四则混合运算及简便计算
简便四则混合运算练习题及答案
简便四则混合运算练习题及答案1)44-=2)502÷21=3)5×32×125=)97+401=5)5×192×125=)30×119+381×330=7) +108= ) +44=9) 144-2-30-68=10) 103×91=11)5×192×125=12)04+=13)82×135+365×282= 14) 183×3-3-3×82= 15) += 16)99-407=17)8×125=18)89+=19) += 0)9+=21) 124+=22)97-0-=23)7+71+233+229=4)76×1-1-1×175=25)14×71+429×214=26)100÷175÷4=27) 108+= 8)8+156+142=29)96-203=0)5×32×125=31)00+95=2)45-200-200=33) 149++192=34) +139=35)07-205=6)50-57-143=37) +35=8) 197-96=39) +101= 0)0×125=41)5×128×125=)2++21=43)075÷25= 4)0×125=45)8×25=6)42×372+28×342=47)×258+2+41×2=) 101×1=49) 168-8-92=0)4×125=四年级下册混合运算练习试卷一、计算下面各题630÷×1÷30+54×4÷8186-900÷×250 168-48×16÷8二、解决问题1、果园里的苹果树和桃树共有840棵,其中苹果树有15行,每行24棵。
四则混合运算及简便计算
四则混合运算及简便计算四则混合运算的顺序和简便计算我们如何进行整数、小数、分数的四则混合运算呢?以下是运算定律:1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
例如:75+124+225=124+75+225=4243、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
例如:25×37×466=37×25×466=5、乘法分配律:两个数的和(差)与一个数相乘,可以把两个加(减)数分别与这个数相乘再把两个积相加(减),即(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】。
例如:(40+4)×25=40×25+4×25=10006、减法的性质:一个数里连续减去两(几)个数,等于这个数连续减去这两(几)个数的和,即a-b-c=a-(b+c)。
【a-b-c-……-n=a-(b+c+……+n)】例如:875-324-376=875-(324+376)=1757、除法性质基本性质:一个数连续除以几个数,可以除以后几个数的积,也可以先除以第一个除数,再除以第二个除数。
a÷b÷c=a÷(b×c)=a÷c÷b。
例如:2500÷4÷256=2500÷(4×256)=2.xxxxxxxx综合练:2×6.6+2.5×611-6-14.6+3+6+5.43×(-÷) = 2583.xxxxxxxx4以上为四则混合运算的顺序和简便计算。
小数四则混合运算及简便计算
整数的四则运算顺序:
1、同一级运算,从左往右依次计算。 2、既有加减,又有乘除,先算乘除,后算加 减。 3、有括号的要先算括号里面的。
35+78+65 25×13×4 101×37
=35+65+78 =25×4×13 =(100+1) ×37
整数加法、乘法的运算定律与性质对小数 加法、乘法同样适用。
通过上面的环节我们知道:
1、同一级运算,从左往右依次计算。 2、既有加减,又有乘除,先算乘除,后算加减。 3、有括号的要先算括号里面的,先算小括号,再算中括号。
比一比、算一算
0.4×8+2×0.5 =3.2+1 =4.2
0.4+0.6÷0.6+0.4 =0.4+1+0.4 =1.8 (0.4+0.6)÷(0.6+0.4)
(1)三道算式的圆圈里能填等号吗?为什么? (2)整数加、乘法的运算律,对小数加、乘法也都适用吗?
