天然气三甘醇脱水流程

合集下载

天然气脱水流程与原理详解演示文稿

天然气脱水流程与原理详解演示文稿
天然气脱水流程与原理详解演示 文稿
优选天然气脱水流程与原理
第一节 概 述 一、直接冷却法:
• 原理:通过降低天然气的温度, 利用水与轻烃凝结为液体的温 差,使水得以冷凝,从而达到 脱水的目的。
• 缺点:需要制冷设施对天然气 进行制冷。
天然气脱硫、脱水器
第一节 概 述
二、溶剂吸收脱水法
•原理:天然气与某种吸水能力强的化学溶剂相接触,利用化 学溶剂对水的吸收能力,吸收天然气中的水分,同时不与水 发生化学反应,最终达到脱水的目的。 •优点:吸收剂能通过一定的方法进行再生,使其能重复使用。
三、甘醇脱水工艺流程
湿天然气自吸收塔底部 进入,自下而上与从顶部进 入的三甘醇贫液相接触后, 干气从顶部流出;贫三甘醇 自塔顶进入,与吸收塔内湿 天然气充分接触后成为富液。 富液从塔底部流出,经过滤 器、换热器与贫三甘醇换热 后进入再生塔,富液再生后 成为贫液经与富液换冷后加 压循环注入吸收塔中。
194.2 -5.6 <1.33 314 1.092 1.128 全溶 237.8 2.4.4-233.9
10.2×10-3 2.18 4.5 1.457
第三节 吸收法脱水 三甘醇质量的最佳值
参数
pH值① 氯化物 烃类② 铁粒子② 水③
固体悬浮物 ③/(mg/L)
起泡倾向
颜色及 外观
富甘醇 7.0-8.5 <600 <0.3 <15 贫甘醇 7.0-8.5 <600 <0.3 <15
3.57.5
<1.5
<200 <200
泡沫高度, 高度1020mL;破裂 时间,5s
洁净, 浅色到 黄色
①富甘醇由于有酸性气体溶解,其pH值较低。

三甘醇脱水

三甘醇脱水

加热炉 加热器实际上是一 种带蒸发空间的卧式换 热器。这种换热器的特 点是气体流向好,加热 管束高度较低。 由于 三甘醇溶液和水的沸点 相差很大,且不生成共 沸物,较易分离,加热 器通常为卧式容器,采 用釜式结构,一般采用 火管直接加热、水蒸气 或热油间接加热、电加 热以及废气加热等4种 加热形式。加热器提供 所需热量将甘醇溶液中 的水汽化,汽化的水从 再生塔顶流出。
17
影响甘醇纯度的因素 影响甘醇纯度的因素 (1) 重沸器温度和背压 因为重沸器一般在常压下操作,所以贫三甘醇质量分数只是随着重沸器 温度的增加而增加。但并不是重沸器的温度越高越好;温度高于206 ℃时, 三甘醇溶液的分解速率明显增加,因此重沸器的温度不能超过206 ℃ ,一般 控制在177-204 ℃之间。 (2)精馏柱温度 精馏柱顶保持在100℃,若低于93℃,由于水蒸气冷凝量过多,会在柱内 产生液泛,甚至将液体从塔顶排除。 (3)汽提气的用量 汽提气在重沸器内预热后直接通入汽提柱中;此时,从重沸器来的贫三 甘醇在汽提柱内与汽提气逆向流动,充分接触,不仅使汽提气量减少,而且 使三甘醇浓度很高。此时再增大用气量对三甘醇的纯度影响是很小的。 (4)做好甘醇管理,防止老化 甘醇应封闭储存,避免与空气接触,以防氧化生成腐蚀性有机酸,其PH 值应保持在7-8.5间,不得高于8.5,否则容易起泡乳化,产生黑色污泥沉淀, 必要时可加入二乙醇胺、磷酸三钠(消泡作用)等碱性物质。
16
三甘醇系统操作控制 日常操作 日常操作检查包括如下内容: (1)检查各容器液位,根据需要重新设定液位控制阀。 (2)检查过滤器压降,根据需要更换滤芯。 (3)对活性炭过滤器进行振荡试验,根据需要进行更换。 (4)对比甘醇换热器进出口温度,了解换热器的传热效率。 (5)检查进接触塔的甘醇流量。 (6)检查闪蒸罐的压力和撇油槽情况。 (7)检查甘醇进入接触塔之前温度是否比入口气体温度高约3—8℃。 (8)检查缓冲罐液位,根据需要补充甘醇。 (9)检测出口气体露点或含水量是否低于规定值。若含水量高,增大甘醇浓度,反 之亦然。检查重沸器温度是否处于其最大值,考虑增加汽提气以提高甘醇浓度, 反之亦然。 (10)检查入口气体流量,根据气体流量改变情况改变甘醇流量。 (11)检查尾气排放温度,以保证水蒸气被排出。

