光伏并网逆变器分类
光伏逆变器的分类
光伏逆变器的分类
光伏逆变器的分类
1、集中型逆变器
传统的集中式逆变器的光伏逆变方式是将所有的光伏电池在阳光照射下生成的直流电全部串并联在一起,再通过一个逆变器将直流电逆变成交流电。
集中型逆变器容量在10千瓦~1兆瓦之间,最大特点是系统的功率高,适用于光照均匀的地面大型光伏电站或大型屋顶电站等,产品和技术成熟度较高,成本低。
但集中逆变器要求光伏组串之间要有很好的匹配,并且对部分遮影敏感。
一旦出现多云、树荫或单个组串故障,将影响整个光伏系统的效率和电产能。
另外,不同光伏组串的输出电压、电流往往不完全匹配,也会造成一定的发电量损失。
2、组串型逆变器。
光伏逆变器分类有哪些?光伏逆变器是干什么用的?
光伏逆变器分类有哪些?光伏逆变器可以根据其工作原理、输出波形和应用领域等进行分类。
以下是一些常见的光伏逆变器分类:1.基于工作原理:-串联逆变器:将多个光伏电池组串联成为一个高电压的直流输入,然后将其转换为交流电输出。
-并联逆变器:将多个光伏电池组并联,使得总电流增加,然后将其转换为交流电输出。
-桥逆变器:采用桥式电路进行直流到交流的转换。
-中间频率逆变器:通过将直流输入转换为中间频率交流,在变压器中进行转换,最后得到所需的交流输出。
2.基于输出波形:-正弦波逆变器:输出是纯正弦波形,适合对电源质量要求较高的应用。
-修正正弦波逆变器:输出波形是修正的正弦波形,某些谐波成分被削减,适用于大多数家庭和商业应用。
-方波逆变器:输出波形是方波形,简单且成本较低,但会引入更多的谐波。
-脉宽调制(PWM)逆变器:使用高频PWM技术产生接近正弦波的输出波形。
3.基于应用领域:-独立逆变器:适用于独立于主电网的独立发电系统,如照明、电力供应等。
-并网逆变器:将光伏电源与主电网连接,在不需要的时候将多余的电能注入到电网中,并从电网中获取不足的电能。
-微网逆变器:可以实现微网系统的组网和管理,将不同的电源(如太阳能、风能等)与负载连接起来。
这些是一些常见的光伏逆变器分类,不同类型的逆变器具有不同的特点和适用场景。
需要根据具体的需求和应用场景选择合适的逆变器类型。
光伏逆变器是干什么用的?光伏逆变器是用于将光伏电池板(太阳能电池板)产生的直流电转换为交流电的设备。
光伏电池板能够将阳光转化为直流电,而光伏逆变器则将这种直流电转换为我们平常所使用的交流电,以供给家庭、工业和商业等领域使用。
光伏逆变器的主要作用如下:1.电能转换:将太阳能电池板输出的直流电转换为交流电,以满足电网供电的需求。
交流电是我们日常生活和工业生产中所使用的电能形式。
2.并网注入:对于接入电网的光伏系统,光伏逆变器可以将多余的电能注入到电网中,以减少对电网的依赖,并能够获得一定的上网收益。
光伏并网逆变器参数、特性、分类和发展趋势(精)
光伏并网逆变器参数、特性、分类和发展趋势光伏并网逆变器作为光伏电池与电网的接口装置, 将光伏电池的电能转换成交流电能并传输到电网上, 在光伏并网发电系统中起着至关重要的作用,并且光伏并网逆变器正朝着高效率、高功率密度、高可靠性、智能化的方向发展。
光伏并网逆变器参数1 、输出容量 : 单相 0.5-100KVA , 三相 2-200KVA2 、输出电压 :AC220 ± 3%,380 ± 3%3 、输出频率:50Hz ± 0.054 、波形失真率 :<5%5 、功率因数 :0.86 、过载能力:过载 150% , 10S光伏并网逆变器特性1、最高效率 98.6%,欧洲效率 97.5, MPPT 效率达 99.9%2、模块化设计,便于安装维护3、根据输入情况自动选择输出功率 (100%, 80%, 60%, 40%, 20%, 0%4、滤除自身谐波功能5、低电压穿越功能6、过 /欠压、过 /欠频及过流保护7、主动、被动结合防孤岛8、无功功率可调,功率因数范围超前 0.95至滞后 0.959、适应严酷的电网环境,工作频率 50/60±4.5Hz光伏并网逆变器分类1、按照隔离方式分类包括包括隔离式和非隔离式两类, 其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式, 光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷, 近年来高频变压器隔离方式的并网逆变器发展较快, 非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可, 目前已经在欧洲开始推广应用, 但需要解决可靠性、共模电流等关键问题。
