spss应用中的多维尺度

合集下载

多维尺度分析-SPSS例析资料讲解

多维尺度分析-SPSS例析资料讲解

多维尺度分析多维尺度分析(multidimensional scaling ,MDS )又称ALSCALE(alternative least-square SCALing),还有人称之为多维量表分析;它是将一组个体间的相异数据经过MDS 转换成空间构图,且保留原始数据的相对关系。

1多维尺度分析的目的假设给你一张中国台湾省地图,要你算出基隆,台北,新竹,台中,台南,嘉义,高雄,花莲,台东,枋寮,苏澳,恒春等地间的距离,你可以用一把刻度尺根据比例测算出一个12x12de 距离矩阵;反之,如果给你一份12个城市间的距离矩阵,要你画出12个城市相对位置的二维台湾地图,且要他们与现实尽量保持一致,那就是一件不容易的工作了,多为尺度分析就为此工作提供了一个有效地分析手段。

2多为尺度分析与因子分析和聚类分析的异同多为尺度分析和因子分析都是维度缩减技术,但是因子分析一般使用相关系数进行分析,使用的是相似性矩阵;而多为尺度分析采用的是不相似的评分数据或者说相异性数据来进行分析;与因子分析不同,多为尺度分析中维度或因素的含义不是分析的中心,各数据点在空间中的位置才是分析解释的核心内容;多为尺度分析与聚类分析也有相似之处,两者都可以检验样品或者变量之间的近似性或距离,但聚类分析中样品通常是按质分组的;多维分析不是将分组或聚类作为最终结果,而是以一个多维尺度图作为最终结果,比较直观。

若你的目的是要把一组变量缩减成几个因素来代表,可考虑使用因素分析;若目的是变量缩减后以呈现在空间图上,则可以使用MDS 。

如果你是想要却仍相似观测值得组别,请考虑以聚类分析来补充多为尺度分析,聚类分析虽可以确认组别,但无法在空间图中标示出观测。

3.定性的和定量的MDSMDS 分析测量的尺度不可以是nominal 的,但可以是顺序的ordinal,等距的interval,比率的ratio 。

顺序量表只可以用于质的分析,又称为定性多维量表分析;它以个体间距离排序为主;而interval 和ratio 量表称为定量多维量表分析(定量多维尺度分析)。

SPSS名词解释

SPSS名词解释

SPSS(统计)名词解释2007-11-13 16:29:16| 分类:学习| 标签:|举报|字号大中小订阅Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP 统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数标准Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换文案。

第16章spss21教程完整版

第16章spss21教程完整版

16.2 多维尺度分析
16.2.2 多维尺度分析过程的参数设置 选择菜单“分析→度量→多维尺度”,则弹出“进行多维尺度分析”对 话框,如图16-12所示。各个选择项的具体功能如下所述。 1.变量设置 如图16-12所示的左边变量框是待分析的变量框,选中变量后,单击按钮 即可 选入变量列表框。 ① 变量列表框,用于选入表示距离的分析变量。 ② 单个矩阵框,用于选入分组变量,分析时将会为每一组变量分别计算距离 矩阵,当选中“从数据创建距离”选项时才可用。
3.选项设置 单击图16-12中的“选项”按钮,则弹出如图16-16所示的“输出设置”对话框。 单击“继续”按钮则返回原界面。 • 组图:多维尺度分析图; • 个别主题图:为每位受试者分别输出分析图形; • 数据矩阵:输出每位受试者的数据矩阵; • 模型和选项摘要:输出分析所有的数据、模型、算法等信息。 (2)标准栏 • S应力收敛性:指定S-stress的最小改变量,默认值为0.001; • 最小S应力值:指定S-stress的最小值,默认值为0.005; • 最大迭代:指定最大的迭代次数。系统默认值为30。 (3)将小于“一个数”距离看作缺失值栏 • 此栏用于把距离小于某值的数据当做缺失值。
16.2.3 实例分析
1.参数设置 选择菜单“分析→度量→多维尺度”,则弹出“进行多维尺度分析”对话框,如 图16-18所示。选中除变量sourceid以外的15个变量到“变量”选项栏中。 选中“选项”按钮,则弹出如图16-19所示对话框,选中“组图”选项,然后单击 “继续”按钮返回主界面。
◆ 从数据创建距离选项:表示用户需要自行选择相识矩阵的计算方法。当数据比较复 杂、不可以直接用做距离矩阵时选择此项,表示从当前数据出发计算距离矩阵,单 击“度量”按钮,则弹出如图16-14所示的“度量”对话框。 • 度量标准栏:用于指定不相似度的测量方法; • 转换值栏:指定标准化转换的方法,这两部分的参数设置;