2、在□里填合适的数。
(1) 0.73×0.25×4=0.25×□×□ (2)0.37+1.79+0.63=1.79+(□+□) (3)7.6×0.8+0.2×7.6=7.6×(□+□) (4)15-7.32-2.68=15-(□+□) (5)0.78÷0.3÷0.2=0.78÷(□×□)
0.125×8.8
= 0.125×8×1.1 = 1 ×1.1 = 1.1
0.125×8.8 = 0.125×(8+0.8) = 0.125 ×8+ 0.125 ×0.8 = 1+0.1 = 1.1
四则混合运算中的简便计算
四则混合运算中的简便计算四则混合运算是指在运算过程中包含有加法、减法、乘法和除法的运算。
在进行四则混合运算时,如果我们掌握一些简便计算的技巧,可以在短时间内快速计算出结果。
本文将针对四则混合运算中的各种简便计算进行详细介绍,希望能够给读者带来帮助。
乘法是四则混合运算中最常见的运算之一、当我们需要计算一个数与10、100、1000等整数的乘积时,可以通过简单的移位操作来实现。
具体方法如下:(a)乘以10:将这个数末尾加一个0即可;例如:56×10=560(b)乘以100:将这个数末尾加两个0;(c)乘以1000:将这个数末尾加三个0;通过这种简单的移位规律,我们可以快速计算出乘以10、100、1000等整数的结果,提高计算效率。
除法也是四则混合运算中常见的运算之一、当我们需要计算一个数除以10、100、1000等整数时,可以通过简单的移位操作来实现。
具体方法如下:(a)除以10:将这个数向右移一位;例如:560÷10=56(b)除以100:将这个数向右移两位;(c)除以1000:将这个数向右移三位;通过这种简单的移位规律,我们可以快速计算出除以10、100、1000等整数的结果,提高计算效率。
3.近似计算在进行四则混合运算时,我们有时候不需要求得精确的结果,而只需要得到一个接近的数值即可。
这时可以利用近似计算的方法来快速求解。
以下是一些常见的近似计算方法:(a)精确到个位数的加减法近似:对于两个整数相加或相减,如果其中一个数的个位数大于5,我们可以将它近似为下一个整数,如果个位数小于5,则近似为当前整数;例如:39+67≈39+70=109(b)精确到十位数的乘法近似:当我们需要计算两个整数的乘积时,可以先将这两个数进行倍数的变化,然后再进行乘法运算。
具体方法如下:例如:35×7≈40×7=280(c)精确到个位数的乘法近似:如果两个数字相乘,其中一个数的个位数大于5,那么结果就近似为一些整十数和5的乘积,如果个位数小于5,则近似为一些整十数和0的乘积;例如:48×6≈40×6=240通过近似计算的方法,我们可以在短时间内得到一个近似的结果,从而加快计算速度。
六年级总复习——四则混合运算及简便运算
12.06+5.07+2.94 30.34+9.76-10.34 ×3÷ ×3
25×7×434÷4÷1.7 1.25÷ ×0.8
102×7.3÷5.1 17 + -7 1 - -
,
二A、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
1.25×(8÷0.5)0.25×(4×1.2)1.25×(213×0.8)9.3÷(4÷ ) 0.74÷(71× )
四、乘法分配律的两种典型类型
A,、括号里是加或减运算,与另一个数相乘,注意分配
24×( - - - ) (12+ )×7(7 - )×
B、注意相同因数的提取。
0.92×1.41+0.92×8.59 × - × 1.3×11.6-1.6×1.3 ×11.6+18.4×
D、分数乘除法计算题中,如果出现了带分数,一定要将带分数化为假分数,再计算。
一、当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b; a×b×c=a×c×b, a÷b÷c=a÷c÷b , a×b÷c=a÷c×b, a÷b×c=a×c÷b,)
(现在没有括号了,可以带符号搬家了哈)(注:去掉括号是添加括号的逆运算)
a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c;
整数加减乘除四则混合运算+简算200道(含答案)
整数加减乘除四则混合运算+简算200道(含答案)整数加减乘除四则混合运算+简算一、计算题(共50小题)1.计算下面各题:8 × 25 - 26 × (57 - 39) × 5443 × (6 ÷ 3) 279 ÷ 9 × 362.用竖式计算:987 + 567 - 678960 - 240 ÷ 8125 × 8 - 9724001 - 3907) × 83.用递等式算:312 - 46 - 78 + 64 + 278 + 89 - 214 4.选择合适的方法计算:42 + 8.63 + 1.37 + 38 + 56 ÷ 7 × 425 × [(27 + 45) ÷ 9] 23 × 12 + 77 × 12 5.用递等式计算:634 - 376) ÷ 3380 - 80 ÷ 5126 ÷ 9 ÷ 76.