两因素方差分析 PPT课件
合集下载
双因素完全随机设计的方差分析PPT课件
误差(e) 6 1580.16 263.36
总变异
11 38550.67
F
31.81** 22.47**
F
5% 1% 4.79 9.78 5.14 10.92
表3-2-30 海拔高度、植被类型的差异显著性(SSR法)
因素
平均数
显著性
5%
1%
A3
165.33
a
A
A
A2
75.00
b
B
A4
70.00
b
B
SEA
MSe br
4.56 0.6164 12
SEAB
MSe r
4.56 1.2329 3
SEB
MSe ar
4.56 0.7118 9
单因素随机区组设计的方差分析
Made by Lidexiao 10-22-2008
回顾:随机区组设计
❖ 区组的概念不局限于田间试验,可以认为只要将性质近似的试验材料 (如同一窝动物,同年龄,同身长,同体重的个体等)或大致相同的环 境条件安排在同一组群中,该组群则可称为区组.
9671.66 3253.99
T x..
11.6
2 i.
xi2j
ij
8686.24 10180.81 25772.66
表3-2-27 双因素无重复试验方差分析模式
EMS
变异因素
df
SS MS
固定模型 随机模型 A随机B固定
A
a-1
SSA MSA
2
bK
2 A
2
b
2 A
2
a
2 A
B
b-1
SSB
MSB
xij i j ij
Minitab两因素方差分析续演示课件
• Minitab 还在总体平均值处绘制了一条参考线。查 看此线可以确定对某个因子是否存在主效应。
12
• 当线为水平时(与 x 轴平行),则不存在 主效应。因子的每个水平以相同的方式影 响响应,响应平均值在所有因子水平中相 同。
• 当线不水平时(与 x 轴不平行),则存在 主效应。不同因子水平对响应的影响不同。 标绘点之间垂直位置的差异越大(线与 X 轴不平行的程度越大),主效应的量值就 越大。
▪Response:反应(结果)值 ▪Distribution of Data:资料的分布形态 -Normal:正态分布, Factor 1:因子水准 Col
(单因素) Factor 2:因子水准第二 Col
(两因素) -Binomial:二项分布 -Poisson:Poisson分布 ▪Alpha level:留意水准
14
One Way ANOVA(单因素方差分析)
➢因子为一个, 反复数为对所有水准不相同也可, Radom实验。 ➢在数据为一个 Col中以 Stack 形态保存时使用。
Minitab
(先需要检定 RESPONSE值的 正态性)
EXH_AOV.MTW
▪Response:指定反应变量 ▪Factor:指定说明变量(要因) ▪Comparisons:检定多重比较 ▪Store residuals:保存残差 ▪Store fits:保存水准平均值
21
Main Effects Plot(主效应图)
➢对主效应的水平间差异比较
EXH_AOV.MTW
Minitab
▪Responses:指定反应值 ▪Factors:指定因子 ▪Base plots on:指定plot基准
▪Supplement 在2水平时值特大。 ▪Lake在各水准间无太大的变动。
12
• 当线为水平时(与 x 轴平行),则不存在 主效应。因子的每个水平以相同的方式影 响响应,响应平均值在所有因子水平中相 同。
• 当线不水平时(与 x 轴不平行),则存在 主效应。不同因子水平对响应的影响不同。 标绘点之间垂直位置的差异越大(线与 X 轴不平行的程度越大),主效应的量值就 越大。
▪Response:反应(结果)值 ▪Distribution of Data:资料的分布形态 -Normal:正态分布, Factor 1:因子水准 Col
(单因素) Factor 2:因子水准第二 Col
(两因素) -Binomial:二项分布 -Poisson:Poisson分布 ▪Alpha level:留意水准
14
One Way ANOVA(单因素方差分析)
➢因子为一个, 反复数为对所有水准不相同也可, Radom实验。 ➢在数据为一个 Col中以 Stack 形态保存时使用。
Minitab
(先需要检定 RESPONSE值的 正态性)
EXH_AOV.MTW
▪Response:指定反应变量 ▪Factor:指定说明变量(要因) ▪Comparisons:检定多重比较 ▪Store residuals:保存残差 ▪Store fits:保存水准平均值
21
Main Effects Plot(主效应图)
➢对主效应的水平间差异比较
EXH_AOV.MTW
Minitab
▪Responses:指定反应值 ▪Factors:指定因子 ▪Base plots on:指定plot基准
▪Supplement 在2水平时值特大。 ▪Lake在各水准间无太大的变动。
第二节 双因素方差分析 PPT课件