2、按照输出相数分类可以分为单相和三相并网逆变器两类, 中小功率场合一般多采用单相方式, 大功率场合多采用三相并网逆变器。
按照功率等级进行分类, 可分为功率小于 1kVA 的小功率并网逆变器, 功率等级 1kVA~50kVA的中等功率并网逆变器和 50kVA 以上的大功率并网逆变器。
箱逆变一体机相关知识讲解
集成监控、烟感报警、通风设备、消防 优化散热和防尘设计,节能直排风 道短、寿命长 全开门设计,元器件维修简便,维护成本低
一、光伏并网逆变器分类
1、箱逆变一体机是一款高效率、低成本、高度集成化的产品,实现了“逆变”、 “升压”、“配电”、“通讯”等功能的高度集成,节省了逆变器和升压变压器连接处 的重复部分,降低了现场施工难度和成本,提高了光伏电站的系统效率。 2、逆变器和变压器之间采用铜排连接降低电缆损耗,避免电缆老化,进一步提 高系统可靠性。防护等级高达IP55,适应于高盐雾、高风沙地区。 3、优化并网功率控算法,可以快速调节并网有功和无功功率,实现对电网的有 力支撑。并网功率阶跃响应时间从1s下降为100ms,可迅速对电网电压和频率的 波动做出反应,提高电力系统的稳定性。
缺点:集中式逆变器MPPT电压范围较窄,不能监控 到每一路组件的运行情况,因此不可能使每一路组件 都处于最佳工作点,组件配置不灵活;集中式逆变器 占地面积大,需要专用的机房,安装不灵活;自身耗 电以及机房通风散热耗电量大。
一、光伏并网逆变器分类
组串式逆变 器 是将光伏组件产生的直流电直接转变为 交流电汇总后升压、并网。功率都相对较小。光伏电 站中一般采用50kW以下的组串式逆变器。
三、箱逆变一体机主要组成部分及主要功能介绍
三、最大功率点跟踪策略
光伏并网发电系统中的核心设备, 逆变器必须能够寻求到光伏电池的最佳 工作状态,以最大限度地将光能转化为 电能。这个最佳工作点就是光伏阵列“IV曲线”上的“膝点”或“P-V曲线”上 的峰值点,即最大功率点。
逆变器采用最大功率点跟踪策略, 可快速地追踪到光伏阵列的最大功率点, 保证随时从光伏阵列获取最大的可用能 量加以转换,提高系统发电总量。
光伏并网逆变器的分类及原理ppt课件
二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后 升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以 下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工 作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时 间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳 定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。
21
3.2故障现象:逆变器不并网 故障分析:逆变器和电网没有连接, 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或 者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是 否断开。 3.3逆变器硬件故障:分为可恢复故障和不可恢复故障 故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。 解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以 上,如果自己能恢复就继续使用,如果不能恢复,就联系售后技术工程师。
直流侧断路器 PV+
PV-
直流支撑 逆变单元 电容
直流
EMI 滤波器
太阳能光伏并网发电及其逆变控制