简算(写出简算过程):296 + 25 + 75 - 1479 + 3997 - 56 - 26 360 ÷ 12 ÷ 52800 ÷ 3525 × 327.用递等式计算:14 × 18 + 520546 - 9 × 3496 × (325 - 295)28 + 62) × 2388.计算下面各题:735 ÷ 15 × 6800 - 600 ÷ 2018 × (537 - 488)26 × 8 × 1254 ÷ 15 ÷ 225 × 33 × 4 9.计算下面各题:75 + 360 ÷ (20 - 5)85.7 - (15.3 + 4.38)37 - 15) × (8 + 14)9.5 + 4.85 - 6.1310.计算:289 × 54 + 5476 × (193 + 207) 129 - 120 ÷ 3888 + 37 - 2411.用递等式计算:6 × 72 + 28 × 688 × 1253 × 11 × 86 + 24 ÷ 6785 + 96 - 185 × (186 - 90) ÷ 4 12.计算,能简算的要简算:128 + 166 + 134 + 72125 × 2458 × 99 + 5837 × 23 - 275) ÷ 7213.用竖式计算:175 × 5 + 287804 ÷ (163 - 157)7 × (44 + 126)14.用递等式计算:78 × 25 - 896100 × (804 - 775)453 + 805 ÷ 5277 + 75) × 2515.用递等式计算:425 - 26 × 412 × 44367 + 89 + 6334 × (92 + 28)16.计算下面各题,能简算的要简算:4050 - 6300 ÷ 425.04 × 6.5 - 2.7617.用竖式计算:36 × (265 - 187)758 - 58 × 9546 ÷ 7 × 2818.用竖式计算。
四则混合运算及简便运算
四则混合运算及简便运算知识点回顾A 、一般情况下,四则运算的计算顺序是:有括号时,先算 ,没有括号时,先算 ,再算 ,只有同一级运算时,从左往右 。
B 、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律: a+b+c=a+(b+c ) 乘法交换律:a ×b=b ×a 乘法结合律:a ×b ×c=a ×(b ×c) 乘法分配律:(a+b)×c=a ×c+b ×cC 、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果应该相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
D 、分数乘除法计算题中,如果出现了带分数,一定要将带分数化为假分数,再计算。
一、当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b; a×b×c=a×c×b, a÷b÷c=a÷c÷b , a×b÷c=a÷c×b, a÷b×c=a×c÷b,)根据:加法交换律和乘法交换率12.06+5.07+2.94 30.34+9.76-10.34 83×3÷83×325×7×4 34÷4÷1.7 1.25÷32×0.8102×7.3÷5.1 1773+174-773 195-137-95,二 A 、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
(完整版)六年级上册分数四则混合运算+简便计算
六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。
练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
第一讲:整数四则混合运算及简便运算
一、整数四则运算定律(1) 加法交换律:a b b a +=+(2) 加法结合律:()()a b c a b c ++=++ (3) 乘法交换律:a b b a ⨯=⨯(4) 乘法结合律:()()a b c a b c ⨯⨯=⨯⨯(5) 乘法分配律:()a b c a b a c ⨯+=⨯+⨯;()b c a b a c a +⨯=⨯+⨯ (6) 减法的性质:()a b c a b c --=-+ (7) 除法的性质:()a b c a b c ÷⨯=÷÷;(8) 除法的“左”分配律:()a b c a c b c +÷=÷+÷;()a b c a c b c -÷=÷-÷,这里尤其要注意,除法是没有“右”分配律的,即()c a b c a c b ÷+=÷+÷是不成立的! 备注:上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.二、 加减法中的速算与巧算速算巧算的核心思想和本质:凑整。
