理论准备— 方差分析 PPT课件
合集下载
方差分析1132页PPT

数理统计在化学中的应用
单因子方差分析的统计模型
在例中我们只考察了一个因子,称其为单因子 试验。
通常,在单因子试验中,记因子为 A, 设其有r 个水平,记为A1, A2,…, Ar。
在每一水平下考察的指标可以看成一个总体 ,因为现共有 r 个水平,故有 r 个总体, 假定:
数理统计在化学中的应用
各总体的方差相同:
nm
SSe
(Xij Xi)2
i1 j1
mn
mn
SST
(Xij X)2
[(Xij Xi)(Xi X)]2
i1 i1
i1 j1
mn
mn
mn
(Xij Xi)2
(Xi X)]2 2
(Xij Xi)(Xi X)
i1 j1
i1 j1
i1 j1
mn
mn
m
n
(Xij Xi)2
(Xi X)2 2 (Xi X) (Xij Xi)
1
2=
22=…=
2 r
=
2
;(即
,具有方差齐次性)
从每一总体中抽取的样本是相互独立的, 即 所有的试验结果 yij 都相互独立。
每一总体均为正态总体,记为 N(i , i 2), i =1, 2,…, r ;
数理统计在化学中的应用
我们要比较各水平下的均值是否相同, 即要对如下的一个假设进行检验:
1、从总变差中区分出试验变差和条件变差,也就是将 不同因素的影响给区分开来。
2、利用F检验比较这两个变差的大小,确定出主要变 差。
3、根据主要的变差,去选择较好的分析条件,或确定 进一步试验的方向。
数理统计在化学中的应用
方差分析的基本思想
方差分析的依据是建立在变差平方和具有加和性的基础 上的。因此,如果用变差平方和来表征测定结果的总变 差,那么总变差的平方和就等于各变异因素形成的变差 平方和的总和。
单因子方差分析的统计模型
在例中我们只考察了一个因子,称其为单因子 试验。
通常,在单因子试验中,记因子为 A, 设其有r 个水平,记为A1, A2,…, Ar。
在每一水平下考察的指标可以看成一个总体 ,因为现共有 r 个水平,故有 r 个总体, 假定:
数理统计在化学中的应用
各总体的方差相同:
nm
SSe
(Xij Xi)2
i1 j1
mn
mn
SST
(Xij X)2
[(Xij Xi)(Xi X)]2
i1 i1
i1 j1
mn
mn
mn
(Xij Xi)2
(Xi X)]2 2
(Xij Xi)(Xi X)
i1 j1
i1 j1
i1 j1
mn
mn
m
n
(Xij Xi)2
(Xi X)2 2 (Xi X) (Xij Xi)
1
2=
22=…=
2 r
=
2
;(即
,具有方差齐次性)
从每一总体中抽取的样本是相互独立的, 即 所有的试验结果 yij 都相互独立。
每一总体均为正态总体,记为 N(i , i 2), i =1, 2,…, r ;
数理统计在化学中的应用
我们要比较各水平下的均值是否相同, 即要对如下的一个假设进行检验:
1、从总变差中区分出试验变差和条件变差,也就是将 不同因素的影响给区分开来。
2、利用F检验比较这两个变差的大小,确定出主要变 差。
3、根据主要的变差,去选择较好的分析条件,或确定 进一步试验的方向。
数理统计在化学中的应用
方差分析的基本思想
方差分析的依据是建立在变差平方和具有加和性的基础 上的。因此,如果用变差平方和来表征测定结果的总变 差,那么总变差的平方和就等于各变异因素形成的变差 平方和的总和。
第03章 方差分析ppt课件