SPSS统计分析(第6版)(高级版)教学课件SPSS 第5章 信度与多维尺度分析

SPSS统计分析(第6版)(高级版)教学课件SPSS 第5章 信度与多维尺度分析
第5章 新度分析与多维尺度分析
返回
目录
信度分析
信度分析的概念 信度分析的步骤 信度分析举例
多维尺度分析(ALSCAL)
多维尺度分析步骤 多维尺度分析举例 习题及参考答案
结束
返回
尺度分析菜单
返回
信度分析
(可靠性分析)
返回
信度分析的概念
信度定义为:一组测量分数的真变异数与总变异数(实得变异数)的比率,即
Iteration S-stress
Improvement
1
.18870
2
.16190
.02680
3
.15843
.00347
4
.15646
.00197
5
.15524
.00121
6
.15444
.00080
Iterations stopped because
S-stress improvement is less than .001000
表15-7
Stress (%) 20 10 5 2.5
拟合度 差
一般 好
较好
Stress和RSQ值
拟合量度值评价表
返回
ALSCAL多维尺度分析实例输出2
返回
二维导出构形表
ALSCAL多维尺度分析实例输出3
多维尺度分析图
习题5
1. 信度分析中用哪些指标可以反映问卷可靠性。如果要了解 问卷中的某一个维度的可靠性程度如何,应怎么做?
返回
信度分析的概念
分半信度 用两半之间相关系数作为信度指标:
rxx
2rhh 1 rhh
式中:rhh为两半测验分数的相关系数, rxx为整个测验的信度估计值

多维尺度分析结果解读_SPSS数据处理与分析_[共6页]

多维尺度分析结果解读_SPSS数据处理与分析_[共6页]

第十三章数据的多维尺度分析1.形象测定比较组织的支持者与非支持者对组织形象的感知,并与组织自身的初衷相对照比较,如企业、社会机构、政府部门形象测定等。

2.细分对象分析不同对象在相同维度空间上的位置,确定他(它)们在感知方面相对同质的群体。

3.寻找业务空间图上的空档通常意味着潜在机会。

通过空间图的分析,可以对现有业务进行评估,了解人们对新业务概念的感觉和偏好,以便找到新业务并为其准确定位。

4.确定态度量表的结构可以用来确定态度空间的合适维度和结构。

在考虑产品研发和形象设计时,可通过调查获取描述自身产品与竞争对手产品的感知相似性数据,将这些近似性与自变量(如价格)相对接,可尝试确定哪些变量对于人们如何看待这些产品至关重要,从而对产品形象做出相应的调整。

第三节多维尺度分析结果解读 本节阐述导入问题用SPSS的ALSCAL、PROXSCAL方法分析后所得结果的解读。

一、ALSCAL的结果解读与分析第一节各选项设置完毕后,单击图13-3中的“确定”按钮,即得到ALSCAL的各项输出结果。

包括表13-3的文本及图13-16、图13-17、图13-18、图13-19。

表13-3由以下三部分构成。

第一部分说明降为二维空间时的迭代进程,经过4次迭代后,S-stress改变量为0.000 62,小于0.001的迭代标准,模型迭代停止。

第二部分说明模型的拟合效果,RSQ是不相似性在二维空间中能够解释部分占总变异的比例,而Stress是依据Kruskal’s应力公式1计算所得,显示了每个个体和样本整体的应力值,样本的应力平均值为0.398 94>0.2,且RSQ=0.376 64,表示用二维空间只能解释10个消费者评价饮料差异性的37.7%,模型拟合效果较差。