天然气三甘醇脱水一体化集成装置工艺运行参数优化

天然气三甘醇脱水一体化集成装置工艺运行参数优化

天然气三甘醇脱水一体化集成装置工艺运行参数优化前言三甘醇溶剂吸收法进行天然气脱水,是天然气工业中应用较为广泛的脱水方法。

通过对脱水工艺流程各参数优化,制定定量和变量进行分析、模拟,在满足外输天然气气质要求的前提下,优选出最佳运行参数,达到降本增效、绿色运行的目的。

1、三甘醇脱水系统工艺流程在天然气进入三甘醇脱水装置脱水前,游离水经前端分离器分离,基本完成分离,三甘醇脱水的主要目的是将天然气中的饱和水脱除,使得天然气达到外输水露点要求。

1.1三甘醇脱水流程含饱和水的湿天然气从三甘醇吸收塔下部进入,与从塔顶下来的三甘醇贫液逆流接触,以脱除天然气中的饱和水,脱水后的净化气经塔顶丝网除雾除去大于5μm的三甘醇液滴后由塔顶部出塔。

干天然气出塔后,经过套管式气液换热器与进塔前的热贫甘醇换热,降低贫三甘醇进塔温度。

1.2三甘醇再生部分贫三甘醇由塔上部进入吸收塔,由上而下与由下而上的湿天然气充分接触,吸收天然气饱和水,形成三甘醇富液。

三甘醇富液从吸收塔下部流出,经三甘醇循环泵进入精馏柱换热盘管,加热至35~60℃后进入闪蒸罐,闪蒸分离出溶解在富液中的烃气体。

三甘醇从闪蒸罐下部流出,依次进入滤布过滤器和活性炭过滤器。

通过滤布过滤器除去富甘醇中5μm以上的固体杂质;通过活性炭过滤器吸附掉富液中的部分重烃及三甘醇再生时的降解物质。

经过滤后的三甘醇富液进入贫富液换热器,与三甘醇贫液换热升温至130℃~160℃后进入精馏柱。

在精馏柱中,通过精馏段、塔顶回流及塔底重沸的综合作用,使三甘醇富液中的水份及很小部分烃类分离出塔。

塔底重沸温度为190℃~204℃,三甘醇重量百分比浓度可达98.5%~99.0%。

重沸器中的三甘醇贫液经贫液汽提柱,溢流至重沸器下部三甘醇缓冲罐,在贫液汽提柱中可由引入汽提柱下部的热干气对贫液进行汽提,经过汽提后的贫甘醇重量百分比浓度可达99.8%。

三甘醇贫液经过缓冲罐外壁的冷却,温度降至170℃左右出缓冲罐,进入贫富液换热器,与三甘醇富液换热,温度降至55~65℃左右进三甘醇循环泵,由三甘醇循环泵增压后进套管换热器与外输气换热至25~45℃进入吸收塔循环利用。

三甘醇脱水

三甘醇脱水
三甘醇脱水
第21页,共109页
流程和设备描述-汽提塔或再生塔
汽提气 将甘醇浓度提高到98.5%以上
最常用的方法是向重沸器中注 入汽提气。汽提气鼓泡通过重 沸器中的热流体,在汽提塔内 向上流动,从塔顶流出,并带 有汽提塔内甘醇溶液蒸出的水 蒸汽。汽提气对汽提塔有抽真 空的作用。净的结果是除去甘 醇物流中更多的水蒸汽,进而 提高其浓度。
三甘醇脱水
第20页,共109页
流程和设备描述-汽提塔或再生塔
影响甘醇在接触塔中从气体中脱除水量的主要因素之一是贫液的纯
度或浓度。大多数甘醇脱水装置操作中,甘醇的浓度为97.5- 99.5%(wt),其余为0.5-2.5wt%为水。高纯度从气体中除去的水量 比低纯度的要高。若贫甘醇液浓度为100%,则可以将天然气中的 全部水蒸汽除去。 甘醇的浓度是在汽提塔中控制的。在汽提塔底重沸器中,富甘醇液 被重沸器加热到175-205℃,使甘醇浓度达97.5-98.5%。提高重 沸器的温度会增大甘醇浓度,但会使甘醇发生化学分解,使其不再 具有从天然气中吸收水分的能力。因此,若需要用浓度大于98.5% 的甘醇以从天然气中脱除所需的水量,必须采用提高重沸器温度以 外的其它方法。
滤器脱除甘醇中的固体 颗粒。当过滤器吸收较 多的杂质时,其压降增 大。大多数过滤器允许 压降在150-200kPa之 间。
可更换滤芯的过滤器
三甘醇脱水
第16页,共109页
流程和设备描述-甘醇过滤器
若过滤器滤芯被固体杂
质堵塞而不更换,滤芯 可能塌裂并使其脱除的 杂质进入出口管线中。 通常好的做法是在压降 正好达到制造商推荐的 最大值之前更换滤芯。
三甘醇脱水
2012年7月
1
简介
脱水即用于描述从气体或液体中脱除水分的工艺过程的术语。 水以水蒸汽的形式存在于天然气中,如空气含有水分一样。气井

毕业设计--三甘醇脱水系统设计(附图纸)

毕业设计--三甘醇脱水系统设计(附图纸)