分析步骤
(构造检验的统计量)
计算均方(MS)
行因素的均方,记为MSR,计算公式为
MSR SSR k 1
列因素的均方,记为MSC ,计算公式为
MSC SSC r 1
误差项的均方,记为MSE ,计算公式为
MSE SSE (k 1)(r 1)
分析步骤
(构造检验的统计量)
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 对于因素的每一个水平,其观察值是来自正态分布
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因0
343
340
品牌2
345
368
363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
数据结构
分析步骤
(提出假设)
• 提出假设
– 对行因素提出的假设为
• H0:m1 = m2 = … = mi = …= mk (mi为第i个水平的
平方和 自由度 误差来源
均方
(SS) (df) (MS)
F值
P值
F 临界值
行因素 SSR
MSR k-1 MSR
MSE
列因素 SSC
MSC r-1 MSC
MSE
误差
SSE (k-1)(r-1) MSE
总和 SST kr-1
双因素方差分析
(例题分析)
spss操作-双因素方差分析(无重复)精品PPT课件
2)将“含量比”设置为变量,将“PH值”、 “浓度”设置为因素
3)单击Model → 单击Custom选择只含主效应的双因 素方差分析模型 ,单击Con将两个因素设置为需要进行多重比 较的因素,选择 Tukey 法进行多重比较;
5)单击Continue,返回上一级菜单,单击Option,选择 需显示描述性统计量的因素 ,单击Continue返回上一级菜单 单击OK。
结论:…..
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
蒸馏水PH值
硫酸铜浓度
B1
B2
B3
A1
3.5
2.3
2.0
A2
2.6
2.0
1.9
A3
2.0
1.5
1.2
A4
1.4
0.8
0.3
使用SPSS软件进行分析
1. 单击 “开始” → “程序” → SPSS for windows → SPSS10.0 for windows → type in data → OK → 单击 “Variable View”( 在第 一列输入因变量( 含量比 ) 、因素A( PH值 )因素 B( 浓度 ) ;单击“ Data View ”。
(I) PH值 (J) PH值
1
2
Mean Difference
(I-J)
.433
Std. Error .169
95% Confidence Interval
双因素及多因素SPSS方差分析.ppt
0 0 0 0 0 0 0
3 6d 7 4 g i l 7 1 3 2
. 4 t
t .1 d
4 6 1 2 2 6 4 8 h 8 4
e
m SS u C 6 . 0 I3 . T 0 . D 6 . 0 L . T 0 . 6 T . T 3 . L 0 E T 0 C 6 a R 1 4 2 8 3 2 3 7
方差分析表
a. R Squared = .446 (Adjusted R Squared = .402)
NAU 李刚华
SPSS 协方差分析实例输出2 应用
参数估测值的输出结果表
P a r am e t e r E st i m a t e s Dependent Variable: 肺活量 95% Confidence Interval Parameter B Std. Error t Sig. Lower Bound Upper Bound Intercept 7.977 .886 8.998 .000 6.151 9.803 AGE -8.70E-02 .020 -4.447 .000 -.127 -4.670E-02 [TIME=1] .300 .303 .993 .330 -.323 .924 a [TIME=2] 0 . . . . . a. This parameter is set to zero because it is redundant.
NAU 李刚华
SPSS 多维交互效应方差分析实例输出1 应用
方差分析结果 因素变量表
w
j e
e D
e p a
e
c
n e e
rM l g t
p I e 0 0 0 0 0 0 0 0 e o Sr a eF r1 e 0 G 9 I5 7 G 2 G 7 G 4 o a r S q
双因素试验方差分析课件
结合其他统计方法
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集
双因素方差分析课件
双原因无反复(无交互作用)试验资料表
原因 B 原因 A
B1
A1
X11
...