常用的思想方法总结如下:(1) 分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.(2) 加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.三、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=理论依据:乘法交换律:a ×b=b ×a 乘法结合律:(a ×b) ×c=a ×(b ×c) 乘法分配律:(a+b) ×c=a ×c+b ×c知识点拨第一讲 整数四则混合运算的简便运算积不变规律:a ×b=(a ×c) ×(b ÷c)=(a ÷c) ×(b ×c)四、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.一、加法【例1】:278+463+22+37举一反三:732+580+268二、减法【例2】:2871-299例题精讲举一反三:(1)157-99 (2)363-199 (3)968-599三、连减(5种)【例3】:528-53-47举一反三:(1)489-134-76 (2)470-254-46 (3)545-167-133【例4】:496-(296+144)举一反三:(1)675-(175+89)(2)466-(66+125)(3)354-(154+77)【例5】:496-(144+296)举一反三:(1)675-(89+175)(2)466-(125+66)(3)354-(77+154)【例6】:528-72-28举一反三:(1)489-77-389 (2)465-267-65 (3)545-167-145【例7】:824-224-176-124举一反三:(1)643-164-133-243 (2)487-187-139-61 (3)545-167-145四、乘法分配律(8种)【例8】:计算:125×(80+32)(24+40)×25举一反三:(1)125×(64+80)(2)(80+32)×125 (3)(16+32)×25【例9】:(1)125×(100-8)(2)(125-40)×8举一反三:(1)125×(100-48)(2)(100-16)×25【例10】:(1)117×56+117×44举一反三:(1)269×26+74×269 (2)521×65+35×521 (3)126×72+126×12+126×16【例11】:125×69-125×61举一反三:(1)25×127-25×119 (2)365×251-365×151(3)156×59-156×27-156×22 (4)137×97-44×137-137×43【例12】:45×102举一反三:(1)25×44 (2)125×168 (3)125×18【例13】:36×99举一反三:(1)45×98 (2)125×92 (3)35×99【例14】:(1)81+9×391 (2)9+9×999 (3)99+9×99【例15】:(1)9×107-63 (2)6×108-48 (3)134×101-134五、连除(2种)【例16】:1250÷25÷5举一反三:(1)2000÷125÷8 (2)1280÷16÷8 (3)1300÷5÷20(4)840÷5÷8 (5)1700÷25÷4 (6)4800÷50÷2【例17】:630÷(63×5)举一反三:(1)780÷(78×2)(2)1250÷(125×5)(3)6300÷(63×5)六、四则混合运算(1)(24+24)÷24×24 (2)24+24÷24×24 (3)16+4-16+4 (4)(16+4)-(16+4)(5)25×6÷25×6 (6)120-(72+48)÷24(7)45+55÷5-20 (8)12×(280-80÷4)(9)218+324÷18×5(10)(488+32×5)÷12 (11)4500÷(170-60×2)(12)(28+41)÷(92÷4)(13)80+320÷4-30 (14)18×(420-320÷20)(15)48-2×8÷8×2 (16)480÷(144-960÷8)(17)120+480÷(43-28)(18)(273+562)÷5-96 (19)4500÷(150-40×3)(20)812÷(532-36×14)(21)(12+12)÷12×12(22)625÷(54-522÷18)(23)17+13-17+13 (24)60-15×7÷15×7 (25)12×(289-84÷4)(26)218+702÷18×5 (27)45000÷(150-40×3)(28)(77+38)÷(92÷4)(29)58-28×2+40 (30)56×4-175÷5(31)(73-59)×(6+13)(32)(85-40)÷(15÷3)(33)71-17×7÷17×7课堂检测:(1)43×202 (2) 59×299 (3) 134×51-51×34 (4) 7200÷36 (5)68×32—784÷56 (6)3000÷125÷8 (7)98×35 (8) 960×46÷48 (9)480×46÷48 (10)302×99+302 (11)756+483-556(12)230×54+540×77 (13)887×25-87×25 (14)(825+25×8)×4(15)325-225÷5+145 (16)35×102 (17)498+(201-154)(18)125×89×8 (19)428×78+572×78 (20)8800÷(25×88)(21)3600÷50÷2(22)25×(20+4)容易出错类型(共五种类型)600-60÷15 20×4÷20×4736-35×20 25×4÷25×498-18×5+25 56×8÷56×8280-80÷ 4 12×6÷12×6175-75÷25 25×8÷25×880-20×2+60 36×9÷36×936-36÷6-6 25×8÷(25×8)。
(完整版)四则运算规律及其简便运算
四则运算规律及其简便运算一、四则运算的运算顺序1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
2、在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。
3、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
二、关于“0”的运算:1、“0”不能做除数;2、一个娄加上0或者减去0,最终还等于原数3、被减数等于减数,差得04、0乘任何数或0除以任何数,都得0三、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加;和不变,这叫做加法结合律。
字母公式:(a+b)+c=a+(b+c)(二)乘法运算定律1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a × b=b × a2、先乘前两个数,或者先乘后两个数,积不变,这叫乘法结合律。
字母公式:(a ×b)× c=a ×(b ×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这员乘法分配律。
字母公式:(a+b)⨯c=a⨯c+b⨯c 或a⨯(b+c)=a⨯b+a⨯c(加号也可以换成减号)(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a-c-b (四)除法简便运算1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b x c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b能简便运算的要简算,不能简算的按四则运算来计算。
整数四则混合运算中的几种简算方法技巧
整数四则混合运算中的几种简算方法技巧一、整数的加法运算1.同号相加法:当两个整数同号时,直接将它们的绝对值相加,再用同号表示结果的正负。
例如:(+3)+(+5)=+8,(-3)+(-5)=-82.异号相加法:当两个整数异号时,直接将绝对值较大的整数减去绝对值较小的整数,再用绝对值大的整数的符号表示结果的正负。
例如:(+7)+(-4)=(+7)-(+4)=+3,(-7)+(+4)=(-7)-(+4)=-33.10的整数倍相加法:当两个整数的个位数相加等于10时,可以将它们相加得到的结果的个位数为0,然后将十位数加1例如:37+63=30+60=90二、整数的减法运算1.同号相减法:当两个整数同号时,直接将绝对值较大的整数减去绝对值较小的整数,再用绝对值大的整数的符号表示结果的正负。
例如:(+7)-(+4)=7-4=3,(-7)-(-4)=-7+4=-32.异号相减法:当两个整数异号时,可以先将减法看作加法,即将减号变为加号,然后按同号相加法进行运算。
例如:(+7)-(-4)=(+7)+(+4)=+11,(-7)-(+4)=(-7)+(-4)=-11三、整数的乘法运算1.同号相乘法:当两个整数同号时,直接将它们的绝对值相乘,再用同号表示结果的正负。
例如:(+3)×(+5)=+15,(-3)×(-5)=+152.异号相乘法:当两个整数异号时,直接将它们的绝对值相乘,再用负号表示结果的负。
例如:(+3)×(-5)=-15,(-3)×(+5)=-15四、整数的除法运算1.同号相除法:当两个整数同号时,直接将它们的绝对值相除,再用同号表示结果的正负。
例如:(+12)÷(+3)=+4,(-12)÷(-3)=+42.异号相除法:当两个整数异号时,直接将它们的绝对值相除,再用负号表示结果的负。
例如:(+12)÷(-3)=-4,(-12)÷(+3)=-4五、运算顺序的调整在整数四则混合运算中,如果没有括号的限制,可以根据需要调整运算顺序,尽量减少计算的复杂性。
第一讲:整数四则混合运算 及简便运算