第三部分输出模型结果。

(1)10种品牌的饮料投影到二维空间上的坐标值,绘制在二维坐标系下的散点如图13-16所示。

它是评价对象(客体)在二维空间的直观呈现。

SPSS分析:多维尺度分析

SPSS分析:多维尺度分析

SPSS分析:多维尺度分析⼀、概念多维尺度尝试寻找对象间或个案间⼀组距离测量的结构。

该任务是通过将观察值分配到概念空间(通常为⼆维或三维)中的特定位置实现的,这样使空间中的点之间的距离尽可能与给定的不相似性相匹配。

在很多情况下,这个概念空间的维度可以解释并可以⽤来进⼀步分析数据。

多维尺度分析(MDS)是分析研究对象的相似性或差异性的⼀种多元统计分析⽅法。

采⽤MDS可以创建多维空间感知图,图中的点(对象)的距离反应了它们的相似性或差异性(不相似性)。

多维尺度分析和因⼦分析都是维度缩减技术,但是因⼦分析⼀般使⽤相关系数进⾏分析,使⽤的是相似性矩阵;⽽多维尺度分析采⽤的是不相似的评分数据或者说相异性数据来进⾏分析;与因⼦分析不同,多维尺度分析中维度或因素的含义不是分析的中⼼,各数据点在空间中的位置才是分析解释的核⼼内容;多维尺度分析与聚类分析也有相似之处,两者都可以检验样品或者变量之间的近似性或距离,但聚类分析中样品通常是按质分组的;多维尺度不是将分组或聚类作为最终结果,⽽是以⼀个多维尺度图作为最终结果,⽐较直观。

若你的⽬的是要把⼀组变量缩减成⼏个因素来代表,可考虑使⽤因素分析;若⽬的是变量缩减后以呈现在空间图上,则可以使⽤多维尺度分析。

如果你是想要却仍相似观测值得组别,请考虑以聚类分析来补充多维尺度分析,聚类分析虽可以确认组别,但⽆法在空间图中标⽰出观测。

⼆、距离(分析-度量-多维尺度)1、指定数据为距离数据:如果您的活动数据集代表⼀组对象中的距离或者代表两组对象之间的距离,则指定数据矩阵的形状才能得到正确的结果。

2、指定从数据创建距离:多维尺度使⽤不相似性数据创建尺度分析解。

如果您的数据为多变量数据(度量到的变量的值),就必须创建不相似性数据才能计算多维尺度解。

可以指定从数据创建⾮相似性测量的详细信息。

2.1度量。

允许您指定进⾏分析的⾮相似性测量。

从与您的数据类型相关的“度量”组选择⼀个选项,然后从与那⼀类度量相关的下拉列表选择⼀种度量。

多维尺度分析原理_SPSS数据处理与分析_[共4页]

多维尺度分析原理_SPSS数据处理与分析_[共4页]

第十三章
数据的多维尺度分析
图13-14 PROXSCAL过程的输出设置对话框
(4)距离:显示配对对象之间的距离。

(5)转换近似值:显示配对对象之间转换后的近似值。

(6)输入数据:显示原始近似值。

当数据权重、初始配置和自变量的固定坐标存在时,输出这些数据。

(7)随机起点的应力:显示每个随机起点的随机数种子以及标准化初始应力值。

(8)迭代历史记录:显示主要算法的迭代历史记录。

(9)多应力度量标准:显示标准化初始应力值、Stress-I值、Stress-II值、S-Stress值、离散情况(DAF)值和同余Tucker’s系数值。

(10)应力分解:显示对象和源的最终标准化初始应力的分解,包括每个对象的平均值和每个源的平均值。

(11)转换自变量:显示线性组合约束下,转换后的自变量和对应的回归权重。

(12)变量与维数相关性:显示线性组合约束下,自变量和公共空间维数之间的相关性。

2.保存为新文件
该选项可将公共空间坐标、私有空间权重、距离、转换近似值以及转换自变量保存到单独的SPSS 数据文件中。

第二节
多维尺度分析原理
SPSS软件提供了三种多维尺度分析法:古典多维尺度(ALSCAL)、扩展多维尺度(PROXSCAL)和多维展开(PREFSCAL)。

第一种方法是基础,后两种方法是随着研究的深入所做的补充和扩展。

本节重点围绕SPSS提供的ALSCAL、PROXSCAL方法,介绍多维尺度分析的过程和原理。

227。

运用多维尺度标度法对NBA球员的聚类分析

运用多维尺度标度法对NBA球员的聚类分析

运用多维尺度标度法对NBA球员的聚类分析陈博摘要本文首先从2010-2011赛季NBA常规赛中得分榜前五十位球星中选取了收入最高的十位作为样本,然后选择了衡量球员防守和进攻能力的六个最主要的指标作为变量,运用Spss 进行多维标度分析,得到了一个二维的空间分布图,发现在二维坐标平面上詹姆斯和霍华德远离其他球员。