论文目录一.三甘醇脱水系统设计摘要及绪论----------------------------------------1二.工艺流程特点----------------------------------------------------------------3三.三甘醇吸收脱水的原理流程----------------------------------------------5四.三甘醇脱水的工艺参数选取----------------------------------------------8五.三甘醇脱水装置工艺计算-------------------------------------------------12一.分离器的选择与工艺计算---------------------------------------------12二.吸收塔的工艺计算------------------------------------------------------221.进塔贫甘醇溶液浓度的确定---------------------------------------222.吸收剂贫三甘醇溶液用量的确定---------------------------------233.吸收塔塔板数的确定------------------------------------------------254.甘醇吸收塔的选型和塔径以及各种参数计算------------------30三.换热器的设计------------------------------------------------------------40四.管道的设计---------------------------------------------------------------42五.流量计的设计------------------------------------------------------------44六.参考文献-----------------------------------------------------------------------45三甘醇脱水系统设计一.摘要及绪论1.摘要:天然气在离开油藏时或自地下储集层中采出的的天然气及脱硫后的天然气通常含有水蒸气,有些气还含有H2S和CO2,酸性气体会便管线和设备腐蚀,水蒸气在天然气的压力和温度改变时容易形成水化物,不符合天然气集输和深加工的要求,因此必须脱除天然气中的水蒸气、H2S和CO2。

三甘醇脱水的工艺流程

三甘醇脱水的工艺流程

三甘醇脱水的工艺流程
1.原料准备:首先需要准备优质的三甘醇作为原料。

确保原料三甘醇的纯度和质量对最终产品的品质至关重要。

2.预处理:将原料三甘醇先进行预处理,目的是去除杂质和颜色。

这一步骤通常包括热解、蒸馏、除杂、脱色等工艺。

3. 脱水设备:三甘醇脱水通常使用一种叫做“分子筛”(Molecular Sieve)的特殊材料进行。

分子筛可以吸附水分子,并将其去除,从而实现脱水的目的。

4.加热:将预处理过的三甘醇加热至适当的温度。

较高的温度有利于脱水过程的进行,但需要注意控制加热温度,以避免过高温度对产品造成不良影响。

5.脱水反应:将加热后的三甘醇通过脱水设备,与分子筛接触。

分子筛中的孔隙结构能够选择吸附水分子,将其捕获并去除。

同时,经过分子筛的三甘醇也更纯净。

6.冷却:经过脱水反应后的三甘醇需要进行冷却处理,以降低其温度并稳定产物。

冷却过程可通过冷凝器或其他冷却设备实现。

7.过滤和检验:冷却后的脱水三甘醇需要经过过滤,去除悬浮物和杂质。

接下来,对产出进行检验,包括测试纯度、色泽、酸值等指标,以确保产品质量符合要求。

8.储存和包装:脱水三甘醇产物通常储存在特殊的容器中,以防止其受潮和受污染。

采用密封包装方式有助于保持产品的质量和纯度。

值得注意的是,三甘醇脱水工艺流程中需要注意控制温度、时间和流速等参数。

过高或过低的温度、过短或过长的时间以及过快或过慢的流速都会对产品质量造成不利影响。

因此,在整个过程中要进行严密的监控和控制,以保证产品的稳定性和质量。

三甘醇脱水工艺流程图

三甘醇脱水工艺流程图

三甘醇脱水工艺流程图
三甘醇脱水工艺是一种重要的化工生产工艺,其流程图如下所示:
1. 原料准备阶段。

在三甘醇脱水工艺中,首先需要准备好原料。

原料主要包括三甘醇、脱水剂和催化剂。

三甘醇是工艺的主要原料,脱水剂用于去除三甘醇中的水分,催化剂用于促进脱水反应的进行。

2. 反应器装料阶段。

在反应器装料阶段,将准备好的原料按照一定的配比加入反应器中。

需要注意的是,要确保原料的纯度和配比的准确性,以保证脱水反应的顺利进行。

3. 加热反应阶段。

加热反应是三甘醇脱水工艺的核心步骤。

在加热的过程中,脱水剂开始与三甘醇发生反应,将三甘醇中的水分去除,生成脱水产
物。

同时,催化剂起到促进反应速率的作用,加快脱水反应的进行。

4. 分离提取阶段。

在脱水反应完成后,需要对反应体系进行分离提取。

通常采用
蒸馏、结晶、萃取等方法,将脱水产物从反应混合物中分离出来。

分离提取的目的是获取高纯度的脱水产物,为后续工艺提供优质原料。

5. 产品收集阶段。

最后,经过分离提取的脱水产物被收集起来,经过精炼、干燥
等步骤,最终得到高纯度的三甘醇脱水产品。

这些产品可以用于制
备聚酯树脂、涂料、塑料等化工产品,具有广泛的应用价值。

以上就是三甘醇脱水工艺的流程图及各个阶段的简要介绍。


甘醇脱水工艺是一项重要的化工生产工艺,其流程图所示的各个步
骤都至关重要,需要严格控制每个环节,确保产品的质量和产量。

通过不断优化工艺流程,提高生产效率,可以更好地满足市场需求,推动工艺技术的进步和产业的发展。

天然气脱水生产中三甘醇的使用情况解析

天然气脱水生产中三甘醇的使用情况解析

天然气脱水生产中三甘醇的使用情况解析发布时间:2021-07-08T08:06:26.261Z 来源:《中国科技人才》2021年第11期作者:濮翔宇[导读] 在天然气能源资源的实际生产中应用三甘醇脱水技术,有助于溶剂吸收法、固体干燥剂吸附法的实际应用。