第3章光伏并网系统的体系结构3.1 集中式结构3.2 交流模块式结构3.3 串型结构3.4 多支路结构3.5 主从结构3.6 直流模块式结构3.7 小结参考文献第4章光伏并网逆变器的电路拓扑4.1 光伏并网逆变器的分类4.1.1 隔离型光伏并网逆变器结构4.1.2 非隔离型并网逆变器结构4.2 隔离型光伏并网逆变器4.2.1 工频隔离型光伏并网逆变器4.2.2 高频隔离型光伏并网逆变器4.3 非隔离型光伏并网逆变器4.3.1 单级非隔离型光伏并网逆变器4.3.2 多级非隔离型光伏并网逆变器4.3.3 非隔离型光伏并网逆变器问题研究4.4.多支路光伏并网逆变器4.4.1 隔离型多支路光伏并网逆变器4.4.2 非隔离型多支路光伏并网逆变器4.4.3 非隔离级联型光伏并网逆变器参考文献第5章光伏并网逆变器控制策略5.1 光伏并网逆变器控制策略概述5.2 基于电流闭环的矢量控制策略5.2.1 同步坐标系下并网逆变器的数学模型5.2.2 基于电网电压定向的矢量控制(VOC)5.2.3 基于虚拟磁链定向的矢量控制(VFOC)5.3 直接功率控制(DPC)5.3.1 瞬时功率的计算5.3.2 基于电压定向的直接功率控制(V-DPC)5.3.3 基于虚拟磁链定向的直接功率控制(VF-DPC) 5.4 基于LCL滤波的并网光伏逆变器控制5.4.1 概述5.4.2 无源阻尼法5.4.3 有源阻尼法5.4.4 基于LCL滤波的并网光伏逆变器滤波器设计5.5 单相并网逆变器的控制5.5.1 静止坐标系中单相并网逆变器的控制5.5.2 同步旋转坐标系中单相并网逆变器的控制参考文献第6章光伏发电的最大功率点跟踪(MPPT)技术6.1 概述6.2 基于输出特性曲线的开环MPPT方法6.2.1 定电压跟踪法6.2.2 短路电流比例系数法6.2.3 插值计算法6.3 扰动观测法6.3.1 扰动观测法的基本原理6.3.2 扰动观测法的振荡与误判问题6.3.3 扰动观测法的改进6.4 电导增量法(INC)6.4.1 电导增量法的基本原理6.4.2 电导增量法的振荡与误判问题6.4.3 电导增量法的改进6.5 智能MPPT方法6.5.1 基于模糊理论的MPPT控制6.5.2 基于人工神经网络的MPPT控制6.5.3 基于智能方法的MPPT复合控制6.6 两类基本拓扑结构的MPPT控制6.6.1 两级式并网光伏逆变器的MPPT控制6.6.2 单级式并网光伏逆变器的MPPT控制6.7 MPPT的其他问题6.7.1 局部最大功率点问题6.7.2 MPPT的能量损耗6.7.3 最大功率点跟踪的效率与测试参考文献第7章并网光伏发电系统的孤岛效应及反孤岛策略7.1 孤岛效应的基本问题7.1.1 孤岛效应的发生与检测7.1.2 孤岛效应发生的可能性与危险性7.1.3 并网逆变器发生孤岛效应时的理论分析7.1.4 孤岛效应的检测标准与研究状况7.1.5 并网光伏系统的反孤岛测试7.2 基于并网逆变器的被动式反孤岛策略7.2.1 过/欠电压、过/欠频率反孤岛策略7.2.2 基于相位跳变的反孤岛策略7.2.3 基于电压谐波检测的反孤岛策略7.3 基于并网逆变器的主动式反孤岛策略7.3.1 频移法7.3.2 基于功率扰动的反孤岛策略7.3.3 阻抗测量方案7.4 不可检测区域(NDZ)与反孤岛策略的有效性评估7.4.1 基于△P*△Q坐标系孤岛检测的有效性评估7.4.2 基于L×C坐标系孤岛检测的有效性评估7.4.3 基于负载特征参数Q×fn坐标系的有效性评估7.4.4 基于负载特征参数QxCmon坐标系的有效性评估7.4.5 多逆变器并联运行时的孤岛检测分析参考文献。
光伏逆变器分类
光伏逆变器分类1、集中型逆变器集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站的系统中。
最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低。
同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。
2、组串型逆变器组串逆变器是基于模块化概念基础上的,每个光伏组串通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。
组串逆变器的优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。
技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。
同时,在组串间引入"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。
3、微型逆变器在传统的光伏系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。
当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。