在运用得到的球员在二维平面上的坐标进行聚类分析,得到了与分布图一致的结论即詹姆斯和霍华德是真正的巨星。

再结合各球员的当赛季薪资分析,仍然可以发现的是詹姆斯和霍华德还是十分物美价廉的球员,而湖人队的两位球星加索尔和科比,有薪资过高的嫌疑。

诺维斯基虽然数据不突出但带领球队获得最终总冠军,因此第二高薪也是当之无愧的。

而其他球员应属是物有所值型的。

关键词:NBA 多维标度法聚类分析工资水平第一章绪论第一节选题背景及意义NBA(全称National Basketball Association),直译为美国篮球大联盟,简称美职篮。

NBA在其短短几十年的发展历史里面已经成为了全球最著名最成功的体育赛事之一。

激烈精彩的赛事,光芒四射的球星,成功的商业推广,巨额的广告赞助和电视转播收入,吸引着全世界球迷的眼球。

然而浮华背后其实是危机四伏,2005-2006赛季,共19支球队亏损,亏损金额为2.2亿美元;2006-2007赛季,共21支球队亏损,亏损金额为2.85亿美元;2007-2008赛季,共23支球队亏损,亏损金额为3.3亿美元;2008-2009赛季,共24支球队亏损,亏损金额为3.7亿美元;2009-2010赛季共23支球队亏损,亏损金额为3.4亿美元;而最近结束的11赛季预计亏损为3亿美元。

整个NBA共有30支球队,从以上数据可以看到有70%-80%的球队连年巨额亏损,而球队亏损的一个最主要原因就是疲于支付球员们的巨额年薪。

有资料显示2010-2011赛季,NBA所有球员的平均年薪是515万美元,在美国所有的职业体育联盟里是平均年薪最高的,而当赛季收入最高的科比布莱恩特更是达到了惊人的2480万美金。

SPSS教程CH10 多元尺度法

SPSS教程CH10 多元尺度法
2021/7/24
2021/7/24
10.3 非計量多元尺度法
• 大海行銷公司受委託進行四種品牌的定位 分析,並在產品空間中做出偏好圖,以作 為行銷定位策略的參考
2021/7/24
• 開啟檔案(檔案名稱:...\Chap10\Nonmetric.sav)。 資料檔中顯示了每位受試者對於甲牌、乙牌、丙牌 、丁牌這四個筆記型電腦,以解析度及維修服務為 基礎,依照偏好進行排序的資料。這些次序資料的 做成可參考本章10.2節「資料編碼與SPSS輸入」 的「非屬性/非計量/偏好」
• 選項 在「Multidimensional Scaling(Proximities in Matrices Across Columns)」視窗中按〔Options〕 ,就會出現「Multidimensional Scaling: Options」 視窗,如圖10-7uration)及「疊代標 準」(Iteration Criteria)。我們利用其內定值就可 以。
• 客觀空間
– 客觀空間(objective space)就是以可衡量的屬性(例如,產品 成分、重量、營養價值、價格等),將產品加以定位的空間。
• 主觀空間
– 主觀空間(subjective space)就是受試者對於產品屬性(例如, 產品口味、重量、營養價值等)的實際認知情形,並將他們對產 品的實際認知加以定位的空間
2021/7/24
圖10-9 「Multidimensional Scaling: Output」視窗設定
2021/7/24
2021/7/24
2021/7/24
• SPSS所建立的偏好圖如圖10-10所示。由 於我們是以解析度及維修服務為基礎所建 立的偏好圖,所以維度1、維度2以這兩個 向度來命名應是適當的。

SPSS数据分析—多维偏好分析(MPA)

