+2xy+y 2,∴xy=()222()2x y x y +-+=-2,即()()202020192a a --=-. 【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.12.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2, (9)a≠0,b≠0),于是得到abcd badc+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为abcd,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则abcd badc+=1100(a+b)+11(c+d)=1111(a+b);即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.13.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=5﹣3i .(1)填空:i 3= ,2i 4= ; (2)计算:①(2+i )(2﹣i ); ②(2+i )2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y )+3i=(1﹣x )﹣yi ,(x ,y 为实数),求x ,y 的值.(4)试一试:请你参照i 2=﹣1这一知识点,将m 2+25(m 为实数)因式分解成两个复数的积.【答案】(1)i ;2(2)①5②3+4i (3)x=5,y=﹣3(4)m 2+25=(m+5i )(m ﹣5i ) 【解析】 【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可; (3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。