长庆油田分公司第六采气厂陕西省榆林市 719000摘要:为了能够对天然气生产作业的实际需要进行满足,开展天然气脱水是极为关键和必要的,由于天然气内含有很多水蒸气,基于温度与压力的作用之下会产生水化物,倘若任由诸多水化物存在,其会对天然气生产、深加工、集输等产生诸多不利影响,所以需要对天然气内含的水蒸气进行有效脱除。

文中主要探析了天然气脱水生产当中三甘醇的应用优势、工艺流程以及注意事项等,希望能够为天然气能源资源产业现代化发展提供一些帮助。

关键词:天然气;脱水生产;三甘醇;使用情况;优势;在天然气能源资源的实际生产中应用三甘醇脱水技术,有助于溶剂吸收法、固体干燥剂吸附法的实际应用。

当前在天然气能源资源生产中应用较为广泛的脱水技术包含冷却脱水法、膜法以及甘醇法等,应用价位广泛的就是甘醇法,尤其是三甘醇法。

是由于三甘醇法的成本资金投入量相对较小,并且三甘醇溶液具有良好的稳定性,其容易再生,且具有良好的吸湿性,蒸气压较低,携带损失量较少,浓溶液不会产生固化等诸多有优点。

因此在国内各个天然气田当中被广泛推广与应用。

一、天然气脱水原因在天然气能源资源的采出、消费、处理加工等诸多环节当中,水属于是非常常见的一种杂质,并且其含量时常会处于饱和状态,冷凝水局部累积会对管道当中的天然气流量产生制约影响,更会对输气量产生影响。

水分的存在,致使天然气运输当中产生非必要性的动力损耗。

液相水和二氧化碳、H2S产生接触之后,会形成腐蚀性的酸,较为常见的现象就是电化学腐蚀,其溶于水当中次年改成了HS-,会加快阴极的放氢速度,HS-会对原子氢变成分子氢进行有效阻止,导致大量原子态氢集聚于钢材的表面,致使钢材氢鼓泡,氢脆体,与硫化合物因为应力腐蚀而产生开裂问题。

天然气三甘醇脱水装置操作与维护手册

天然气三甘醇脱水装置操作与维护手册

天然气三甘醇脱水装置操作及维护手册目录一、概述二、装置工艺技术规格及技术参数三、工艺流程四、工艺设备五、自控仪表设备六、装置开车及运行七、常见故障分析及排除八、附录一、概述在地下的地层温度和压力下,天然气内含有饱和水汽。

由于水汽的存在,天然气管输过程中往往会造成管道积液,降低输气能力及降低热值,加速天然气中H2S和CO2对钢材的腐蚀。

即使在天然气的温度高于水的冰点时,水也可能和气态烃形成烃类的固态水化物,引起管道阀门堵塞,严重影响平稳供气。

因此从地下储气库出来的天然气在管输前必须脱除其中的水份。

天然气中的饱和含水量取决于天然气的温度,压力和气体组成等条件,天然气中的含水量可用每一立方米天然气中所含水份的克数来表示,也可用一定压力下该含水量成为饱和含水量时天然气的温度来表示,该温度称为一定压力该天然气的水露点温度。

表1-1给出了不同压力下天然气中含水量与天然气水露点的关系:表1—1不同压力下天然气含水量与水露点的关系天然气脱水的方法有很多种,压缩冷却是常用的降低气体中水含量的方法。

有些井场,可利用天然气的压能获取低温以达到所要求的水露点及烃露点。

气田集输与净化厂使用的天然气脱水方法主要是三甘醇溶剂吸收法。

这是天然气工业中应用最广泛的脱水方法。

三甘醇的物理性质表1—2三甘醇凝固点低热稳定性好,易于再生,蒸汽压低,携带损失小,吸水性强。

沸点高,常温下基本不挥发,毒性很轻微,使用时不会引起呼吸中毒,与皮肤接触也不会引起伤害。

纯净的三甘醇溶液本身对碳钢基本不腐蚀,发泡和乳化倾向相对较小。

三甘醇脱水是一个物理过程,利用三甘醇的亲水性,在吸收塔中天然气与三甘醇充分接触,天然气中水份被三甘醇吸收,降低了天然气中含水量。

吸收了水份的三甘醇(富甘醇)进入再生系统加热再生除去吸收的水份成为贫甘醇而循环使用。

二、装置工艺技术及参数(单套)2.1、装置天然气最大处理量150×104m3/d;2.2、装置最小处理量50×104m3/d;2.3、吸收塔天然气入口压力6.3Mpa~8.8Mpa2.4、吸收塔天然气入口温度16℃∽48℃2.5、天然气组份(mol%)注:天然气中含饱满和水和甲醇(操作条件下)2.6、脱水装置满足的工况点:2.7、高压天然气处理设备的设计压力为10Mpa三、工艺流程从气井采出的天然气经过滤分离器分离掉其中微米级,亚微米级的液滴后,以小于10Mpa的压力进入脱水装置三甘醇吸收塔。

