六年级数学上册知识点整理资料讲解

合集下载

新人教版数学六年级上册总复习知识点整理归纳整理

新人教版数学六年级上册总复习知识点整理归纳整理

第一单元分数乘法〔一〕分数乘法意义:1、分数乘整数的意义:〔及整数乘法的意义一样〕就是求几个一样加数的和的简便运算。

◆“分数乘整数〞指的是第二个因数必需是整数,不能是分数。

例如:×7表示: 求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义:就是求一个数的几分之几是多少。

◆“一个数乘分数〞指的是第二个因数必需是分数,不能是整数。

第一个因数是什么都可以。

例如:×表示: 求的是多少?A×表示: 求A的是多少?〔二〕分数乘法计算法那么:1、分数乘整数的运算法那么是:分子及整数相乘,分母不变。

2、分数乘分数的运算法那么是:用分子相乘的积做分子,分母相乘的积做分母。

◆为了计算简便,能约分的先约分再计算。

3、分数的根本性质:分子、分母同时乘或者除以一个一样的数〔0除外〕,分数的大小不变。

〔三〕积及因数的关系:1、一个数〔0除外〕乘大于1的数,积大于这个数。

a×,当b >1时,c>a.2、一个数〔0除外〕乘小于1的数,积小于这个数。

a×,当b <1时,c<a (b≠0).3、一个数〔0除外〕乘等于1的数,积等于这个数。

a×,当b =1时, .◆在进展因数及积的大小比较时,要留意因数为0时的特别状况。

〔四〕分数混合运算1、分数合运算依次:(及整数一样),先乘、除后加、减,有括号的先算括号里面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a××a乘法结合律:(a×b)××(b×c)乘法安排律:a×(b±c)×b±a×c〔五〕分数乘法应用题——用分数乘法解决问题◆单位“1〞的量,求它的几分之几是多少,用单位“1〞的量及分数相乘。

1、求一个数的几分之几是多少?〔用乘法〕例如:求25的是多少?列式:25×=15甲数的等于乙数,甲数是25,求乙数是多少?列式:25×=152、求比一个数多〔少〕几分之几的数是多少?例如:甲数比乙数多〔少〕,乙数是25,求甲数是多少?甲数=乙数+乙数×即25+25×=25×〔1+〕=40〔或10〕◆巧找单位“1〞的量:“的〞前“比〞后,“的〞字相当于“×〞,“是〞字相当于“=〞3、求甲比乙多〔少〕几分之几?多:〔甲-乙〕÷乙相差数÷单位少:〔乙-甲〕÷乙第二单元位置和方向1、确定位置的条件:当观测点〔中心〕确定以后,确定物体位置是条件是〔方向〕和〔间隔〕。

六年级数学上册知识点汇总及例题解析

六年级数学上册知识点汇总及例题解析

本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。

(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。

(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。

a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。

(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。

(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。

(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。

小学六年级上册数学知识点概念归纳与整理

小学六年级上册数学知识点概念归纳与整理

小学六年级上册数学知识点概念归纳与整理第一单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,确实是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示那个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的运算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法运算时,要先把带分数化成假分数再进行运算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一样解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(3)依照线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)依照已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求那个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原先的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,能够补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等包蕴“多”的意思,“减少”、“下降”、“裁员” 等包蕴“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

最新六年级上册数学复习知识点整理

最新六年级上册数学复习知识点整理

最新六年级上册数学复习知识点整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、活动方案、合同协议、条据文书、讲话致辞、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, activity plans, contract agreements, documents, speeches, experiences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新六年级上册数学复习知识点整理最新六年级上册数学复习知识点整理(8篇)还在为没有系统的上册数学复习知识点而发愁吗?在日常过程学习中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理一、整数与正负数的基本概念及运算整数的概念:整数由正整数、负整数和0组成。