...
Aa
X a1
a
T. j X ij T.1 i 1
X. j T. j a X .1
b
B2 ... Bb Ti. X ij X i. Ti. b j 1
X12 ... X1b
T1.
X 1.
... ... ... ...
➢ 有交互作用旳双原因试验旳方差分析
有检验交互作用旳效应,则两原因A,B旳不同水 平旳搭配必须作反复试验。
处理措施:把交互作用当成一种新原因来处理,
即把每种搭配AiBj看作一种总体Xij。
基本假设(1)X ij 相互独立;
(2)Xij ~ N ij , 2 ,(方差齐性)。
线性统计模型
原因B
总平均 旳效应
53 58 48
a
T. j Xij 197 232 183 i 1
b
Ti. X ij j 1 165 143 145 159
T 612
X i. Ti. b
55.0 47.7 48.3 53.0
X. j T. j a 49.3 58.0 45.8
X 51
解 基本计算如原表
a b
双原因方差分析措施
双原因试验旳方差分析
在实际应用中,一种试验成果(试验指标)往往 受多种原因旳影响。不但这些原因会影响试验成果, 而且这些原因旳不同水平旳搭配也会影响试验成果。
例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同步加入元素A和B时,合金性 能旳变化就尤其明显。
统计学上把多原因不同水平搭配对试验指标旳 影响称为交互作用。交互作用在多原因旳方差分析 中,把它当成一种新原因来处理。
双因素方差分析课件
特点
能够同时考虑两个因素对连续变量的 影响,并比较不同因素之间的交互作 用。
适用范围
适用于研究两个分类变量对一个或多 个连续变量的影响,并分析不同因素 之间的交互作用。
适用于数据满足正态分布、方差齐性 和独立性等假设的情况。
目的与意义
目的
通过双因素方差分析,可以比较不同组之间的差异,了解两个因素对连续变量的影响程度和交互作用,为进一步 的数据分析和决策提供依据。
意义
双因素方差分析在社会科学、医学、经济学等领域有广泛应用,能够帮助研究者深入了解不同因素之间的交互作 用,为科学研究和实际应用提供有力支持。
02 双因素方差分析的数学原 理
方差分析的基本思想
01
方差分析是通过比较不同组别 的平均值差异来检验多个总体 均值是否相等的一种统计方法 。
02
它将数据总变异分为组内变异 和组间变异,通过比较组间变 异与组内变异的比例来判断各 总体均值是否存在显著差异。
在弹出的对话框中,选择“因子变 量”和“组变量”,并设置相应的 级别和组别。
03
点击“确定”,SPSS将自动进行 双因素方差分析,并输出结果。
04
其他统计软件介绍
01பைடு நூலகம்
02
03
Stata
Stata是一款功能强大的统 计软件,可以进行各种统 计分析,包括双因素方差 分析。
SAS
SAS是一款商业统计软件, 广泛应用于各种统计分析, 包括双因素方差分析。
在双因素方差分析中,数学模型通常采用如下形式:Yijk=μ+αi+βj+εijk, 其中Yijk表示第i组第j类的观测值,μ表示总体均值,αi表示第i个因素的效
应,βj表示第j个因素的效应,εijk表示随机误差。
能够同时考虑两个因素对连续变量的 影响,并比较不同因素之间的交互作 用。
适用范围
适用于研究两个分类变量对一个或多 个连续变量的影响,并分析不同因素 之间的交互作用。
适用于数据满足正态分布、方差齐性 和独立性等假设的情况。
目的与意义
目的
通过双因素方差分析,可以比较不同组之间的差异,了解两个因素对连续变量的影响程度和交互作用,为进一步 的数据分析和决策提供依据。
意义
双因素方差分析在社会科学、医学、经济学等领域有广泛应用,能够帮助研究者深入了解不同因素之间的交互作 用,为科学研究和实际应用提供有力支持。
02 双因素方差分析的数学原 理
方差分析的基本思想
01
方差分析是通过比较不同组别 的平均值差异来检验多个总体 均值是否相等的一种统计方法 。
02
它将数据总变异分为组内变异 和组间变异,通过比较组间变 异与组内变异的比例来判断各 总体均值是否存在显著差异。
