DCAC逆变电路及讲义原理总结

合集下载

直流变交流逆变器的工作原理及电路分享

直流变交流逆变器的工作原理及电路分享

直流变交流逆变器的工作原理及电路分享直流变交流逆变器的工作原理利用震荡器的原理,先将直流电变为大小随时间变化的脉冲交流电,经隔直系统去掉直流分量,保留交变分量,再通过变换系统(升压或降压)变换,整形及稳压,就得到了符合我们需要的交流电。

利用振荡电路产生一定频率的脉动的直流电流,再用变压器将这个电流转换为需要的交流电压。

三相逆变器则同时产生互差120度相位角的三相交流电压。

逆变器有很多部分组成,其中最核心的部分就是振荡器了。

最早的振荡器是电磁型的,后来发展为电子型的,从分立元件到专用集成电路,再到微电脑控制,越来越完善,逆变器的功能也越来越强,在各个领域都得到了很广泛的应用。

简单直流变交流的逆变器电路该逆变器使用功率场效应晶体管作为逆变器装置。

用汽车电池供电。

因此,在输入电压为12伏直流电。

输出电压是100V的交流电。

但是,输入和输出电压不仅限于此。

您可以使用任何电压。

他们依赖于变压器使用。

波形输出为方波。

根据经验,这个电路约100W功率。

电路必须按装保险丝,因为过多的输入电流流动时,振荡器停止。

逆变器原理电路:将12V直流变成220V交流电将220V交流电转变为24V、36V、48V 都比较简单,只需要使用变压器的原理。

电磁互感,就可以获得不同的电压。

设闭合电路是一个n匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为根据公式可知,E就是电动势,也就是电压。

因为不变,只要铁块两端的线圈数量n不一样就可以达到变压的效果。

将交流电转变为直流电只要加上二极管就可以达到需要的效果,二极管是一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。

然后再利用变压器原理就可以将220V交流电转变成12V直流电,以及我们手机充电器的5V直流输出电压。

那么如何将12V直流转换成220V交流电呢?首先我们来了解一下逆变器,什么是逆变器?逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。

新第十三讲电流型DC-AC变换电

新第十三讲电流型DC-AC变换电

02 电流型半桥DC-AC变换器
CHAPTER
工作原理与电路组成
电流型半桥DC-AC变换器是一种将直流电能转换为交流电能 的电力电子装置。它通过开关管的控制,将直流电压或电流 转换为交流电压或电流。
电路组成:包括输入滤波器、半桥电路、变压器、输出滤波 器和负载等部分。其中,半桥电路是变换器的核心部分,由 两个开关管和两个电容组成。
VS
稳定性分析
通过分析系统的传递函数和稳定性条件, 确定系统的稳定性和动态响应特性。
04 电流型推挽式DC-AC变换器
CHAPTER
工作原理与电路组成
总结词
电流型推挽式DC-AC变换器通过改变输入直流电流的波形,将其转换为交流输出电流。其电路组成包 括输入直流电源、全控开关器件、输出滤波器和负载。
输入输出特性
输入特性
输入电压范围宽,可以适应不同 的直流电源输入;输入电流连续 ,对输入电源的冲击小。
输出特性
输出电压波形好,可以输出正弦 波;输出电压的幅值和相位可以 通过控制开关管的通断进行调节 。
控制策略与稳定性分析
控制策略
常用的控制策略有脉宽调制(PWM)和移相控制等。脉宽调制是通过调节开关管的 通断时间来控制输出电压的幅值和频率;移相控制是通过调节开关管的通断时刻来 控制输出电压的相位。
谢谢
THANKS
稳定性分析
为了确保电流型半桥DC-AC变换器的稳定运行,需要对电路的稳定性进行分析。 常用的稳定性分析方法有频率法和状态空间法等。通过分析,可以确定系统的稳 定性和动态响应特性,为控制策略的选择和优化提供依据。
03 电流型全桥DC-AC变换器
CHAPTER
工作原理与电路组成
工作原理