正整数可以表示为+1、+2、+3……,负整数可以表示为-1、-2、-3……,0是最小的非负整数。

正负数的比较:两个数的绝对值相同时,较大的数的符号与绝对值无关。

绝对值大的数较大。

整数的加减法:同号相加,不同号相减。

相同符号的数之和的符号不变,绝对值是两个数的绝对值之和。

不同符号的数相减,要先把减数取相反数,再按同号相加的原则进行运算。

整数的乘法:同号相乘得正,异号相乘得负。

整数的除法:同号相除得正,异号相除得负。

绝对值的运算:正数的绝对值是它本身,负数的绝对值是它的相反数。

二、分数的基本概念与运算分数的概念:分数由分子和分母组成,分子表示被分成的份数,分母表示整体被分成的份数。

分数的约分与化简:将一个分数的分子和分母都除以一个相同的数,使其变为最简分数。

分数的比较:分母相同时,分子大的数大;分母不相同时,将分数通分后,分子大的数大。

分数的加减法:先通分,然后按照相同分母或者相同分子的规则进行运算。

分数的乘法:把两个分数的分子相乘得到新分数的分子,分母相乘得到新分数的分母。

分数的除法:把除数的分子与被除数的分母相乘得到新分数的分子,把除数的分母与被除数的分子相乘得到新分数的分母。

三、小数的基本概念与运算小数的概念:小数是指分数的分母是10的倍数或者某个倍数的分数。

小数的读写:小数点前面是整数部分,小数点后面是小数部分,读作整数部分和小数部分的合称。

小数的比较:分别比较小数点前后的数,先比较整数部分的大小,再比较小数部分的大小。

小数的加减法:先将小数点对齐,然后按照整数加减法的规则进行运算。

小数的乘除法:先去掉小数点,按照整数乘除法的规则进行运算,最后再加上小数点,小数点的位数等于被除数的小数点位数与除数的小数点位数之和。

四、长度、面积与容量的单位换算长度的单位换算:1千米(km)= 1000米(m),1米(m)= 100厘米(cm),1厘米(cm)= 10毫米(mm)。

309 六年级数学上册重点知识归纳

309 六年级数学上册重点知识归纳

六年级数学上册重点知识归纳
六年级数学上册的重点知识归纳如下:
圆的周长和面积。

掌握圆的周长公式:C=πd或C=2πr,圆的面积公式:S=πr²。

百分数的应用。

理解各种百分数的意义是解答百分数应用题的基础。

分数乘法。

分数乘法的计算法则,要注意分母不变,分子乘整数,然后约分。

分数乘法是小学数学的重要内容,也是学生学习的难点。

位置与方向。

根据方向和距离确定物体位置的方法是本单元的教学重点。

分数乘法混合运算。

掌握分数乘法混合运算的运算顺序,会进行分数乘法混合运算,并能运用分数乘法运算解决实际问题。

圆面积的应用。

求圆的部分的周长和面积时,可以根据圆的半径、周长和面积公式直接解题。

观察物体。

了解常见的两个垂直方向(正面和上面)观察到的几何图形特点是本单元的教学重点。

可能性。

通过本单元的学习使学生感受并描述简单事件发生的等可能性以及游戏规则的公平性。

这些知识点在六年级数学上册教材中占据着重要的地位,对于学生来说具有一定的难度和重要性,因此需要学生认真学习和掌握。

六年级上册数学知识点(概念)归纳与整理(人教版)6165

六年级上册数学知识点(概念)归纳与整理(人教版)6165

六年级数学上册知识点整理第一单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理六年级上册数学知识点主要包括以下内容:
1. 整数
- 整数的概念和性质
- 整数的加减法运算
- 整数的乘法运算
- 整数的除法运算与余数的概念
2. 分数
- 分数的概念和性质
- 分数的加减法运算
- 分数的乘除法运算
- 分数的比较与大小关系
3. 小数
- 小数的概念和性质
- 小数的加减法运算
- 小数的乘除法运算
- 小数的比较与大小关系
- 小数的读法和写法
4. 平面图形
- 点、线、线段、射线、角的概念
- 三角形、四边形、平行四边形、正方形、矩形、菱形和梯形的性质和判断方法
5. 数据与图表
- 数据的收集和整理
- 统计图表(条形图、折线图、饼图)的读取和分析
6. 相似与全等
- 图形的相似和全等的概念
- 相似与全等的判定条件
- 相似与全等的性质和定理
7. 量与单位
- 长度、质量、时间和容量的基本单位和换算
- 用不同单位测量长度、质量、时间和容量
8. 时钟与日历
- 时钟的读写和表示时间的方法
- 日历的读写和计算日期的方法
9. 几何体
- 立体图形的概念和性质(长方体、正方体、圆柱体、圆锥体、圆台和球体)- 立体图形的视图和展开图
以上是六年级上册数学的主要知识点归纳整理,希望能对你有帮助!。