观
测
要素效应(treatment effect):
值
程度不同引起
不
同
的
原
实验误差:实验过程中偶尔性
因
要素的干扰和丈量误差所致。
;
方差分析的根本思想
因
总
试
素
变
验
效
异
误
应
差
;
方差分析的目的
确定各种缘由在总变异中所占的重要程度。
要素效应 实验误差
相差不大,阐明实验处置对目的影 响不大。
相差较大,即要素效应比实验误差 大得多,阐明实验处置影响是很大 的,不可忽视。
检验P值
当 H 0 为真时,F 的值应在1 的周围动摇; 反之,F的值有增大的趋势。 检验p值为 pPH0(Ff)
f 为由观测数据求得的统计量F的观测值。
;
例1
测定东北、内蒙古、河北、安徽、贵州5个地域黄鼬冬季针 毛的长度,每个地域随机抽取4个样本,测定的结果如表, 试比较各地域黄鼬针毛长度差别显著性。
2453.16
贵州 22.3 22.5 22.9 23.7 91.4 22.85
2089.64
合计
530.5 26.53
14258.21
〔1〕首先计算出 x ,及 x2 ,并列于表中。
〔2〕计算出离均差平方和与自在度:
SST 18.76
SSA 173.71
;
40
SE SSTSSA S=186.7-173.71=12.99
n-1=(a-1)+(n-a)
;
统计性质
▪ 无偏论 估计H 0;成立与否,SSE/(na)总是 2 的一个无 ▪ H 0为真时,SSA/(a1) 为 2 的一个无偏估计。
第九章 方差分析ppt课件

SSW/dW f MW S 14.71/5 1 9410 .4111
(3)计算F值。
精选PPT课件
18
(4) 确定显著性水平和F临界值 取α=0.05,查F分布表得 F0.05(3,14) 3.34。由于计
算的F=3.52> F0.05(3,14) 3.34,P<0.05,所以拒绝原假
设,接受备择假设,认为各组平均数中至少有一对不
精选PPT课件
25
计算自由度: dBfk 14 13;
dW fk n k4 5 4 1;6
df T df B df W =16+3=19
求均方:
MS B
SS B df B
370122.3 3
,
MSW
SSW dfW
35622.25 16
(3)计算F值:
FMBS12.325.50 MW S 22.25
1、提出假设 2、计算平方和与自由度 3、计算F值 4、确定显著性水平并查F临界值表 5、列方差分析总表
精选PPT课件
3
一、方差分析的逻辑思想
1、方差分析是一种综合的检验方法
方差分析是对引起方差变化的各种因 素进行统计分析,检验引起各样本差异 的主要原因(或因素),并与理论值比 较,以判断其显著性。
首先将总体变异分解成样本组间变异 和由抽样误差等其它原因产生的组内变 异,然后分析变异各组成部分的关系。
如果样本组间变异比抽样误差等其它 原因产生的变异显著地大,则认为样本 组间有本质性的差异,否则,认为样本 组间无本质差异。
精选PPT课件
6
在方差分析中,观测值之间的差异情 况用离差平方和表示,符号为SS。方差分析首先 是把总体平方和分解为组间平方和和组内平方和, 即:
(3)计算F值。
精选PPT课件
18
(4) 确定显著性水平和F临界值 取α=0.05,查F分布表得 F0.05(3,14) 3.34。由于计
算的F=3.52> F0.05(3,14) 3.34,P<0.05,所以拒绝原假
设,接受备择假设,认为各组平均数中至少有一对不
精选PPT课件
25
计算自由度: dBfk 14 13;
dW fk n k4 5 4 1;6
df T df B df W =16+3=19
求均方:
MS B
SS B df B
370122.3 3
,
MSW
SSW dfW
35622.25 16
(3)计算F值:
FMBS12.325.50 MW S 22.25
1、提出假设 2、计算平方和与自由度 3、计算F值 4、确定显著性水平并查F临界值表 5、列方差分析总表
精选PPT课件
3
一、方差分析的逻辑思想
1、方差分析是一种综合的检验方法
方差分析是对引起方差变化的各种因 素进行统计分析,检验引起各样本差异 的主要原因(或因素),并与理论值比 较,以判断其显著性。
首先将总体变异分解成样本组间变异 和由抽样误差等其它原因产生的组内变 异,然后分析变异各组成部分的关系。
如果样本组间变异比抽样误差等其它 原因产生的变异显著地大,则认为样本 组间有本质性的差异,否则,认为样本 组间无本质差异。
精选PPT课件
6
在方差分析中,观测值之间的差异情 况用离差平方和表示,符号为SS。方差分析首先 是把总体平方和分解为组间平方和和组内平方和, 即:
方差分析法PPT课件