若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。
在实际应用中,云彩、树木、烟囱、动物、灰尘、冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。
而在微型逆变器的光伏系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。
其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。
在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。
光伏逆变器的主要分类
光伏逆变器的主要分类光伏逆变器在光伏发电系统当中是一款重要的设备仪器,根据应用场景的不同,所采用的光伏逆变器的种类和规格也有着一定的差别。
在本文内,南京研旭将会就光伏逆变器的主要分类来进行详细介绍。
光伏逆变器按用途分为并网逆变器,离网逆变器,微网储能逆变器三大类,并网逆变器按照功率和用途可分为微型逆变器、组串式逆变器、集中式逆变器、集散式逆变器四大类,微型逆变器,又称组件逆变器,功率等级为180W 到1000W,适用于小型发电系统;组串型逆变器,功率在1kW到10kW的单相逆变器,适用于户用发电系统,并网电压为220V,4kW到80kW三相逆变器,适用于工商业发电系统,并网电压为三相380V。
集中式逆变器和集散式逆变器,功率从500kW到1500KW,一般用在大型地面电站。
南京研旭自主研发生产并且对外主营销售的逆变器产品类型是并网逆变器,主要包括组串式单相并网逆变器、组串式三相并网逆变器等等。
在下文当中我们会重点以应用较多的三相并网逆变器产品为例来进行介绍。
外观展示:研旭三相并网逆变器研旭三相并网逆变器特点:1、应用范围更广:研旭三相光伏并网逆变器不光为户用屋顶提供智能化的解决方案,还可以适用于小型的工商业电站,使用户能有更多的选择。
2、功率密度大:由于三相逆变器输出电压高,同功率下电流相对较低,从而内部器件的损耗相对会小,可以做到同功率下体积更小一点。
3、输出电能质量高,对电网电压影响小。
输出的电流相对于单相来书要较小,而机器到电网的输出线缆一致,在线阻一致的情况下,在线缆上产生的压降要小,对电网电压影响小,不会将电网电压调高很多。
产品优势:转换效率高自动 MPPT(最大功率点跟踪)嵌入式 LCD 显示屏,可以显示完整的状态信息紧凑型,体积小多路 MPPT 技术,多路组串并联可靠性高安装简便免维护标准型号 RS485(根据远程通信需求,WIFI 无线可选配)研旭三相光伏并网逆变器上设有操作和显示的人际交互界面,可供检修和用户查看实时或者历史运行信息以及产品故障信息。
光伏逆变器的分类与应用场景
05 光伏逆变器的未来发展趋 势
提高转换效率
高效拓扑结构
研究新型的电路拓扑结构,如多 电平、矩阵式等,以提高逆变器 的电压和电流等级,从而提高转 换效率。
先进控制算法
采用先进的控制算法,如矢量控 制、模糊控制等,以优化逆变器 的运行状态,提高转换效率。
智能调度与优化
结合大数据和人工智能技术,实 现逆变器的智能调度与优化,提 高转换效率。
灵活配置
组串式光伏逆变器支持灵活的组串接入方式,可以根据不同的光伏组 件和系统需求进行定制化配置。
易于维护
组串式光伏逆变器结构相对简单,故障率较低,且易于进行日常维护 和检修。
高可靠性
组串式光伏逆变器采用模块化设计,关键部件冗余配置,确保系统在 高海拔、高温、高湿等恶劣环境下稳定运行。
组串式光伏逆变器的应用场景
集成化系统解决方案
提供集成化的系统解决方案,包括逆变器、储能、光 伏组件等,方便用户使用。
06 结论
光伏逆变器的重要地位
光伏逆变器是光伏发电系统的核心组 件,负责将太阳能电池板产生的直流 电转换为交流电,以满足家庭和商业 用电需求。
光伏逆变器在光伏发电系统中扮演着 至关重要的角色,其性能和效率直接 影响整个系统的能源产出和经济效益。
THANKS FOR WATCHING
感谢您的观看
电系统。
商业应用
在商业领域,微型光伏逆变器可用于 小型企业、商店、咖啡馆等场所的光 伏发电系统。
通讯应用
在通讯领域,微型光伏逆变器可用于 微波中继站、卫星地面站等小型通讯 设施的光伏发电系统。
微型光伏逆变器的优缺点
优点
体积小、重量轻、高效率、低成本、易于安装和维护。
缺点
并网光伏电站设计—逆变器