六年级数学上册知识点归纳

六年级数学上册知识点归纳

六年级数学上册知识点归纳小学六年级数学学问点1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,假如除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

1.2因数和倍数1.假如整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.在正整数中(除1外),与奇数相邻的两个数是偶数3.在正整数中,与偶数相邻的两个数是奇数4.个位数字是0,5的数都能被5整除5.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

7.通常用什么方法分解素因数:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数4.假如两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.假如两个数是互素数,那么这两个数的最大公因数是小学六年级数学复习方法一、要明确复习的目的、任务, 从实际启程复习绝不能搞成简洁的机械重复。

应通过复习系统整理小学阶段所学的数学根底学问,理清学问的重点和关键, 搞清学问间的内在联系, 使学生的四那么计算实力、初步的逻辑思维实力和空间观念在原有的根底上得到进一步的提高。

六年级数学上册知识点整理资料讲解

六年级数学上册知识点整理资料讲解

六年级数学上册知识点整理资料讲解研究资料:人教版六年级数学上册概念知识点整理第一单元:分数乘法一、分数乘法一)分数乘法的意义:1.分数乘整数和整数乘法的意义相同。

它们都是求几个相同加数的和的简便运算。

例如:888 × 5 表示求5个888的和是多少,也表示888的5倍是多少。

2.一个数乘分数是求一个数的几分之几是多少。

例如:8383 × 1/4 表示求83的1/4是多少。

二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。

如果整数和分母可以约分,则约分后再计算。

2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

如果能约分,则先约分再计算。

3.分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。

4.当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

三)乘法规律:(乘法中比较大小时)一个数(除外)乘大于1的数,积大于这个数。

一个数(除外)乘小于1的数(除外),积小于这个数。

一个数(除外)乘1,积等于这个数。

四)分数混合运算的运算顺序和整数的运算顺序相同。

速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简便方法不忘记。

五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:ab = ba乘法结合律:(ab)c = a(bc)乘法分配律:(a + b)c = ac + bc二、分数乘法的解决问题已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1.画线段图:1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2.找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面。

3.求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×4.写数量关系式技巧:几 ÷几 = 几1)“的”相当于“×”,“占”、“是”、“比”相当于“=”。

六年级上册数学知识点整理

六年级上册数学知识点整理

六年级上册数学知识点整理第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8第二张有理数及其运算A、正数与负数通常用来表示具有相反意义的量。

B、0 既不是正数也不是负数。

0 是正负数的分界。

C、有理数:整数和分数,统称有理数.即所有可以写成分数形式的数(包括正整数、零、负整数、正分数、负分数) (注意:所有的有限小数和无限循环小数都可以化为分数。

)D 数轴。

包含三要素,直线(方向),原点,单位长度(数)。

任意一个有理数,都可以用数轴上的一点表示,但第二章有理数及其运算知识点A、正数与负数通常用来表示具有相反意义的量。

B、0 既不是正数也不是负数。

0 是正负数的分界。

C、有理数:整数和分数,统称有理数.即所有可以写成分数形式的数(包括正整数、零、负整数、正分数、负分数) (注意:所有的有限小数和无限循环小数都可以化为分数。

六年级数学上册知识点整理

六年级数学上册知识点整理

六年级数学上册知识点整理第一单元分数乘法一、分数乘整数1.分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。