天然气的脱水三甘醇

天然气的脱水三甘醇
脱水原理
三甘醇脱水是利用其吸水性质,将天然气中的水分吸收并脱除的过程。在天然气处理过程中,三甘醇 作为脱水剂被喷洒到天然气中,与天然气充分接触,吸收其中的水分,然后通过分离器将吸收了水分 的三甘醇与天然气分离,从而达到脱水的目的。
三甘醇脱水工艺流程
预处理
首先,对天然气进行预处理,去除其中的杂质和 固体颗粒,以免对后续设备和管道造成堵塞或损 坏。
分离器
分离器用于将吸收了水分的三甘醇与天然气分离。分离器应具有合理的结构和尺寸,以确 保三甘醇和天然气的有效分离,并减少三甘醇的夹带损失。
加热器
加热器用于对吸收了水分的三甘醇进行加热再生。加热器应具有足够的加热功率和温度控 制精度,以确保三甘醇中的水分被完全蒸发掉,同时避免过高的温度对三甘醇造成热分解 或氧化等不良影响。
余热回收技术
对脱水过程中产生的余热进行回收利用,如用于加热原料气或生 产热水等,以减少能源消耗。
智能化控制技术
应用智能化控制技术对脱水过程进行实时监控和优化控制,提高 生产效率和能源利用效率。
THANKS
感谢观看
03
三甘醇脱水系统操作与维护
系统启动与停止操作
启动前准备
检查系统各部件是否完好,确认 电源、气源等供应是否正常,准 备好所需工具和材料。
启动步骤
按照操作规程逐步启动系统,包 括开启进料阀、启动循环泵、调 整操作参数等。
停止操作
在停止系统前,需要先关闭进料 阀,停止循环泵,然后按照操作 规程逐步停止系统。
吸收法
利用吸湿剂吸收水分,适用于低压、 中温环境,需定期更换吸湿剂。
膜分离法
利用特殊膜材料对水分子的选择性 透过性实现脱水,适用于各种压力、 温度条件,但投资成本较高。

天然气三甘醇脱水工艺

天然气三甘醇脱水工艺

天然气三甘醇脱水工艺摘要:天然气必须经过脱水处理,达到GB17820—2018《天然气》规定的管输天然气指标后,方可进行管输。

常用的天然气脱水工艺主要有三种:溶剂吸收法脱水、吸附法脱水和低温法脱水。

海洋平台多采用甘醇吸收法脱水和低温法脱水来控制海底管道中天然气的水露点。

其中,三甘醇吸收脱水因具有能耗小、操作费用低、占地面积小等优点,在海上平台应用比较广泛。

三甘醇脱水工艺作为一种成熟且常用的天然气处理工艺,其流程及设备基本已经固化。

对目前渤海油田某海上平台所使用的三甘醇脱水装置进行分析后,发现三甘醇脱水装置仍有进一步优化的可行性。

通过优化工艺流程和设计参数,替代高投资的板壳式换热器,可实现降本增效。

关键词:天然气;三甘醇;脱水系统;工艺;技术引言我国是能源消费大国,能源消费较低,石油和天然气严重依赖于外部,现有能源结构面临着巨大的环境压力,迫切需要能源转换和能源优化,未来30年,天然气和非再生能源的状况将大幅改善,中国的能源消费正在发生质的变化,因为天然气是丰富、清洁、高效、可获得、可接受的良好能源,支持天然气开发和天然气改革是推动我国生产和燃料消费革命的关键步骤。

1三甘醇脱水系统工艺技术的主要内容目前,最常用的方法仍是溶剂吸收法脱水,其吸收原理是采用一种亲水的溶剂与天然气充分接触,使水传递到溶剂中从而达到脱水的目的。

利用甘醇进行吸收脱水,投资少,压降小,可连续操作,且补充甘醇容易,再生脱水需要的热量少,脱水效果好.迄今为止,在天然气脱水工业中已经有四种甘醇被成功应用,分别是乙二醇(EG)、二甘醇(DEG)、三甘醇(TEG)和四甘醇(TREG)。

其中三甘醇脱水具有再生容易,贫液质量分数高(可达98%-99%),露点降大,运行成本低等特点,因此得到了广泛应用。

2存在问题三甘醇富液在流出吸收塔时,需经过调节阀降压,使三甘醇富液压力控制在400kPa左右。

虽然操作压力很低,但为了保证设备及管道的安全性,仍然将吸收塔三甘醇富液出口至闪蒸罐间设备的设计压力与吸收塔的设计压力保持一致,设计压力为8100kPa。

脱水站工艺原理及简易流程

脱水站工艺原理及简易流程

三甘醇脱水流程及设备原理刚从井里采出来的天然气里充满了饱和水蒸气。

水蒸汽可能是天然气中最令人讨厌的杂质。

天然气被压缩或冷却时,水蒸汽会转变成液态或固态。

液态水会加速设备的腐蚀,降低输气效率;而固态的冰则会堵塞阀门、管件甚至输气管线。

为避免出现这些问题,在天然气进入输气管网之前,必须除掉其中的部份水蒸气。

天然气脱水工程就是采用一定的方法使天然气中饱和的水蒸气脱除出来的工艺。

三甘醇性质主要物理性质颜色:无色或稍带淡黄色的粘稠液体;分子量:150.2,沸点:285.5℃比重:1.1254(一物理大气压,20℃)理论热分解温度:206.7℃冰点:-7.2℃;蒸气压(25℃):≤1.33Pa可燃极限:0.9-9.2%粘度(60℃):9.6×10-3Pa·S天然气流程:湿气通过入口分离器,除去液态烃和固态杂质后,进入吸收塔底部。