SPSS数据分析—多维偏好分析(MPA)

SPSS数据分析—多维偏好分析(MPA)
之前的主成分分析和因子分析中,收集的变量数据都是连续型数值,但有时会碰到分类数据的情况,我们知道最优尺度变换可以对分类变量进行量化处理,如果将这一方法和主成分分析相结合,就称为了基于最优尺度变换的主成分分析法(CATPCA),在市场研究中,又称为多维偏好分析(MPA),该方法由于引入了最优尺度变换,使其对数据的适应能力大大加强,不仅可以分析连续型数据,还可以分析有序、无序分类数据,并且图形展示的能力也得到加强,这非常适合市场研究使用。

多维偏好分析主要用于分析消费者对商品的偏好倾向,并通过感知图/定位图进行展现。

我们知道相同偏好的消费者必然在某些商品评价上相似,数据体现为相关性较强,可以利用降维方法提取出少数主成分,并将其和商品在一起做定位图,即可得到消费者评价和商品间的联系,因此,在分析思路上和主成分分析/因子分析并无不同。

我们看一个例子
现在想了解9种汽车相对于竞争品牌在消费者心中的定位是怎样的,并附加三种产品属性进行打分,数据如下
make代表9种汽车,model代表竞争品牌,j代表25位受访者,最后的mpg,reliable,ride为三个产品属性,由于是在降维分析中引入了最优尺度变换,因此多维偏好分析还是被归在降维过程中分析—降维—最优尺度。

SPSS数据分析—多维尺度分析

SPSS数据分析—多维尺度分析

SPSS数据分析—多维尺度分析在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大。

而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型)。

多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性、探索性数据分析方法。

基于以上,我们可以得知,多维尺度分析经常使用在市场研究中:① 可以确定空间的维数(变量、指标),以反映消费者对不同品牌的认知,并且在由这些维构筑的空间中,标明某关注品牌和消费者心目中理想品牌的位置,选择的品牌不宜过少也不宜过多,一般7-9个。

② 可以比较消费者和非消费者对企业形象的感觉。

③ 在进行市场细分时,可以在同一空间对品牌和消费者定位,然后把具有相似感觉的消费者分组、归类。

④ 在新产品开发方面,通过在空间图上寻找间隙,可以发现由这些间隙为企业带来的潜在契机。

⑤ 在广告效果的评估方面,可以用空间图去判定一个广告是否成功地实现了期望的品牌定位。

⑥在价格策略方面,通过比较加入与不加入价格轴的空间图,可以推断价格的影响强度。

⑦ 在分销渠道策略方面,利用空间图可以判断品牌对不同零售渠道的适应性,从而为制定有效的分销渠道提供依据。

在市场研究中,我们要注意的是选择的品牌数量要适中,并且分析的问题要明确,每组数据只能分析一个问题,比如对一组饮料产品收集的数据不能既反映口感又反映价格。

多维尺度分析收集的数据值大小必须能够反应两个研究对象的相似性或差异性程度。

这种数据叫做邻近数据,所有研究对象的邻近数据可以用一个邻近矩阵表示。

反映邻近的测量方式有:相似性-数值越大对应着研究对象越相似。

差异性-数值越大对应着研究对象越不相似。

测量邻近性数据的类型有:①两个地点(位置)之间的实际距离。

SPSS软件涉及的4类数据

SPSS软件涉及的4类数据

数据的计量尺度在搜集数据之前,要先对现象进行计量和测度,这就涉及到计量尺度的问题,按照对事物计量的精确程度,可将计量尺度由低级到高级,由粗略到精确分为四个层次,即定类尺度、定序尺度、定距尺度和定比尺度。

(一)Normal定类尺度(列名尺度)它是最粗略,计量层次最低的计量尺度,实际上是按照某种标准对客观事物的一种分类。

例如,人口按照性别分为男女两类,企业按所有制性质分为全民、集体、私营等。

定类尺度只是测度了事物间的类别差,而对各类之间的其它差别无法从中得知。

为了便于统计处理及计算机识别,通常对不同类别用不同的数字或编码表示,如用“1”表示男性人口数,用“0”表示女性人口数等,这些数字只是不同类别的一个代码,不意味着可以区分大小或进行任何数学运算,计量结果是计算每一类别中各元素或个体出现的频数。