DC-AC逆变器,DC-AC逆变器的基本原理

DC-AC逆变器,DC-AC逆变器的基本原理

DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。

DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。

DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。

由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。

但转换输出的波形却很差,是含有相当多谐波成分的方波。

而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。

基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。

具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。

1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。

采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。

它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。

滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。

通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。

由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。

DC-AC逆变器

DC-AC逆变器

第三章逆变控制器的组成及工作原理DC-AC变换结构:DC-AC全桥变换的基本原理如上图所示,Ud为直流电压,V1,V2,V3,V4为可控开关。

当V1,V4导通V2,V3断开时,负载端电压Us为上正下负。

反之,当V2,V3导通V1,V4断开时,负载端电压Us为下正上负。

Spwm调制介绍随着逆变器控制技术的发展,电压型逆变器出现了多种变压、变频控制方法。

目前采用较多的是正弦脉宽调制调制技术,即 SPWM 控制技术。

SPWM(Sinusoidal Pulse Width Modulation)技术,是指调制信号正弦化的 PWM技术。

由于其具有开关频率固定、输出电压只含有固定频率的高次谐波分量、滤波器设计简单等一系列优点,SPWM 技术已成为目前应用最为广泛的逆变用 PWM 技术。

SPWM (正弦脉宽调制)应用于正弦波逆变器主要基于采样控制理论中的一个结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,效果基本相同。

图3-1是将正弦波的半个周期分成等宽(π/N)的 N个脉冲,(b)是N个宽度不等的矩形脉冲,但矩形中点与正弦等分脉冲中点重合,并且矩形脉冲的面积和相应正弦脉冲面积相等。

图3-1 数字PWM控制基本原理SPWM 技术按工作原理可以分为单极性调制和双极性调制。

单极性调制的原理如图 3-2(a),其特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压;另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减少了开关损耗。

但并不是固定其中以个桥臂始终工作在低频,而是每半个周期切换工作,即同一桥臂在前半个周期工作在低频,而后半个周期工作在高频。

这样可以使两个桥臂的工作状态均衡,器件使用寿命更均衡,有利于增加可靠性。

2) 双极性调制双极性调制的原理如3-2(b),其特点是四个功率管都工作在较高的频率(载波频率),虽然能够=得到较好的输出电压波形,但是其代价是产生了较大的开关损耗。

dc ac逆变器电路图

dc ac逆变器电路图

dc ac逆变器电路图dcac逆变器电路图这里介绍的逆变器(见图)主要由MOS场效应管,普通电源变压器构成。

其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。

下面介绍该逆变器的工作原理及制作过程。

电路图工作原理这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率工作原理这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。

电路的振荡是通过电容C1充放电完成的。

其振荡频率为f=1/2.2RC。

图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。

由于元件的误差,实际值会略有差异。

其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。

如图4所示。

MOS场效应管电源开关电路。

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。

图5MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。

它一般有耗尽型和增强型两种。

本文使用的为增强型MOS 场效应管,其内部结构见图5。

它可分为NPN型PNP型。

NPN型通常称为N沟道型,PNP型也叫P沟道型。

第4章_DC-AC变换技术

第4章_DC-AC变换技术

ua
ub
uc
ua
ub
O
wt
=
3
=
4
=
6
ud uab uac ubc u ba uca u cb uab uac u bc uba u ca u cb u ab u ac u bc u ba u ca ucb u ab u ac u bc
wt1 wt2 wt3
O
wt
=
3
=
4
=
6
图4-10 三相桥式相控有源逆变电路工作波形
√也叫电感耦合式强迫换流。
■换流方式总结 ◆器件换流只适用于全控型器件,其余三种方式主要是针对晶闸管而言的。 ◆器件换流和强迫换流属于自换流,电网换流和负载换流属于外部换流。 ◆当电流不是从一个支路向另一个支路转移,而是在支路内部终止流通而
变为零,则称为熄灭。
4.2 相控有源逆变电路
4.2.1 有源逆变的工作原理和实现的条件 4.2.2 三相相控有源逆变电路 4.2.3 逆变失败及最小逆变角的限制
载阻抗不同而不同。 ◆阻感负载时需提供无功功率,为了给交流侧向直流侧反馈的无功
能量提供通道,逆变桥各臂并联反馈二极管。
20
4.3.1 电压型单相无源逆变电路
图4-14 电压型单相全桥逆变电路原理图与工作波形
21
4.3.1 电压型单相无源逆变电路
图4-15 单相全桥逆变电路的移相调压方式
22
4.3.2 电流型单相无源逆变电路
个负载工作在接近并联谐振状态而略呈容
ω t 性,直流侧串大电感,工作过程可认为id
基本没有脉动。
√负载对基波的阻抗大而对谐波的阻抗
ω t 小,所以uo接近正弦波。
ωt