在吸收塔内向上通过充满甘醇的填料段或一系列泡帽或阀盘和甘醇充分接触,被甘醇脱去水后,再经过吸收塔内顶部的捕露网将夹带的液体留下。

最后脱水后的干气离开吸收塔,经过贫甘醇冷却器( 甘醇─干气热交换器)后进入销售输气管网。

天然气脱水系统:原料气→过滤分离器(除去液固杂质)→吸收塔(与甘醇逆流接触脱水)→干气/贫甘醇换热器→计量调压→输气管线甘醇流程:贫甘醇沿沿不断地被泵入吸收塔顶部,在塔内经溢流管向下依次流过每一个塔盘,将在塔内向上流动的天然气中的水蒸汽吸收。

吸满了水的甘醇(富甘醇)从塔底排出,经过贫甘醇缓冲器中的大的预热盘管后,通过闪蒸罐过滤器后进入重沸器上的精馏柱顶部。

脱水单体设备介绍1.吸收塔:气液传质的场所,也就是使气相中的水蒸气被甘醇吸收的场所。

2.闪蒸罐:除去进入富液中的轻烃组分,减少再生塔负荷。

闪蒸罐压力为0.4-0.55MPa。

3、过滤分离器过滤分离器用于气体的深度净化处理,以除去天然气中微小液、固体杂质。

常用于脱水、脱硫、压缩机组等装置前的气体净化。

4、机械过滤器、活性碳过滤器机过滤器用于除去被入口分离器不能除尽的原料气携带的固相杂质、设备腐蚀产物。

天然气三甘醇脱水工艺流程

天然气三甘醇脱水工艺流程

天然气三甘醇脱水工艺流程概述:天然气三甘醇脱水工艺是一种常用的气体脱水方法,通过该工艺可以有效地去除天然气中的水分,并提高气体的干度。

本文将详细介绍天然气三甘醇脱水工艺的流程及各个环节的操作步骤。

工艺流程:1. 进气净化:天然气进入脱水工艺前需要进行净化处理,以去除其中的杂质和硫化物。

常见的净化步骤包括除尘、除硫、除油等。

2. 脱水剂循环:在脱水工艺中,使用三甘醇作为脱水剂。

首先,将三甘醇从高压液相换热器中抽出,然后经过再生器进行再生,最后再送回到换热器中进行循环使用。

3. 脱水剂预热:经过再生的三甘醇需要被预热到一定温度,以提高其脱水效果。

预热温度一般为80-100摄氏度。

4. 吸收器:天然气经过预热的三甘醇进入吸收器。

在吸收器中,天然气与三甘醇接触,水分从天然气中被吸收到三甘醇中,同时天然气的干度得到提高。

5. 分离器:吸收过水分的三甘醇和脱水后的天然气进入分离器。

在分离器中,三甘醇和天然气分离,天然气中的水分得以去除,而三甘醇则进一步富集水分。

6. 冷凝器:分离后的天然气进入冷凝器,通过降低温度使其中的水分凝结成水滴,然后被排出系统。

7. 再生器:分离后的富含水分的三甘醇进入再生器,通过加热将其中的水分蒸发出来,再生为脱水剂后送回到换热器进行循环使用。

8. 排水处理:脱水后的水滴通过排水系统进行处理,以确保系统的正常运行。

总结:天然气三甘醇脱水工艺流程包括进气净化、脱水剂循环、脱水剂预热、吸收器、分离器、冷凝器、再生器和排水处理等环节。

通过这个工艺流程,可以高效地去除天然气中的水分,提高气体的干度,从而满足不同工业领域对干燥天然气的需求。

该工艺流程在天然气脱水领域具有广泛的应用前景。

三甘醇脱水工艺流程流程图课程设计报告

三甘醇脱水工艺流程流程图课程设计报告

重庆科技学院课程设计报告学院:石油与天然气工程学院专业班级:油气储运10-3 学生姓名:汪万茹学号: 2010440140设计地点(单位)____ k715 _____ __设计题目:___ 某三甘醇天然气脱水站的工艺设计______ 完成日期: 2013 年 6 月 28 日指导教师评语:______________________ ______________________________________________________________________________________________________________________________________________成绩(五级记分制):______ __________指导教师(签字):________摘要天然气还含有气态的水,仅用分离器不能将其分离出来,这些气态水又会在天然气管道输送过程中随着压力和温度的改变而重新凝结为液态水,堵塞、腐蚀管道。