b、光伏阵列中某一个组件被阴影遮挡时,该组件不仅不能 输出功率,还会成为系统的负载,引起该组件的发热。
2、组串型逆变器
(1)特点:每个光伏组串通一个逆变器, 在直流端具有最大功率峰值跟踪,在交流 端并联并网。对光伏组件串的利用率高一 些。
c、电压保护水平(Vp):
汇流箱参数:额定直流电 电压保护水平Vp/kV
压Vn/V
Vn≤60
<1.1
60<Vn≤250
<1.5
250<Vn≤400
<2.5
400<Vn≤690
<3.0
690<Vn≤1000
<4.0
5、其他功能
(1)通信功能,实现远程通信; (2)显示功能,具有显示光伏组串电流; (3)外壳防护等级,IP65,满足室外安装。
2、选择逆变器类型
(1)大型电站(100kW以上的)一般选择 集中型逆变器;
(2)家庭电站或某些单位的小型电站一般 选用组串型逆变器;
(3)微型逆变器由于价格较高,目前国内 很少使用。
3、逆变器功率的选择
要与光伏方阵的设计容量相匹配,差距不 要太大。
六、汇流箱
汇流箱是将光伏组串连接,实现光伏组串 间并联的装置,并将必要的保护器件安装 在此装置内。
并网光伏电站设计—选型
光伏发电系统组成 主要包括太阳能电池组件、光伏支架、
汇流箱、逆变器、升压变压器、二次监控系 统等。
光伏并网逆变系统的设计
一、光伏并网逆变器的类型 二、光伏并网逆变器的功能 三、光伏并网逆变器电路结构框图 四、阳光电源公司SG500MX的交流参数 五、逆变器选型 六、ห้องสมุดไป่ตู้流箱
光伏逆变器的结构原理及其分类
光伏逆变器的结构原理及其分类逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。
根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。
对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变变压器型逆变器。
通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。
如上所述,逆变器有多种类型,因此在选择机种和容量时需特别注意。
尤其在太阳能发电系统中,逆变器效率的高低是决定太阳能电池容量和蓄电池容量大小的重要因素。
光伏逆变器工作原理逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。
一般由升压回路和逆变桥式回路构成。
升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。
当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。
一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。
然后让脉冲波通过简单的滤波器形成正弦波。
光伏逆变器的元件构成1、电流传感器光伏逆变器一般采用霍尔电流传感器来进行电流采样,从小功率到大功率所采用的电流传感器形式不一,列举一些例子如下:。
光伏并网逆变器简介
安徽颐和新能源科技股份有限公司
二.光伏并网逆变器的输入输出特性
光伏并网逆变器要实现LVRT功能在以下方面要做适当处理 1.系统供电电源 要具备一定的储能能力,在电压跌落时,保证系统供电正常 2.对输出电流的控制 在电网电压突然跌落时,若控制不得当,会出现输出电流激 增,跳保护的问题。
安徽颐和新能源科技股份有限公司
光伏并网逆变器的输入能量为太阳电池阵列转换的太阳能, 所以,其动态性很强,受日照,天气,季节,温度影响较大。
安徽颐和新能源科技股份有限公司
二.光伏并网逆变器的输入输出特性
从中图(a)中,可以看出 短路电流近乎与日照强度 成正比增加,开路电压随 着日照强度的增大而略微 增加。随着日照强度的降 低,总体效果会造成太阳 能电池的输出功率下降如 图(b);从图(c)中可 以看出,温度上升使太阳 电池开路电压下降,短路 电流Isc则轻微增大。总体 上,温度升高会造成太阳 能电池的输出功率下降, 如图(d)所示。
Driver I`L1,2,3 U`L1,2,3 UL1,2,3
Power supply
DC Filter
Control System
RS485
string1 string2 SPD string8
LCD
RS485
PC
安徽颐和新能源科技股份有限公司