计算各样本平均数 y 如i 下:
表 6-2
型号
ABCDE F
yi
9.4 5.5 7.9 5.4 7.5 8.8
•5
引言 方差分析的基本概念和原理
两个总体平均值比较的检验法 把样本平均数两两组成对:
y 1与 y ,2 与y 1 ,…y 3 与 y ,1 与y 6 ,…y ,2 与y 3 ,共有y (5
6.3 显著性检验
利用(6-17)式来检验原假设H0是否成立.对于给定的显著水
平,可以从F分布表查出临界值
A的值.
F(k1,k(再m根1)据),样本观测值算出F
当 FAF(k1,时k(m ,拒1绝))H0,
当 FAF(k1,,时k(m ,接1 受))H0。
即:如果H0成立,F应等于1;相反应大于1,而且因素的影响越大, F值也越大
m
km
T Tj Yij
•38
j1
作统计假设:6种型号的生产线平均维修时数无显 著差异,即
H0: i=0(i=1,2,…,6),H1:i不全为零
•37
6.3 显著性检验
计算SA及SE
k
SA
k
m
i1
(Yi
Y)2
Ti2
i1
m
T2 km
k
km
km
Ti2
SE i1
(Yij Yi)2
j1
i1
j1Yij2i1m
m
Ti Yij
j 1
相当于检验假设
H0 : i 0 (i=1,2,…,k) , H1 : αi不全为零
•29
6.3 显著性检验
可以证明当H0为真时,
ST
2
~2(k
方差ppt优秀课件

03
方差的实例分析
实际生活中方差的例子
金融投资
方差用于衡量投资组合的风险, 通过计算投资组合中各资产的波 动率及其相互关联程度,评估投
资组合的整体风险。
统计学
在统计学中,方差用于描述数据分 散程度,即数据点与平均值的偏离 程度。
机器学习
在机器学习中,方差用于衡量模型 预测结果的波动性,帮助了解模型 是否稳定。
风险评估
方差可以反映数据的离散程度,进而评估决策可 能带来的不确定性或风险。
风险应对
根据方差分析结果,制定相应的风险应对策略, 如分散投资、增加备选方案等。
方差在投资组合优化中的应用
资产配置
通过分析不同资产的收益率和方差,投资者可以合理配置资产, 以实现风险和收益的平衡。
组合优化
利用方差和相关系数矩阵,投资者可以构建有效的投资组合,降低 整体风险。
THANKS
方差越小,数据点越集中;方差越大,数据点越分散。
方差的计算方法
简单方差
适用于数据量较小的情况,计算 每个数据点与均值之差的平方, 然后求和。
加权方差
适用于数据量较大且数据之间差 异较大的情况,计算每个数据点 与均值之差的平方,然后乘以相 应的权重,再求和。
方差的意义与作用
方差可以反映数据的离散程度 ,帮助我们了解数据的分布情 况。
方差ppt优秀课件
目录 Contents
• 方差的概念与定义 • 方差的性质与特点 • 方差的实例分析 • 方差与其他统计量的比较 • 方差在决策中的应用 • 总结与展望
01
方差的概念与定义
方差的定义
方差是用来度量数据分散程度的统计量,计算公式为:$sigma^2 = frac{1}{N}sum_{i=1}^{N}(x_i - mu)^2$,其中$N$为 数据个数,$x_i$为每个数据点,$mu$为数据均值。
方差分析(共66张PPT)