dc转ac电路原理

dc转ac电路原理

dc转ac电路原理
直流(DC)转交流(AC)电路是一种能将直流电转换为交流
电的电路。

它主要由直流电源、转换器、滤波器和输出负载四部分组成。

直流电源:直流电源提供稳定的直流电,通常通过整流电路将交流电源转换成直流电,并通过电容器储存电荷。

转换器:转换器是直流转交流电路的核心部分。

它包含一个或多个开关元件(如可控硅、晶体管和MOSFET)以及相应的
驱动电路。

转换器的工作原理是通过定时打开和关闭开关元件,将直流电源的电能转换成交流电能。

开关元件的周期性操作使得直流电源产生像正弦波一样的交流电信号。

滤波器:由于转换器输出的交流电信号由脉冲组成,在输出端产生了很多谐波成分。

为了滤除这些谐波并使输出信号接近理想的正弦波形态,需要添加滤波器。

滤波器一般由电感和电容组成,通过选择适当的元器件参数可以实现对谐波的滤除。

输出负载:输出负载通常是指将交流电路连接到需要供电的设备或装置上。

负载的特性和功率需求会影响到电路设计和转换器的选择。

通过以上四部分的协作,直流转交流电路可以将直流电源转换为交流电,并提供给负载使用,满足设备对交流电的需求。

这种转换电路在一些特定的应用领域,如可调速电机驱动和太阳能发电系统中得到了广泛应用。

第6讲 DC-AC

第6讲 DC-AC

第五讲 逆变电路
22
三相桥整流电路的有源逆变状态

三相桥式电路工作于有源逆变状态,不同逆变角 时的输出电压波形及晶闸管两端电压波形
u2 ua ub uc ua ub uc ua ub uc ua ub
O
wt =
3
=
4 u cb u ab u ac u bc u ba u ca
=
6 u cb u ab u ac u bc u ba u ca u cb u ab u ac u bc
u
d
a
u 10
u 20
u 10
U d> E M
ud
u
10
u 20
u 10
O
wt
O
wt
U d< E M
id
i =i
d
VT
+i
1
VT
2
i VT O
1
i VT
2
i VT
I
id
d
a
iVT
2
i =i
d
VT
+i
1 1
VT
2
1
i VT
i VT
I
d
wt
2
O
b)
wt
a)
单相全波电路的整流和逆变 a)整流 b)逆变
第五讲 逆变电路
整流电压 整流电流 变压器容量 短路电压比Uk% 220V 800A 240kV。A 5%
g
15~20
参照整流时g 的计算方法
cosa cos(a g ) Id X B 2U 2 sin
Id X B 2U 2 sin

m

第四章DC-AC变换器无源逆变电路2

第四章DC-AC变换器无源逆变电路2

4.2.3 电压型正弦波逆变器
2.正弦脉冲宽度调制的基本问题
3)同步调制 ② ③
u
由于载波比N保持一定,当fr变化时,一个调制波周期中的脉冲数将 固定不变。 当载波比N为奇数时,一个调制波正、负半个周期以及半个周期中 的前后1/4周期的脉冲波形具有对称性。 u u u u u
u
c
r
c
r
O
o
wt
ωt
u uc ur uc
r
o
ωt
o
ωt
u
u
p
p
o
ωt
a)
o
ωt
a) fr =fr1
b) fr=f r2
b)
不同调制波频率fr (fr1﹥f r2)时的异步调制SPWM波形
4.2.3 电压型正弦波逆变器
2.正弦脉冲宽度调制的基本问题
2)异步调制
当fr较低时,N 较大,一周期内脉冲数较多,脉冲不对称 产生的不利影响都较小 当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲 不对称的影响就变大 • • 采用异步调制时,SPWM的低频性能好,而高频性能较 差。 因此采用该方式时希望采用较高的fc,即在一个调制信号 周期内所包含的三角载波的个数较多,从而弥补脉冲不 对称造成的影响。
U
不等幅PWM波
o
ωt
输入电源是交流 等幅和不等幅PWM波的本质都是基于面积相等 进行控制的。 如果电源是电流源,则也可以得到PWM电流波
4.2.3 电压型正弦波逆变器
1.电压型正弦波逆变器的基本原理
PWM波可等效的各种波形 直流斩波电路 直流波形 SPWM波 正弦波形 等效成其他所需波形,如:
20V
4.2.3 电压型正弦波逆变器