AC Filter
二.光伏并网逆变器的输入输出特性
安徽颐和新能源科技股份有限公司
三.光伏电站中的方阵功率与逆变器功率匹配
在光伏系统中,电池板方阵的配置,还要考虑所 用逆变器的允许直流电压范围,设置合适的组串关系, 使方阵的最大功率点电压在逆变器最优的工作电压附 近,从而提高系统的效率和可靠性。
安徽颐和新能源科技股份有限公司
光伏并网逆变器的分类及原理—
惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲
宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关 器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内
的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率
和幅值。
19
逆变器工作原理:光伏并网逆变器通过检测直流电压
解决办法:
用万用表电压档测量逆变器直流输入电压。电压正常时,总电压是各组件电压之和。如果没有电压,依 次检测直流开关,接线端子,电缆接头,组件等是否正常。如果有多路组件,要分开单独接入测试。
22
3.2故障现象:逆变器不并网 故障分析:逆变器和电网没有连接,
可能原因:
(1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或 者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是 否断开。 3.3逆变器硬件故障:分为可恢复故障和不可恢复故障 故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。 解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以
17
3、IGBT模块
IGBT(Insulated Gate Bipolar Transistor),绝缘 栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅 型场效应管)组成的复合全控型电压驱动式功率半导体器 件, GTR饱和压降低,载流密度大,但驱动电大;MOSFET 驱动功率很小,开关速度快,但导通压降大,载流密度 小。IGBT综合了以上两种器件的优点,驱动功率小而饱 和压降低。
第五章光伏并网逆变器的电路拓扑讲解
第五章光伏并网逆变器的电路拓扑5.1 光伏并网逆变器的分类5.2 隔离型光伏并网逆变器5.3 非隔离型光伏并网逆变器5.4 多支路光伏并网逆变器5.5 微型光伏并网逆变器第五章光伏并网逆变器的电路拓扑光伏并网逆变器将太阳能电池输出的直流电转换成符合电网要求的交流电再输入电网,是光伏并网系统能量转换与控制的核心。
光伏并网逆变器的性能影响和决定整个光伏系统是否能够稳定、安全、可靠、高效地运行,同时也是影响整个系统使用寿命的主要因素。
本章将对光伏并网逆变器进行分类讨论。
5.1 光伏并网逆变器的分类根据光伏并网逆变器与电网的连接有无隔离变压器,可将光伏并网逆变器分为隔离型和非隔离型两大类,详细分类如图5-1所示。
图5-1 光伏并网逆变器分类5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构工频隔离型特点:主电路和控制电路相对简单,光伏阵列直流输入电压的匹配范围较大,可有效防止电网电流通过桥臂与人体在直流侧形成回路造成的人体伤害事故,保证系统不会向电网注入直流分量,有效的防止了配电变压器的饱和。
但体积大、质量重,增加了系统损耗及成本。
5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构高频隔离型特点:相比工频隔离型,具有较小的体积和质量,克服了工频隔离型的主要缺点。
图5-3 高频隔离型光伏并网逆变器结构a) DC/DC变换型 b) 周波变换型5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构与隔离型相比,省去了笨重的隔离变压器,体统结构简单、质量变轻、成本降低并提高了效率,将成为今后主要的光伏并网逆变器结构。
包括单级非隔离型和多级非隔离型。