采用定类尺度对事物进行分类时,必须符合穷尽与互斥的要求。

穷尽是指在所作的全部分类中,必须保证每个元素或个体都能归属于某一类别,不能有所遗漏,互斥是每个元素或个体只能归属于一个类别,而不能在其它类别中重复出现。

在社会经济统计调查中,定类尺度是一种最基本的测度,它是其它测度尺度的基础。

(二)ordinal定序尺度(顺序尺度)它是对现象间的等级或顺序差别进行的一种测度,它不仅可以将全体分成不同的类别,而且可以确定这些类别的顺序。

或者说,它不仅可以测度类别差,还可以测度次序差。

例如将产品等级分成一等品、二等品等,成绩分为优、良、中、及格、不及格等。

定序尺度比定类尺度精确一些,但它只能测度类别的顺序,不能测出类别间的准确差值。

因此,计量结果只能比较大小,不能进行数学运算。

(三)Scale定距尺度(间隔尺度)它是对事物类别或次序之间间距的测度,它不仅可将事物区分为不同的类型并进行排序,而且可以准确的算出类别间的差距是多少。

通常用物理单位为测量尺度,如成绩用百分制度量,收入用人民币元度量等。

其度量尺度的每个间隔是相等的。

只要确定一个度量单位,就可以准确的计算出两个数据间的差值,如成绩80分与90分相差10分。

01-附录2.B SPSS在多维数据描述及可视化等中的应用(选)

01-附录2.B SPSS在多维数据描述及可视化等中的应用(选)

王学民可从https:///#/link/B9F2F217DF9A179950462AF6B590145F?path=下载《应用多元统计分析》(第五版)配书资料,下载的资料中有一个“《应用多元统计分析》SPSS数据”文件夹,本课程的SPSS应用均从该文件夹中打开数据表。

在SPSS的数据编辑器窗口中,选择文件⇒打开>⇒数据…,即出现如图1所示的“打开数据”窗口⇒在“查找范围”框中选择“《应用多元统计分析》SPSS数据”所在的文件夹。

图1一、对2.7节例1中的数据进行相关性分析在图1的列表框中双击examp3.4.2.sav数据表,随即出现“SPSS数据编辑器”窗口(见图2)⇒分析⇒相关>⇒双变量…⇒在出现的“双变量相关性”对话框中(见图3),将年龄[x1]、体重[x2]、肺活量[x3]、1.5英里跑的时间[x4]、休息时的脉搏[x5]、跑步时的脉搏[x6]和跑步时的最大脉搏[x7]选入“变量”列表框⇒选项…→作图4中的选项→继续⇒确定,输出结果如图5所示。

图2图3图4图5二、对2.7节例1中的数据作散点图矩阵选择图形⇒旧对话框>⇒散点图/点图…⇒在出现的如图6所示的“散点图/点图”对话框中,选择矩阵散点图⇒定义,随即出现“散点图矩阵”对话框(见图7)⇒将年龄[x1]、体重[x2]、肺活量[x3]、1.5英里跑的时间[x4]、休息时的脉搏[x5]、跑步时的脉搏[x6]和跑步时的最大脉搏[x7]选入到“矩阵变量”列表框中⇒确定,生成如图8所示的散点图矩阵。

图6图7图8在图8中双击以激活该图,出现“图表编辑器”窗口,如图9所示⇒选项⇒显示沿对角线绘制的图表,即出现该散点图矩阵对角线上的直方图。

图9三、对2.7节例1中的数据作三维散点图在图6的对话框中,选择三维散点图⇒定义⇒在出现“三维散点图”对话框中(见图10),将年龄[x1]、体重[x2]和肺活量[x3]分别选入到“Y轴”、“X轴”和“Z轴”框中⇒确定,随即生成三维散点图(见图11)⇒在图11中双击以激活该图,出现“图表编辑器”窗口,如图12所示⇒编辑⇒三维旋转,即弹出一对话框(见图13),此时“图表编辑器”窗口中的鼠标图案变为一只手⇒按住鼠标左键拖动,三维散点图即开始依拖动的方向进行旋转。