电力电子DC-AC逆变

电力电子DC-AC逆变

4.0.0 引言
逆变的概念
电力电子技术——DC-AC逆变
逆变——与整流相对应,直流电变成交流电。 交流侧接电网,为有源逆变。 交流侧接负载,为无源逆变。
逆变与变频
变频电路:分为交交变频和交直交变频两种。 交直交变频由交直变换(整流)和直交变换两部分组 成,后一部分就是逆变。
主要应用
各种直流电源,如蓄电池、干电池、太阳能电池等。
负载
a A * * O
1
* b B
P
Vd 2
0 Vd 2
VD
D1 T3 ia
a
T1
D
D2
T2
T1
D3 T5
ib
D5 ic
c
推挽式单相逆变电路
b
T4 D4
T6
D6
T2
D2
Q 电压型三相桥式逆变电路
电力电子技术——DC-AC逆变
4.1.2 逆变器输出波形性能指标
(1)谐 波 系 数 n Vn / V1 HF
T 2
t

电力电子技术——DC-AC逆变
4.1.3 其他指标
逆变器的性能指标除输出波形性能指标外,还应包 括:
逆变效率
单位重量(或单位体积)输出功率
可靠性指标
逆变器输入直流电流中交流分量的数值和脉动频率 电磁干扰EMI及电磁兼容性EMC
电力电子技术——DC-AC逆变
4.2 电压型单相方波逆电路工作原理
由换流电路内电容 直接提供换流电压 通过换流电路内的 电容和电感的耦合 来提供换流电压或 换流电流 直接耦合式 强迫换流 电感耦合式 强迫换流
电力电子技术——DC-AC逆变
直接耦合式强迫换流
当晶闸管VT处于通态 时,预先给电容充电。当 S合上,就可使VT被施加 反压而关断。 也叫电压换流。 电感耦合式强迫换流

DC-AC逆变器DC-AC逆变器的基本原理

DC-AC逆变器DC-AC逆变器的基本原理

DC/AC逆变器‎,DC/AC逆变器‎的基本原理‎背景知识:DC/AC逆变技‎术能够实现‎直流电能到‎交流电能的‎转换,可以从蓄电‎池、太阳能电池‎等直流电能‎变换得到质‎量较高的、能满足负载‎对电压和频‎率要求的交‎流电能。

DC/AC逆变技‎术在交流电‎机的传动、不间断电源‎(UPS)、变频电源、有源滤波器‎、电网无功补‎偿器等许多‎场合得到了‎广泛的应用‎。

DC/AC逆变技‎术的基本原‎理是通过半‎导体功率开‎关器件(例如SCR‎,GTO,GTR,IGBT 和‎功率MOS‎F ET模块‎等)的开通和关‎断作用,把直流电能‎变换成交流‎电能,因此是一种‎电能变换装‎置。

由子是通过‎半导体功率‎开关器件的‎开通和关断‎来实现电能‎转换的,因此转换效‎率比较高。

但转换输出‎的波形却很‎差,是含有相当‎多谐波成分‎的方波。

而多数应用‎场合要求逆‎变器输出的‎是理想的正‎弦波,因此如何利‎用半导体功‎率开关器件‎的开通和关‎断的转换,使逆变器输‎出正弦波和‎准正弦波就‎成了DC/AC逆变器‎技术发展中‎的一个主要‎问题。

基本原理:常用逆变器‎主电路的基‎本形式有两‎种分类方法‎:按照相数分‎类,可以分为单‎相和三相;按照直流侧‎波形和交流‎侧波形分类‎,可以分为电‎压型逆变器‎和电流型逆‎变器。