图5-4 非隔离型光伏并网逆变器结构5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构非隔离型的光伏并网系统中,光伏阵列与电网电压直接连接。
大面积的光伏阵列与大地之间存在较大的分布电容,因此会产生光伏阵列对地的共模漏电流。
光伏逆变器的分类
光伏逆变器的分类光伏逆变器是将直流电能转换为交流电能的关键设备,广泛应用于太阳能发电系统中。
根据其工作原理和应用领域的不同,光伏逆变器可以分为多种类型。
本文将就光伏逆变器的分类进行详细介绍。
一、按照逆变器拓扑结构分类1. 单相逆变器单相逆变器适用于单相光伏发电系统,其输入电流和输出电流均为单相交流电。
单相逆变器具有结构简单、体积小、成本低的特点,广泛应用于家庭光伏发电系统。
2. 三相逆变器三相逆变器适用于三相光伏发电系统,其输入电流和输出电流均为三相交流电。
三相逆变器具有输出电流平稳、功率传输高效的特点,适用于大型商业光伏发电系统和电网并网应用。
3. 多电平逆变器多电平逆变器通过增加逆变桥臂的数目,将输出电压分解成多个电平,从而减小逆变器输出电压的谐波含量,提高输出电压的质量。
多电平逆变器适用于对输出电压质量要求较高的应用场景,如光伏电站并网。
二、按照逆变器控制方式分类1. 基于PWM控制的逆变器脉宽调制(PWM)控制是目前光伏逆变器中最常用的控制方式之一。
通过控制逆变器开关管的导通和截止时间,使得输出电压近似于正弦波,从而实现对输出电压的控制。
2. 基于MPPT控制的逆变器最大功率点跟踪(MPPT)控制是光伏发电系统中常用的控制策略之一。
光伏逆变器通过监测光伏阵列的电压和电流,实时调整输出电压和电流,以最大化光伏阵列的输出功率。
三、按照逆变器输出类型分类1. 单向逆变器单向逆变器将直流电能转换为单向交流电能输出。
这种逆变器适用于一些只需要单向电流供电的应用场景,如光伏发电系统与电池储能系统的结合。
2. 双向逆变器双向逆变器可以实现直流电能与交流电能的双向转换。
在光伏发电系统中,双向逆变器可以将太阳能转换为交流电注入电网,并在电网停电时将电池储能系统的直流电能转换为交流电供给负载。
光伏逆变器根据其拓扑结构、控制方式和输出类型的不同,可以分为多种类型。
不同类型的光伏逆变器适用于不同的应用场景,满足了不同用户的需求。
四种光伏发电并网逆变器设置方式
四种光伏发电并网逆变器设置方式中央式逆变器:这是一种集中式的逆变器布置方式,所有光伏阵列都通过直流汇流箱将直流电流汇总,然后连接到一个中央逆变器进行变换为交流电。
这种方式适用于较小规模的电站,适合在一个集中的位置进行管理和维护。
优点是成本较低,但如果一个阵列受到遮挡或损坏,会影响整个电站的发电效率。
串联式逆变器:在这种设置方式中,每个光伏阵列都连接到一个单独的逆变器。
这种方式更好地应对阵列间的不均匀情况,但适用于较小规模的电站。
优点是监控和管理每个阵列的性能,缺点是逆变器的数量较多,可能会增加维护成本。
分布式逆变器:分布式逆变器是一种中间方式,每个逆变器管理多个光伏阵列,但并不是所有阵列都连接到同一个逆变器。
这种方式在规模适中的电站中较为常见,平衡管理和维护的难度与发电效率之间的关系。
微逆变器:微逆变器是一种将逆变器置于每个光伏模块附近的方式,每个光伏模块都有一个对应的微逆变器,将直流电直接转换为交流电。
这种方式适用于分布式光伏系统,每个模块的发电状况独立监控和管理。
优点是阵列之间的遮挡或故障不会对整个电站产生影响,但每个模块都需要一个逆变器,成本较高。
光伏发电并网逆变器的设置方式,还要考虑以下因素:电站规模:不同规模的电站适合不同的逆变器设置方式。
小规模的户用光伏系统通常采用微逆变器或串联式逆变器,而中大规模的商业和工业光伏电站考虑分布式逆变器或中央式逆变器。
阵列布局:光伏阵列的布局对逆变器设置方式也有影响。
如果阵列的方向、倾角等存在变化,微逆变器或分布式逆变器可能更适合,更好地适应不同的光照条件。
电网要求:不同的地区和电网可能有不同的要求,例如功率因数控制、谐波抑制等。
选择逆变器设置方式时需要确保满足电网接入的要求。
可维护性:不同的设置方式会影响维护和故障排除的难易程度。
集中式逆变器可能需要更频繁的维护,而微逆变器可以更容易定位故障点。
成本考虑:不同的逆变器设置方式具有不同的成本结构。
微逆变器成本较高,但提高模块级别的监控和管理。
光伏并网逆变器分类
光伏并网逆变器分类
光伏并网逆变器分类
1、按照隔离方式分类