18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等分成三组, 分别为正常对照组、肾缺血60分组和肾缺血60分再灌注组,测得 各个体的NO数据见数据文件,试问各组的NO平均水平是否相同?
单因素方差分析
分析:
对于单因素方差分析,其资料在SPSS中的数据结构应当由两 列数据构成,其中一列是观察指标的变量值,另一列是用以表 示分组变量。实际上,几乎所有的统计分析软件,包括SAS, STATA等,都要求方差分析采用这种数据输入形式,这一点也暗 示了方差分析与线性模型间千丝万缕的联系。
H1:三个总体均数不等或不全相等
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
45
8.09
47
(3)确定p值,作出统计推断
,本次F值处于F界值之外,说明组间均方组内 均方比值属于小概率事件,因此拒绝H0,接受 H1,三个总体均数不等或不全相等
分凝血活酶时间有无不同?
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=
方差分析 (共72张PPT)

2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。
方差分析PPT课件

方差分析的用途
1. 用于多个样本平均数的比较 2. 分析多个因素间的交互作用 3. 回归方程的假设检验 4. 方差的同质性检验
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
第一节 方差分析的基本问题
▪ 一、方差分析问题的提出 问题:为了探索简便易行的发展大学生心 血管系统机能水平的方法,在某年级各项 身体发育水平基本相同,同年龄女生中抽 取36人随机分为三组,用三种不同的方法 进行训练,三个月后,测得哈佛台阶指数 如表 1 ,试分析三种不同的训练方法对女 大学生心血管系统的影响有无显著性差异。
结果的好坏和处理效应的高低,实际中具体测 定的性状或观测的项目称为试验指标。常用的 试验指标例如有:身高、体重、日增重、酶活 性、DNA含量等等。
影响因素( experimental factor): 观测中所
研究的影响观测指标的定性变量称之为因素。 当考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上因素的影响时,则 称为两因素或多因素试验。
N (3, 2)
A3
61.31 60.00
┆ 67.26 69.05
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分析
根据研究目的,这里有三个正态总体 N (1, 2),N (2, 2 ), N (3 , a2 ) 。三组数据分别为来自三个总体的样本,问题是 推断 1 ,2 和 3 之间有无显著差异。 由 x1, x2, x3不相等,不能直接得出1, 2, 3不尽相等的结论, 原因是:造成 x1, x2, x3不相等可能有两个方面因素:一是 1, 2, 3 不等,二是1 2 3,但由于抽样误差,造成 x1, x2, x3 之间有差异。现在的任务是通过样本推断1, 2, 3之间有无 显著性差异。
方差分析ppt课件

推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
方差分析课件-PPT

、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
《第八章方差分析》PPT课件

si2
Ⅰ 122 2500 20.33 3.88
Ⅱ 106 1902 17.67 5.86
k 5 n6
C 6072 6 5 12281.63
Ⅲ 150 3770 25.00 4.00
Ⅳ 137 3165 22.83 7.34
Ⅴ 92 1426 15.33 3.06 T 607 xi2j 12763
第五页,共47页。
因此此时再用t-test法进行检验就不恰当了
如何对 k 3个样本进行假设检验? 这就是本章所要讨论的方差分析
什么叫方差?
方差是对数据(或称资料)变异的度量
方差的公式:
总一般体总:体 2方 差称xN方2差样,本样:本s方2 差n称x1均x 2 方
x2
n
x
n 1
2
能使变量发生变异的原因很多,这些原因我们都将其称为变
如果这许多样本都只和对照组相比,我们仍然可以使用t-
test或u-test进行,但如果需要样本之间两两相比较的
话,就不能使用t-test或u-test进行了 其理由有以下几个:
第三页,共47页。
1、当有k个样本所属总体的平均值相互两两比较,就需
作
1 k次k比1较 ,即作
2
次1 k假k 设1 检验
2
验结束后每一组内的数据资料相等,这就是组内样 本容量相等的情况
(一)数据结构和数学模型
方差分析是建立在一定的线性数学模型基础上的,所谓线性 模型就是指每一个观测值都可以分割成若干个线性部分, 这是方差分析中平方和、自由度剖分的理论依据
第十三页,共47页。
设从一个 N , 2 中随机抽取一个样本,容量为 ,n这
能充分使用试验中所有的信息量,这是十分可惜的