2.计算方法:分母不变,分子乘整数。

二、分数乘分数1.意义:表示求一个分数的几分之几是多少。

2.计算方法:分子乘分子,分母乘分母,能约分的要先约分。

三、分数乘加、乘减混合运算及简算1.分数混合运算的运算顺序与整数混合运算的运算顺序相同。

2.整数乘法的运算定律对于分数乘法也同样适用。

3.合理地应用运算定律,可以使一些分数计算变得简便。

四、求一个数的几分之几是多少的问题解题规律:一个数×几分之几第二单元位置与方向一、在平面图上标出物体位置的方法1.面对地图,上北下南,左西右东。

2.在平面图上标出物体位置的方法,先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。

二、描述简单的行走路线每走一步,都要说清从哪里走(观测点),向哪个方向走多远的距离。

三、绘制简单的路线图1.确定方向标和单位长度。

2.以起点为观测点,从起点出发,根据描述确定所走的方向和距离。

每走一段路,都要重新确定新的观测点。

第三单元分数除法一、倒数的认识1.乘积是1的两个数互为倒数。

2.求一个数(0除外)的倒数的方法:把这个数的分子、分母调换位置;也可以用1除以这个数来求。

二、分数除法1.意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2.计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。

三、已知一个数的几分之几是多少,求这个数的问题的解法1.除法:多少÷一个数2.方程解法:设这个数为x,几分之几× x = 多少四、已知比一个数多(或少)几分之几的数是多少,求这个数的问题的解法1.除法:多少÷(1±几分之几)2.方程解法:设这个数为x,x ±几分之几× x = 多少第四单元比一、比的意义1.比的意义:两个数相除又叫两个数的比。

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级数学上册知识点整理分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2.乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

六年级数学上册知识点整理归纳完整版

六年级数学上册知识点整理归纳完整版

六年级数学上册知识点整理归纳完整版六年级上册数学知识点第一单元分数乘法一)分数乘法意义1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。

例如:3/4 × 7 表示求7个3/4的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。

例如:5 × 2/3 表示求5的2/3是多少?二)分数乘法计算法则1.分数乘整数的运算法则是:分子与整数相乘,分母不变。

例如:2/3 × 4 = 8/32.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

例如:2/3 × 1/2 = 2/6 = 1/3三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。

a ×b = c,当b。

1时,c。

a。

一个数(除外)乘小于1的数,积小于这个数。

a ×b = c,当b < 1时,c < a(b ≠ 0)。

一个数(除外)乘等于1的数,积等于这个数。

a ×b = c,当b = 1时,c = a。

四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

整数乘法运算定律同样适用于分数乘法,运算定律可使计算更简便。

其中包括乘法交换律、乘法结合律和乘法分配律。

倒数的意义是指乘积为1的两个数互为倒数。

需要注意的是,倒数是两个数的关系,它们互相依存,不能单独存在。

判断两个数是否互为倒数的唯一标准是它们相乘的积是否为1.求倒数的方法包括求分数、整数、带分数和小数的倒数。

1的倒数是它本身,而0没有倒数,因为任何数乘以0的积都是0,且不能作分母。

任意数a(a≠0)的倒数为1/a,非零整数a的倒数为a/1,分数的倒数是倒数的分数。

真分数的倒数是假分数,真分数的倒数大于1,也大于它本身,而假分数的倒数小于或等于1,带分数的倒数小于1.分数乘法可用于解决各种问题。

例如,要求一个数的几分之几是多少,可以用单位“1”的量与分数相乘。

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级数学上册概念整理第一单元 位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元 分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512 ,表示:6的512 是多少。

27 ×512 ,表示:27 的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级上册数学知识点(概念)归纳与整理(人教版)

六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:〔7,9〕表示第七列第九行。

4、两个数对,前一个数一样,说明它们所表示物体位置在同一列上。

如:〔2,4〕和〔2,7〕都在第2列上。

5、两个数对,后一个数一样,说明它们所表示物体位置在同一行上。

如:〔3,6〕和〔1,6〕都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法〔一〕、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