在弹出的对话框中,选择“因子变 量”和“组变量”,并设置相应的 级别和组别。
03
点击“确定”,SPSS将自动进行 双因素方差分析,并输出结果。
04
其他统计软件介绍
01பைடு நூலகம்
02
03
Stata
Stata是一款功能强大的统 计软件,可以进行各种统 计分析,包括双因素方差 分析。
SAS
SAS是一款商业统计软件, 广泛应用于各种统计分析, 包括双因素方差分析。
在双因素方差分析中,数学模型通常采用如下形式:Yijk=μ+αi+βj+εijk, 其中Yijk表示第i组第j类的观测值,μ表示总体均值,αi表示第i个因素的效
应,βj表示第j个因素的效应,εijk表示随机误差。
统计学方差分析ppt课件
水平
水平指因素的具体表现,如销售的 四种方式就是因素的不同取值等级。有 时水平是人为划分的,比如质量被评定 为好、中、差。
单元
单元指因素水平之间的组合。如销 售方式一下有五种不同的销售业绩,就 是五个单元。方差分析要求的方差齐就 是指的各个单元间的方差齐性。
元素
元素指用于测量因变量的最小单 位。一个单元里可以只有一个元素, 也可以有多个元素。
均衡
如果一个试验设计中任一因素各水 平在所有单元格中出现的次数相同,且 每个单元格内的元素数相同,则称该试 验是为均衡,否则,就被称为不均衡。 不均衡试验中获得的数据在分析时较为 复杂。
交互作用
如果一个因素的效应大小在另一 个因素不同水平下明显不同,则称为 两因素间存在交互作用。当存在交互 作用时,单纯研究某个因素的作用是 没有意义的,必须分另一个因素的不 同水平研究该因素的作用大小。如果 所有单元格内都至多只有一个元素, 则交互作用无法测出。
地点一 地点二 地点三 地点四 地点五
方式一
77
86
81
88
83
方式二
95
92
78
96
89
方式三
71
76
68
81
74
方式四
80
84
79
70
82
【解】设这四种方式的销售量的均值分别用 1•, 2•, 3•, 4• 表示,四 个销售地点的平均销售量用 •1, •2, •3, •4 表示;则要检验的假设为
例题
Excel操作
构造F统计量
判断与结论
例题
Excel操作
方差分析概述
因素和水平
单元和元素
均衡
交互作用
方差分析课件-PPT
、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
双因素方差分析
1)(m
1))
在H0B 成立时, 检验统计量
FB
SSMB (m 1) SSE (l 1)(m 1)
H0B真
~ F(m
1,(l
1)(m
1))
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 要说明因素A有无显著影响, 就是要检验如下假设:
H0A:1 = 2 = … = l = 0, H1A:1, 2, …,l 不全为零
lm
➢ 误差平方和: SSE
( xij xi. x. j x )2
i1 j1
lm
➢ 总离差平方和: SST
( xij x )2
i1 j1
➢ 可以证明: SST = SSMA + SSMB + SSE
概率论与数理统计
❖ 1.无交互作用的双因素方差分析
➢ 可以证明: 构造检验统计量
ij~N(0, 2), 且相互独立, 1 ≤ i ≤ l, 1 ≤ j ≤ m,
l
ai 0,
i 1
m
j 0
j1
其中表示平均的效应, i和j分别表示因素A的第i个水 平和因素B的第j个水平的附加效应, ij为随机误差,假定ij
相互独立并且服从等方差的正态分布.
概率论与数理统计
❖1. 无交互作用的双因素方差分析
SSMA SSMB SSE
SSMA / (l – 1) MSA / MSE PA SSMB / (m – 1) MSB / MSE PB SSE / (l – 1)(m – 1)
全部
lm – 1
SSMA + SSMB +SSE
其中MSA = SSMA/(l – 1), MSB = SSMB/(m – 1),
相关主题