第一讲 整数四则混合运算的简便运算知识点拨1、整数四则运算定律(1) 加法交换律:(2) 加法结合律:(3) 乘法交换律:(4) 乘法结合律:(5) 乘法分配律:;(6) 减法的性质:(7) 除法的性质:;(8) 除法的“左”分配律:;,这里尤其要注意,除法是没有“右”分配律的,即是不成立的!备注:上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.2、加减法中的速算与巧算速算巧算的核心思想和本质:凑整。
常用的思想方法总结如下:(1) 分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.(2) 加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.三、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:,,理论依据:乘法交换律:a×b=b×a乘法结合律:(a×b) ×c=a×(b×c)乘法分配律:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)四、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:,⑵在连除时,可以交换除数的位置,商不变.即:⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即 ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即⑸两个数之积除以两个数之积,可以分别相除后再相乘.即上面的三个性质都可以推广到多个数的情形.例题精讲一、加法【例1】:278+463+22+37举一反三:732+580+268二、减法【例2】:2871-299举一反三:(1)157-99 (2)363-199 (3)968-599三、连减(5种)【例3】:528-53-47举一反三:(1)489-134-76 (2)470-254-46 (3)545-167-133 【例4】:496-(296+144)举一反三:(1)675-(175+89)(2)466-(66+125)(3)354-(154+77)【例5】:496-(144+296)举一反三:(1)675-(89+175)(2)466-(125+66)(3)354-(77+154)【例6】:528-72-28举一反三:(1)489-77-389 (2)465-267-65 (3)545-167-145【例7】:824-224-176-124举一反三:(1)643-164-133-243 (2)487-187-139-61 (3)545-167-145四、乘法分配律(8种)【例8】:计算:125×(80+32)(24+40)×25举一反三:(1)125×(64+80)(2)(80+32)×125 (3)(16+32)×25【例9】:(1)125×(100-8)(2)(125-40)×8举一反三:(1)125×(100-48)(2)(100-16)×25【例10】:(1)117×56+117×44举一反三:(1)269×26+74×269 (2)521×65+35×521 (3)126×72+126×12+126×16【例11】:125×69-125×61举一反三:(1)25×127-25×119 (2)365×251-365×151(3)156×59-156×27-156×22 (4)137×97-44×137-137×43【例12】:45×102举一反三:(1)25×44 (2)125×168 (3)125×18【例13】:36×99举一反三:(1)45×98 (2)125×92 (3)35×99【例14】:(1)81+9×391 (2)9+9×999 (3)99+9×99【例15】:(1)9×107-63 (2)6×108-48 (3)134×101-134五、连除(2种)【例16】:1250÷25÷5举一反三:(1)2000÷125÷8 (2)1280÷16÷8 (3)1300÷5÷20(4)840÷5÷8 (5)1700÷25÷4 (6)4800÷50÷2【例17】:630÷(63×5)举一反三:(1)780÷(78×2)(2)1250÷(125×5)(3)6300÷(63×5)六、四则混合运算(1)(24+24)÷24×24 (2)24+24÷24×24 (3)16+4-16+4(4)(16+4)-(16+4)(5)25×6÷25×6 (6)120-(72+48)÷24(7)45+55÷5-20 (8)12×(280-80÷4)(9)218+324÷18×5(10)(488+32×5)÷12 (11)4500÷(170-60×2)(12)(28+41)÷(92÷4)(13)80+320÷4-30 (14)18×(420-320÷20)(15)48-2×8÷8×2(16)480÷(144-960÷8)(17)120+480÷(43-28)(18)(273+562)÷5-96 (19)4500÷(150-40×3)(20)812÷(532-36×14)(21)(12+12)÷12×12(22)625÷(54-522÷18)(23)17+13-17+13 (24)60-15×7÷15×7(25)12×(289-84÷4)(26)218+702÷18×5 (27)45000÷(150-40×3)(28)(77+38)÷(92÷4)(29)58-28×2+40 (30)56×4-175÷5(31)(73-59)×(6+13)(32)(85-40)÷(15÷3)(33)71-17×7÷17×7课堂检测:(1)43×202 (2)59×299 (3) 134×51-51×34 (4)7200÷36(5)68×32—784÷56 (6)3000÷125÷8 (7)98×35 (8) 960×46÷48(9)480×46÷48 (10)302×99+302 (11)756+483-556(12)230×54+540×77 (13)887×25-87×25 (14)(825+25×8)×4(15)325-225÷5+145 (16)35×102 (17)498+(201-154)(18)125×89×8(19)428×78+572×78 (20)8800÷(25×88)(21)3600÷50÷2(22)25×(20+4)容易出错类型(共五种类型)600-60÷15 20×4÷20×4736-35×20 25×4÷25×498-18×5+25 56×8÷56×8280-80÷ 4 12×6÷12×6175-75÷25 25×8÷25×880-20×2+60 36×9÷36×936-36÷6-6 25×8÷(25×8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四则混合运算的顺序和简便计算
整数、小数、分数的四则混合运算是怎样的
运算定律:
1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b) +c=a+(b+c) 。
a+b+c= b+(a+c)应用了哪些定律:
75+124+225 327+437+63 185+213+115+87 253+132+147+268
3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
a×b×c= b×(a×c)应用了哪些定律:
25×37×4 66×125×8 25×125×4×8 15×29×6
5×83×4×5 15×17×4×5 16×8×5×25 5×72×5×4
125×24 25×24 125×72 36×25 125×32×25 25×16×125
5、乘法分配律:两个数的和(差)与一个数相乘,可以把两个加(减)数分别与这个数相乘再把两个积相加(减),即(a+b) ×c=a×c+b×c 【(a-b) ×c=a×c-b×c】。
(40+4)×25 (80-8)×125 73×108-73×8 37×17+17×63
101×86-86 374×201-374 99×79+79 42×199+42
102×56 203×34 99×123 63×198
6、减法的性质:一个数里连续减去两(几)个数,等于这个数连续减去这两(几)个数的和,即a-b-c=a-(b+c) 。
【a-b-c-……-n=a-(b+c+……+n)】
875-324-376 469-213-87 654-123-55-22 777-322-78-177
7、除法性质基本性质:一个数连续除以几个数,可以除以后几个数的积,也可以先除以第一个除数,再除以第二个除数。
a÷b÷c=a÷(b×c)=a÷c÷b。
2500÷4÷25 650000÷8÷125 10000÷5÷4÷5 6200÷5÷100
综合练习:21
2×+×6
3
5
11
7
8
-6
1
3
-1
2
3
+3
2
5
+6
3
5
+ 3
4
15
×(
5
7
-
3
14
÷
3
4
)
+54
9++3
5
9
4
3
8
++5
5
8
+7
3
4
7
2
5
+4
5
7
+2
3
5
53
6
11
-16
4
7
+16
5
11
+-
+5
8
+
1
4
+ 4
4
5
-(2
4
5
+
5
12
) 5-2
14
17
-1
3
17
-15
1
6
-4
5
6
9
5
6
×+4
1
4
÷6
71×99 8439+1001 299×101 2100÷20 72×156-56×72
25×64×125 709×99+709 ×48 21
2
×+×6
3
5
×99+
×+54× 117
8
―6
1
3
―1
2
3
15
3
14
――5
3
4
--(-)
―― +32
5
+6
3
5
+ 4
3
8
++5
5
8
+7
3
4
÷÷4
拓展练习:×34+18
×+% 897×38 -%+104× ×114 +×2710 +÷45
45 +945 +9945 +99945 +999945 237 +359 -337 +149 +147 3138 ×72513 ÷3138 ×(910 +910 +910 +910 )。