具体如下:DC/AC逆变器‎按拓扑结构‎划分,分为Buc‎k型DC/AC逆变器‎,Boost‎型DC/AC逆变器‎,Buck-Boost‎型DC/AC逆变器‎。

1,Buck型‎D C/AC逆变器‎Buck型‎D C/AC逆变器‎电路基本拓‎扑如图所示‎。

采用了两组‎对称的Bu‎c k电路,负载跨接在‎两个Buc‎k变换器的‎输出端,并以正弦的‎方式调节B‎u ck变换‎器的输出电‎压,进行DC/AC的变换‎。

它包括直流‎供电电源V‎m,输出滤波电‎感L1和L‎2,功率开关管‎S1-S4 。

滤波电容C‎1和C2,续流二极管‎D1-D4,以及负载电‎阻R。

第五章 DC-AC变换电路(2).概要

第五章  DC-AC变换电路(2).概要

一、三相半波逆变电路
二、三相桥式逆变电路
5.2
有源逆变应用电路
1、输出电压平均值的近似计算和整流时一样。
U d U d 0 cos U d 0 cos( ) U d 0 cos
2、电流计算 U d EM Id R 三相半波电路
三相全控桥式电路
I dVT
I 2 I VT
例:判断下列电路能否逆变? 1、单相全控桥式电路,U2=100V,E=-70V, α=120 2、单相全控桥式电路,U2=100V,E=-30V, α=120 3、单相半控桥式电路,U2=100V,E=-70V, α=120 4、如图所示电路, U2=100V,E=-70V, α=120
• 有源逆变电路 • 无源逆变电路
有源逆变电路
• 逆变的概念 • 三相有源逆变电路 • 逆变失败及最小逆变角的限制
5.1
有源逆变的基本原理
图 5-1a 电动运转, E态 ,电流 G转 流向 , M 吸收 图 5-1b M 回 馈制动状 , 作 发I电 运 ,M 此 时 , G>E MM d从 图 5-1c 两电动势顺向串联,向电阻 R 供电, G 和 M 均输 电功率。 E M流向G。故M输出电功率,G则 M>EG,电流反向,从 出功率,由于 R 一般都很小,实际上形成短路,在工作中 RΣ 为主回路总电阻。由于 Id 和 EG 同方向,与 EM 反方向, 吸收电功率, M 轴上输入的机械能转变为电能反送给 G。 必须严防这类事故发生。 因此G 输出电功率 PG=EG· Id,电能由 G 流向 M ,M 吸收功率 PM= EM· Id,再转变为机械能,RΣ上是热耗。I d EG EM
R
5.1

dc ac逆变器电路图2

dc ac逆变器电路图2

dc ac逆变器电路图这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。

其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。

下面介绍该逆变器的工作原理及制作过程。

电路图 工作原理这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。

电路的振荡是通过电容C1充放电完成的。

其振荡频率为f=1/2.2RC。

图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。

由于元件的误差,实际值会略有差异。

其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。

电路的振荡是通过电容C1充放电完成的。

其振荡频率为f=1/2.2RC。

图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。

由于元件的误差,实际值会略有差异。

其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。

如图4所示。

MOS场效应管电源开关电路。

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。

DC-AC逆变器_DC-AC逆变器的基本原理

DC-AC逆变器_DC-AC逆变器的基本原理

DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。

DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。

DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。

由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。

但转换输出的波形却很差,是含有相当多谐波成分的方波。

而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。

基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。

具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。

1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。

采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。

它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。

滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。

通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。

由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。

DC-AC逆变电路

DC-AC逆变电路

DC/AC逆变器的制作这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。

其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。

下面介绍该逆变器的工作原理及制作过程。

●电路图●工作原理这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)图3这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。

电路的振荡是通过电容C1充放电完成的。

其振荡频率为f=1/2.2RC。

图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。

由于元件的误差,实际值会略有差异。

其它多余的反相器,输入端接地避免影响其它电路。

∙场效应管驱动电路。

图4由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。

如图4所示。

∙MOS场效应管电源开关电路。

下面简述一下用C-MOS场效应管(增强型MOS 场效应管)组成的应用电路的工作过程(见图9)。

电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。

当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。

当输入端为高电平时,N 沟道MOS场效应管导通,输出端与电源地接通。

在该电路中,P沟道MOS场效应管和N沟道MOS 场效应管总是在相反的状态下工作,其相位输入端和输出端相反。

通过这种工作方式我们可以获得较大的电流输出。

同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。

不同场效应管其关断电压略有不同。

第五章 DC-AC变换电路(1)

第五章  DC-AC变换电路(1)