根据实际情况我们选用了三甘醇脱水方法来脱除这部分气态水。

三甘醇脱水工艺包括甘醇吸收和再生两部分。

含水天然气经过三相分离器脱除液态水,然后进入吸收塔与贫甘醇逆流接触后从塔顶流出。

然后富甘醇依次经过再生塔、三甘醇闪蒸罐、过滤器等再生为贫甘醇循环使用。

根据实际情况和石油行业相关的规范和相关的书籍设计出了合理的三甘醇脱水的工艺流程,并用AutoCAD软件绘制了工艺流程图。

关键词:三甘醇;吸收;再生;流程图目录第一章前言 (1)第二章三甘醇脱水工艺设计说明2.1设计概述 (2)2.1.1 三甘醇脱水工艺的主要工作任务 (2)2.2天然气基础资料 (5)2.3设计规范 (6)2.4遵循的规范、标准 (7)第三章工艺流程设计3.1 设计要求 (5)3.2 工艺方法的选择 (5)3.3 所设计工艺流程的特点 (6)3.4 所设计工艺流程简述 (7)3.5 工艺流程中设备参数 (8)第四章总结 (9)1 前言从地层中开采出来的天然气含有游离水和气态水,对于游离水,由于它是以液态水方式存在的,天然气集输过程中,通过分离器就可以将其分离;但是对于气态水,由于其在天然气中是以气态的方式存在,运用分离器不能完成分离。

三甘醇脱水工艺认识及常见问题浅析

三甘醇脱水工艺认识及常见问题浅析

一、概述1936年秋季,首台用于天然气脱水的甘醇脱水器投入工业生产。

这些早期的脱水器采用二甘醇作为脱水剂。

实践证明:二甘醇和它的同系物——三甘醇在天然气脱水方面都具有显著的效果。

使用甘醇作为天然气脱水剂具有高亲水性、强的热稳定性和化学稳定性、低蒸汽压力、无腐蚀性、成本低等优点。

二、三甘醇脱水装置工艺流程及设备描述1.工艺流程。

三甘醇脱水系统可以分为脱水、甘醇循环和自用气三个子系统。

湿气首先进入吸收塔底部的气液两相分离器,除去游离水。

脱出游离水的湿气从底部进入吸收塔,与上部流下的三甘醇(富液)密切接触,干气从塔顶流出,吸水后的三甘醇称为富液,从塔底流出进入甘醇循环系统;富液进入再生系统再生,变成贫液后通过Kimray泵提供循环动力从新回到吸收塔,完成甘醇循环;自用气系统主要为再生系统提供燃料气和气提气。

2.主要设备功能描述(1)入口分离器。

气液两相分离器位于吸收塔底部。

分离器设置了网状捕雾器,避免液体进入三甘醇系统。

如果气体中的液烃穿过分离器并与三甘醇混合,那么混合液会形成一种非常细小的且分散的乳状液,导致吸收塔中的三甘醇发泡,从而引起严重的三甘醇损耗和其他操作问题。

在防止三甘醇损耗方面,入口分离器中的除雾器与塔顶除雾器一样重要。

入口分离器必须除去的另一种重要致污物是含矿物盐的游离水。

气藏中产生的游离水含有矿物盐,能够污染脱水系统,并且一旦溶入三甘醇溶液,矿物盐将不能被除去。

(2) 三甘醇吸收塔。

三甘醇吸收塔是一种对流式接触设备。

浓度最高的三甘醇溶液与水含量最低的气体在吸收塔填料段顶部接触,浓度最低的三甘醇富液与水含量最高的气体在接触部分的底部接触。

当三甘醇往下流的同时气体从下往上流,三甘醇与气体逆向接触。

这种接触方式提供最好的平衡条件,在这种平衡条件下,浓度梯度为水分从气体转移到三甘醇提供了必要的驱动力。

气、液对流流动也提供了甘醇和湿气的多级理论接触,使三甘醇在尽可能低的循环量条件下提高其承载能力,从最大程度上吸收气体中的水分。

之四、天然气脱水(甘醇脱水)

之四、天然气脱水(甘醇脱水)

第一节 天然气水合物
一、天然气饱和含水量
天然气饱和水含量的大小取决于温度、压 力和气体组成。确定天然气饱和水含量的方法有 三类:图解法、实验法和状态方程法。 根据气体内是否含有酸气,天然气饱和含 水量与压力、温度的关系分为两类:一类为不含 酸气(或酸气含量较少)的称甜气图,另一类为含 酸性气体的称酸气图。
1)长距离输气管线水合物的预防措施
对于长距离输气管线要防止水合物的生成可以采用如 下方法:
①天然气脱水,降低气体内水含量和水露点 ;
②提高输送温度,使气体温度高于气体水露点; ③注入水合物抑制剂。 天然气脱水是长距离输气管线防止水合物生成的最有 效和最彻底的方法。
6、水合物抑制剂
某些盐和醇类溶解于水中,吸引水分 子,改变水合物相的化学位,降低气体水 合物生成温度和/或提高水合物生成压力, 从而防止生成水合物。这类物质称水合物 抑制剂或热力学抑制剂,俗称防冻剂。
四、甘醇再生方法
3、共沸再生:在重沸器内,共 沸剂与甘醇溶液中的残留水形 成低沸点共沸物汽化,从再生 塔顶流出,经冷却冷凝进入分 离器分出水后,共沸剂用泵打 回重沸器循环使用。 采用的共沸剂应具有不溶 于水和三甘醇,与水能形成低 沸点共沸物,无毒,蒸发损失 小等性质。常用的共沸剂是异 辛烷。
4、图解法预测水合物的生成
即当水分条件满足时,预测生成水合物的压力、 温度条件。 常用的图解法有两种: 一种是只考虑气体相对密度的相对密度法,
另一种是考虑相对密度和酸气含量的酸性气体图。
(1)相对密度法
曲线左上方为水合物存在区。 右下方为水合物不可能存在区。 已知气体相对密度,由图可查 一定温度下生成水合物的压力, 或在一定压力下生成水合物的温 度。 回归相关式:
量引起的有关问题。