〔二〕、分数乘法的计算法那么:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、分数大小的比拟:1、一个数〔0除外〕乘以一个真分数,所得的积小于它本身。

一个数〔0除外〕乘以一个假分数,所得的积等于或大于它本身。

一个数〔0除外〕乘以一个带分数,所得的积大于它本身。

2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

〔四〕、解决实际问题。

1分数应用题一般解题步行骤。

〔1〕找出含有分率的关键句。

部编版小学数学六年级上册:课文背诵知识点整理

部编版小学数学六年级上册:课文背诵知识点整理

部编版小学数学六年级上册:课文背诵知识点整理本文档旨在整理部编版小学数学六年级上册课文背诵的知识点,帮助学生加深对数学知识的理解和记忆。

第一课:整数1.1 整数的概念与正负该课程主要介绍了整数的概念、正整数和负整数的区别,以及整数之间的比较和运算规则。

- 整数是由正整数、负整数和0所组成的数集。

- 正整数是大于0的整数,负整数是小于0的整数。

- 整数可以通过数轴进行表示,数轴的原点表示0,正数在右边,负数在左边。

- 整数之间可以进行比较,正整数大于负整数,而负整数小于正整数。

- 整数之间的加减法运算规则,同号相加为正,异号相减取绝对值并按照同号的规则执行。

1.2 整数的加法和减法该课程介绍了整数之间的加法和减法运算。

- 整数之间的加法运算规则,同号相加为正,异号相加按照同号的规则执行。

- 整数之间的减法运算规则,减去一个整数等于加上这个整数的相反数。

1.3 整数的乘法和除法该课程介绍了整数之间的乘法和除法运算。

- 整数之间的乘法运算规则,同号相乘为正,异号相乘为负。

- 整数之间的除法运算规则,同号相除为正,异号相除为负。

第二课:小数2.1 小数的概念和表示该课程介绍了小数的概念和表示方法。

- 小数是有限小数和无限循环小数的统称。

- 小数可以通过十分位、百分位等进行表示。

2.2 小数的大小比较和运算该课程介绍了小数之间的大小比较和运算规则。

- 小数之间可以通过数值进行比较,数值大的小数更大。

- 小数之间的加减法运算规则,按照十分位、百分位等对齐后进行计算。

- 小数之间的乘法运算规则,先按照实数相乘的方法计算,最后确定小数点的位置。

- 小数之间的除法运算规则,先把除数和被除数都扩大或缩小成整数,再进行整数的除法运算。

以上是部编版小学数学六年级上册课文背诵的知识点整理,希望能对学习者有所帮助。

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理

六年级数学上册知识梳理第一单元分数乘法一、分数乘法意义和计算(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简易运算。

2、分数乘分数是求一个数的几分之几是多少。

(二)、分数乘法的计算法例:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意(1)分数的化简:分子、分母同时除以它们的最大公因数。

(2)对于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,倡导在计算过程中约分,这样简易。

(3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时)一个数( 0 除外)乘大于 1 的数,积大于这个数。

一个数( 0 除外)乘小于 1 的数( 0 除外),积小于这个数。

一个数( 0 除外)乘1,积等于这个数。

(四)、分数混淆运算的运算次序和整数的运算次序相同。

(五)、整数乘法的互换律、联合律和分派律,对于分数乘法也相同合用。

乘法互换律 : a× b=b× d乘法联合律 : a× b×c=a× (b× c)乘法分派律 :a × (b+c)=ab+ac 或 a× (b-c)=ab-ac 二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“ 1”的几分之几是多少)1、找单位“ 1”:“占”、“是”、“比”的后边,“的”前方2、求一个数的几倍是多少;求一个数的几分之几是多少。

用乘法对应量 =单位“ 1”的量×对应分率第二单元地点与方向要比较正确确实定一个物体的地点,方向和距离这两个条件缺一不行,一般经过定方向、测角度、量距离、定地点这几个基本步骤达成。