注意:半控桥或有续流二极管的电路不能实现有源 逆变。
5.2
有源逆变应用电路
Ud=Ud0cos α 0<α<π/2 Ud>0 整流 π/2 <α< π Ud<0 逆变 逆变角β:以α=π为计量起始点,向左度量。 即: π-α= β ,π/2 <α<π即 0< β<π/2 ∴ Ud=Ud0cos α = -Ud0cos β 一、三相半波逆变电路 二、三相桥式逆变电路
2。单相电压型逆变电路的工作原理
3。三相电压型逆变电路的工作特点
4。三相电压型逆变电路输出电压计算
作业:由IGBT构成的三相电压型逆变电路,已 知,现在是VT3、VT4、VT5导通,问下一步 应触发哪一个管子,关断哪一个管子,换流结束 后,在图中标出负载电流方向,及此时三相相电 压值。
电流型逆变器(CSTI)
要求:1、了解电流型逆变器的特点 2、单相电流型逆变电路——并联谐振 式逆变器 3、三相电流型逆变电路——串联二极 管式电流型逆变器
电流型逆变器(CSTI)
一、电流型逆变器的主要特点
1、直流侧串联有大电感,相当于电流源。直 流电流基本无脉动,直流回路呈现高阻抗。 2、交流侧输出电流为矩形波,并且与负载阻 抗角无关。 3、直流侧电感起缓冲无功能量的作用。但其 不必像电压型逆变电路给开关器件反并联二 极管。
2 二、三相 电压型逆 变电路
3 三、单相 电流型逆 变电路
4
四、三相 电流型逆 变电路
逆变电路按其直流电源性质不同分为两种 电压型逆变电路或电压源型逆变电路 电流型逆变电路或电流源型逆变电路
电压型逆变电路(VSTI)
一、主要特点 1)直流侧为电压源,或并联大电容,相当于电压 源。直流侧电压基本无脉动,直流回路呈现低阻 抗 2)交流侧输出电压波形为矩形波,并与负载阻抗 角无关。 3)直流侧电容起缓冲无功能量的作用。为了给交 流侧向直流侧反馈的无功能量提供通道,逆变桥 各桥臂都并联反馈二极管。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
ON V1 V2 V1 V2
VD1 VD2 VD1 VD2 b)
图5-6 单相半桥电压型逆变
电路及其工作波形
5-9
单相电压型逆变电路
优点:电路简单,使用器件少。
• 缺点:输出电压幅值为Ud/2,负载上的功率 为全桥的1/4,开关管承受的电压为Ud,且
直流侧需两电容器串联,要控制两者电压均 衡。
直流侧是电压源
电压型逆变电路——又称为电压源
型逆变电路 Voltage Source Type Inverter-VSTI
直流侧是电流源
电流型逆变电路——又称为电流源
型逆变电路 Current Source Type Inverter-CSTI
5-8
单相电压型逆变电路
1)单相半桥逆变电路
工作原理
V1和V2栅极信号在一周期内 各半周正偏、半周反偏,两
(4)控制方式有PWM,双极性和移相控制方式。
参数计算与器件选择
根据不同的负载类型计算负载等效阻抗: 电阻型:Z=R 电阻电感型:Z=R+jωL
Z=(R2+(ωL)2 ) ½ 对于RLC:Z=R+jωL-1/jωC
对于电阻:i=P/Ud=Ud/R 对于电阻电感:i=P/Udcosφ=Ud/Z 开关管上的电压:U=(2~3)Ud
5-10
参数计算与器件选择
根据不同的负载类型计算负载等效阻抗: 电阻型:Z=R 电阻电感型:Z=R+jωL
Z=(R2+(ωL)2 ) ½ 对于RLC:Z=R+jωL-1/jωC 对于电阻:i=2P/Ud=Ud/2R 对于电阻电感:i=2P/Udcosφ=Ud/2Z 开关管上的电压:U=(2~3)Ud
t1 t2
t t
图5-7 单相全桥逆变
b)
电路的移相调压方式
单相电压型逆变电路
2)单相电压型全桥逆变电路的特点
(1)直流侧为电压源或并联大电容,直流侧电压基本无脉 动。
(2)输出电压幅值为Ud的矩形波,负载上的功率为半桥逆 变器的4倍,输出电流因负载阻抗不同而不同。
(3)阻感负载时需提供无功功率。为了给交流侧向直流侧 反馈的无功能量提供通道,逆变桥各臂并联反馈二极管。
电流:I=(1.5~2)(2)1/2i
5-15