三甘醇脱水

三甘醇脱水
12
三甘醇再生系统各设备
甘醇过滤器 甘醇在系统内循环时,会吸收随入口气体携带的固体颗粒。此外,
甘醇还含有其在接触塔内从气体中吸收的烃类液体或其他的可溶液体。这 些杂质可能引起接触塔起泡。因此,需要将杂质过滤掉,甘醇过滤器包括 固体过滤器和活性炭过滤器。
固体过滤器 作用:防止泵和阀门内件磨损,热交换器堵塞,甘醇起泡,接触塔 盘结垢,和火管形成过热点。富甘醇溶液中含有微粒物质,此微粒包含甘 醇裂解产物、管线腐蚀产物和天然气中的固体微粒。甘醇滤器可以除去 99.9%的直径大于10微米的固体颗粒。2台滤器1用1备。 型号:5@10 μ MODEL:JPMG-2540-10AB-SIM-0S 活性炭过滤器 活性炭过滤器的主要作用是滤掉富甘醇溶液中的微小的碳氢化合物、 氧化物、分解产物、烃类液体、表面活性剂、缓蚀剂等,有助于将泡沫及 淤渣减至最小的程度。 活性炭过滤器在操作过程中一般要将旁通阀打开一部分,使大约10 %的富甘醇流过过滤器。 型号:22 CARBON CANISTER MODEL:JVF-1122C
Inlet Gas Filter Separator
Inlet Gas Filter Separator
Dry Gas/TEG Exchanger
TEG Contactor
Lean TEG To Fuel Gas System
Lean TEG Rich TEG
To Closed Drain
5
5
Rich TEG from Train A
8
贫TEG/干气换热器图
结构形式为立式,固定管板式, 管程和壳程皆为一程。 TEG 走壳程,干气走管程, 由上部进入换热器,从下部出来。
9
三甘醇再生系统各设备

三甘醇脱水工艺简述

三甘醇脱水工艺简述

三甘醇脱水工艺简述摘要:天然气从开采到成为商品天然气需要经过一系列的加工处理,以除去天然气中含有的水,硫等杂质。

天然气中水的存在会对天然气品质产生极大危害,因此天然气脱水工艺成为了天然气加工中极为重要的一部分。

天然气脱水工艺已有悠久的历史,目前普遍采用的为甘醇吸收法脱水,其中应用最广泛的脱水工艺为三甘醇脱水工艺。

关键词:天然气三甘醇脱水工艺天然气中水分的存在对天然气的品质影响极大。

天然气含水会导致其燃烧不充分;天然气中的游离水会和天然气本身所夹带的H2S和CO2形成酸腐蚀管路设备;天然气中的游离水在一定条件下会和天然气中的小分子结合形成天然气水合物,水合物在管道中形成会造成管道堵塞,使天然气输气量下降,增大管线的压差,严重时会造成管道事故。

由此可见水分在天然气中的存在是危害极大的事,因此,需要脱除天然气中部分的水分,以满足管输和用户的需要。

较为常用的天然气脱水方法有溶剂吸收法、低温法、固体吸收法等。

近年来兴起的一些新兴的天然气脱水方法有膜分离法、超音速脱水法等。

目前,最常用的方法仍是溶剂吸收法脱水,其吸收原理是采用一种亲水的溶剂与天然气充分接触,使水传递到溶剂中从而达到脱水的目的。

利用甘醇进行吸收脱水,投资少,压降小,可连续操作,且补充甘醇容易,再生脱水需要的热量少,脱水效果好。

迄今为止,在天然气脱水工业中已经有四种甘醇被成功应用,分别是乙二醇(EG)、二甘醇(DEG)、三甘醇(TEG)和四甘醇(TREG)。

其中三甘醇脱水具有再生容易,贫液质量分数高(可达98%�D99%),露点降大,运行成本低等特点,因此得到了广泛应用。

一、无硫甘醇脱水工艺流程该流程用于处理井口无硫天然气或来自醇氨法脱硫装置的净化气。

TEG脱水装置主要由吸收塔和再生塔两部分组成,吸收塔内进行的是含水天然气与三甘醇贫液的逆流吸收,再生塔内进行的是三甘醇富液解吸转化再生为天然气贫液的过程。

工艺流程简述:含水天然气自吸收塔底部进入,与来自塔顶的三甘醇贫液进行逆流吸收,脱除水分,脱水后的天然气自吸收塔塔顶排出,吸收后的三甘醇富液自吸收塔塔底排出,经冷凝器升温后进入闪蒸罐蒸出烃类气体,再经过滤器滤掉部分杂质后经过贫/富液换热器再次升温后通过缓冲罐,再进入再生塔内完成解吸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档