第三单元分数除法一、倒数1、倒数的意义:乘积是1的两个数互为倒数。

( 互为倒数,即倒数是两个数的关系,它们相互依存,倒数不可以独自存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级数学上册概念知识点整理第一单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少,也表示98的5倍是多少。

2、一个数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少。

(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。

(三)、乘法规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简便方法不忘记。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: ab = ba乘法结合律: (ab)c = a(bc)乘法分配律:(a + b)c = ac + bc二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=对应量(比较量)(3)分率前是“多或少”:单位“1”的量×(1 分率)=对应量(比较量)三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

因为1×1=1;0乘任何数都得0,01(分母不能为0) 4、 对于任意数(0)a a ,它的倒数为1a ;非零整数a 的倒数为1a ;分数b a 的倒数是a b; 5、 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

第二单元 位置与方向1、 位置与方向三要素:方向、角度、距离。

方向:上北下南,左西右东。

2、 位置的相对性:方向相反,角度相同,距离相等。

例如:小明站在小华东偏南300方向200米处,那么小华站在小明西偏北300方向200米处。

第三单元 分数除法一、 分数除法1、分数除法的意义:乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

例如:98÷32表示已知两个因数的积是98,其中一个因数是32,求另一个因数是多少。

2、分数除法计算法则:除以一个不为0的数,等于乘这个数的倒数。

(甲数除以乙数(0除外),等于乘乙数的倒数) 例如:98÷32=98×23 3、除法规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、“[]”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。

)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:比较量÷单位“1”的量=分率4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量=多(少)的分率或:①求多几分之几:大数÷小数– 1②求少几分之几: 1 - 小数÷大数三、工程问题1表示工作效率,用工作总量÷工作效率求出用“1”表示工作总量,用工作时间工作时间。

数量关系:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间第四单元 比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0.例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例: 路程÷速度=时间。

4、求比值的方法:用比的前项除以比的后项。

5、区分比和比值比:表示两个数的倍数关系,有前项和后项比值:相当于商,是一个数,可以是整数、分数、或小数,不带单位名称。

6、根据分数与除法的关系,两个数的比也可以写成分数形式。

例如3:2也可以写成32,仍读作“3:2”。

7、 比和除法、分数的联系:8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的倍数关系。

9、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数(只有公因数1),这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比(最简比)。

4.化简比:①整数比:用比的前项和后项同时除以它们的最大公因数。

(1) ②分数比:用前项后项同时乘分母的最小公倍数,化成整数比,再化成最简比。

③小数比:前项后项同时扩大相同的倍数,化成整数比,再化成最简比。

(2)用求比值的方法。

如: 15∶10 = 15÷10 =23 = 3∶2 5、求比值与化简比的区别求比值:用前项除以后项,结果是一个数;化简比:依据比的基本性质,前项后项同时乘或除以一个相同的数(0除外),结果是一个最简比。

6、路程相同,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4)工作总量相同,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3) (三)比的应用题1、求每份数的方法和÷总份数=每份数 相差数÷相差份数=每份数 部分数÷对应份数=每份数2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4 长方形: (长+宽)的和=周长÷23、相遇问题速度和 = 路程÷相遇时间4、按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

按比例分配应用题的结构特征:已知总数和各部分数的比,求各部分数。

方法与步骤:1、根据比先求出总份数。

2、求出各部分数占总数的几分之几。

3、运用分数乘法列式计算,求出各部分数。

4、答题并检验。

第五单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种封闭图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O 表示。

3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

直径是一个圆内最长的线段。

5、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

6、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d =2r 或r = 21d 7.圆心确定圆的位置,半径确定圆的大小。

8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C 表示。

2、圆周率实验:(1)绳测法:用绳子绕圆一圈,拉直后用直尺量出长度即求出圆的周长。

(2)滚动法:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

圆的周长总是它直径的3倍多一些。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai ) 表示。

圆周率π是一个无限不循环小数。

在计算时,一般取π ≈3.14。

(1)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍或3倍多一些。

(2)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式: C= πd ÷π或C=2π r ÷π÷25、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

相关文档
最新文档