参数计算与器件选择 例:逆变器输入电压为550V,输出功率为 20KW,逆变器开关频率为20KHz,RLC谐振 负载,
其等效电阻为:R=Ud2/P=15.125Ω 负载上的电流有效值为:i=Ud/R= 36.36A 开关管上的电压:U=(2~3)Ud=1100~1650V 电流:I=(1.5~2)(2)1/2i=77~102A
5-16
单相电压型逆变电路
阻感负载时,还可采用移 相得方式来调节输出电压 -移相调压。
V3的基极信号比V1落后
uG1
a)
(0< <180 °)。V3、
O u G2
t
V4的栅极信号分别比V2、
V1的前移180°-。输 出电压是正负各为的脉
O
u G3。
O
t
改变就可调节输出电压。
S1、S4闭合,S2、S3断开时,负载电压uo为正。 S1、S4断开,S2、S3闭合时,负载电压uo为负。
直流电 交流电
5-5
逆变电路的基本工作原理
逆变电路最基本的工作 原理 ——改变两组开关 切换频率,可改变输出 交流电频率。
电和u阻o的负波载形时相,同负,载相电位流也io
相同。
阻于u感o负,载波时形,也i不o相同位。滞后
换流方式
逆变电路的基本工作原理 换流方式分类
5-3
逆变电路的基本工作原理
以单相桥式逆变电路为例说明最基本的工作原理
S1~S4是桥式电路的4个臂,由电力电子器件及辅 助电路组成。
uo
S 1
io
负载
S 3
Ud
S2
uo S4
io
t1 t2
t
a)
b)
图5-1 逆变电路及其波形举例
5-4
逆变电路的基本工作原理
u o
io
io
uo t
O
t1 t2
3
t
图5-7 单相全桥逆变
b)
电路的移相调压方式
单相电压型逆变电路
3) 带中心抽头变压器的逆变电路
交替驱动两个IGBT,经变压 器耦合给负载加上矩形波交 流电压。
两个二极管的作用也是提供 无功能量的反馈通道。
图5-8 带中心抽头变压器的逆变电路
Ud和负载参数相同,变压器匝比为1:1:1时,uo和io 波 形及幅值与全桥逆变电路完全相同。
电流:I=(1.5~2)(2)1/2i
5-11
参数计算与器件选择 例:逆变器输入电压为550V,输出功率为 20KW,逆变器开关频率为20KHz,RLC谐 振负载,
其等效电阻为:R=Ud2/4P=3.78Ω 负载上的电流有效值为:i=Ud/2R=72.75A 开关管上的电压:U=(2~3)Ud=1100~1650V 电流:I=(1.5~2)(2)1/2i=154~205A
DCAC逆变电路及原理总结
引言
逆变的概念
逆变——与整流相对应,直流电变成交流电。 交流侧接电网,为有源逆变。 交流侧接负载,为无源逆变。
逆变与变频
变频电路:分为交交变频和交直交变频两种。 交直交变频由交直变换(整流)和直交变换两部分组
成,后一部分就是逆变。
主要应用
各种直流电源,如蓄电池、干电池、太阳能电池等。 交流电机调速用变频器、不间断电源、感应加热电源 等电力电子装置的核心部分都是逆变电路。
a) uo
io
t1 t2
t
b)
图5-1 逆变电路及其波形举例
换流方式分类
换流——电流从一个支路向另一个支路转移的过程, 也称为换相。
开通:适当的控制极驱动信号就可使器件开通。 关断:
全控型器件可通过门极关断。 研究换流方式主要是研究如何使器件关断。
5-7
电压型逆变电路
1)逆变电路的分类 —— 根据直流侧电源性质的不同
者互补,输出电压uo为矩形
波,幅值为Um=Ud/2。
V1或V2通时,io和uo同方向,
直流侧向负载提供能量;
VD1或VD2通时,io和uo反向,
电感中贮能向直流侧反馈。 VD1、VD2称为反馈二极管, 它又起着使负载电流连续的 作用,又称续流二极管。
u
a)
o
Um
O
t
-Um
io
O
t3 t1 t2
t4
t5 t6
5-12
单相电压型逆变电路
2) 全桥逆变电路
共四个桥臂,可看成两个半 桥电路组合而成。
两对桥臂交替导通180°。 uG1
O
输出电压和电流波形与半桥 uG2
t
电路形状相同,幅值高出一 O
t
倍。
u G3
O
t
改变输出交流电压的有效值 uG4
O
只能通过改变直流电压Ud来
u o
实现。
io O
io
uo t
3
相关文档
最新文档