包括包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式,光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷,近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。
2、按照输出相数分类
可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。
按照功率等级进行分类,可分为功率小于1千伏安的小功率并网逆变器,功率等级1千伏安~50千伏安的中等功率并网逆变器和50千伏安以上的大功率并网逆变器。
3、按照功率流向进行分类。
离网逆变器和并网逆变器工作原理-基础电子
离网逆变器和并网逆变器工作原理-基础电子本文首先介绍了离网逆变器和并网逆变器工作原理,其次阐述了如何区分并网逆变器和离网逆变器的方法,介绍了并网逆变器如何离网使用,具体的跟随我一起来了解一下。
并网逆变器并网逆变器一般分为光伏发电并网逆变器、风力发电并网逆变器、动力设备发电并网逆变器和其他发电设备发电并网逆变器。
并网逆变器的特点是系统的功率高,成本低。
并网逆变器一般用与大型光伏发电站的系统中,很多并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP 转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流。
并网逆变器原理图离网逆变器离网逆变器采用模块部件的完整系统解决方案Xantrex XW 由一些可管理的构建块组成:XW逆变器/充电器、太阳能充电控制器、自动发电机起动模块,以及系统控制板。
离网逆变器工作原理图如何区分并网逆变器和离网逆变器首先光伏逆变器又称为光伏逆变电源调整器,依据逆变器在交大蓝天分布式光伏发电系统中的用途我们可以划分为独立型(离网型)和并网型两种,这两种类型的分类主要是光伏发电系统的用途来划分,可以不必深究,只需要知道交大蓝天光伏发电就是根据光伏系统不同用途划分为这两种即可。
第二是依据逆变器本身的波形调制方式可以分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器,这就是由交大蓝天厂家生产逆变器本身的波形来划分的。
第三根据用于交大蓝天中光伏发电并网系统来划分可以分为变压器型逆变器和无变压器型逆变器。
这个主要是从并网系统不同要求对光伏逆变器的一个分类。
并网逆变器如何离网使用并网逆变器可以直接当作离网逆变器使用并网逆变器将能量直接送到电网上,所以要跟踪电网的频率、相位,相当于一个电流源。
当然现在也有部分逆变器称有低压穿越能力,可以做PQ调节。
离网逆变器相当于自己建立起一个独立的小电网,主要是控制自己的电压,就是一个电压源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏并网逆变器分类
并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。
其性能,效率直接影响整个太阳能光伏系统的效率和性能。
下面将从并网逆变器的分类来进行了解。
1、按照隔离方式分类
包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。
光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。
近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。
2、按照输出相数分类
可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。
按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。
3、按照功率流向进行分类
分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。
近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。
4、按照拓扑结构分类
目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。
从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。