spss变量的度量标准

spss变量的度量标准

spss变量的度量标准SPSS变量的度量标准。

在进行统计分析时,我们经常需要对不同变量进行度量。

SPSS作为一款常用的统计分析软件,提供了多种度量标准供用户选择。

本文将介绍SPSS中常用的变量度量标准,希望能够帮助大家更好地理解和运用SPSS进行数据分析。

首先,我们来看一下SPSS中常用的度量标准有哪些。

在SPSS中,常见的度量标准包括名义尺度、序数尺度、区间尺度和比例尺度。

名义尺度是指没有顺序和等级之分的变量,例如性别、民族等;序数尺度是指具有顺序但没有等距的变量,例如教育程度、职位等;区间尺度是指具有等距但没有绝对零点的变量,例如温度、时间等;比例尺度是指具有等距和绝对零点的变量,例如身高、体重等。

对于不同的度量标准,我们需要采取不同的统计方法。

在SPSS中,我们可以通过设置变量类型来指定变量的度量标准。

在新建数据集或导入数据后,我们可以在变量视图中对每个变量进行设置,选择合适的度量标准。

这样在进行数据分析时,SPSS就能够根据变量的度量标准进行相应的统计计算。

在实际应用中,选择合适的度量标准非常重要。

如果我们将一个名义尺度的变量误设为区间尺度,就会导致错误的统计结果;同样,如果将一个比例尺度的变量误设为序数尺度,也会造成统计分析的偏差。

因此,在使用SPSS进行数据分析时,我们需要对数据的度量标准有清晰的认识,避免设置错误的变量类型。

除了设置变量类型,SPSS还提供了丰富的统计分析功能,可以根据不同的度量标准进行相应的分析。

例如,对于名义尺度的变量,我们可以使用频数统计、卡方检验等方法进行分析;对于比例尺度的变量,我们可以使用相关分析、回归分析等方法进行分析。

通过灵活运用SPSS的统计分析功能,我们可以更好地理解数据,发现数据之间的关系,为决策提供科学依据。

总之,SPSS提供了丰富的变量度量标准和统计分析功能,能够满足不同类型数据的分析需求。

在使用SPSS进行数据分析时,我们需要充分了解数据的度量标准,合理设置变量类型,并灵活运用SPSS的统计分析功能,以便更好地理解数据、发现规律,为决策提供支持。

多维尺度分析过程_SPSS数据处理与分析_[共8页]

多维尺度分析过程_SPSS数据处理与分析_[共8页]

68
44
71
0
1
coke
60
35
21
98
34
0
1
dietpepr
84
94
98
57
99
99
0
1
tab
50
87
79
73
19
92
45
0
1
pepsi
99
25
53
98
52
17
99
84
0
1
dietcoke
16
92
90
83
79
44
24
18
98
0
问题: 1.哪些品牌的饮料在消费者的眼中是差不多的?哪些品牌的饮料差异又较大? 2.10名消费者在饮料消费上有共同偏好吗?其依据是什么? 3.消费者在饮料消费上存在哪些细分市场?针对消费者测定的相似度,如何有针对性地开展 营销?
第一节
多维尺度分析过程
本节以导入问题的数据为例,介绍 SPSS 中的两种多维尺度分析:ALSCAL 和 PROXSCAL 操 作过程,重点阐述数据文件的建立、界面及选项设置。
一、数据文件的建立
(1)启动 SPSS,单击窗口左下角的“变量视图”按钮,在该视图中将消费者编号定义为变量 ID,
SPSS数据处理与分析
被评价的 10 个饮料品牌定义为变量 brand,品牌两两之间的相互差异性评分值用饮料的品牌名称命 名,变量定义如图 13-1 所示。
图 13-1 多维尺度分析的变量定义
(2)一个消费者对 10 个品牌饮料进行评价,共有 C120 =45 个差异性评分,评价结果为一个 10 阶 差异性方阵。由于矩阵的对称性,方阵中仅列出了下三角的数字,具体录入的评价数据如图 13-2 所 示。由于显示屏所限,图中仅显示了前两人的评分,10 个测评者的完整数据是 10 个这样的方阵, 数据文件命名为“Data13-1.sav”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欧氏距离模型线性拟合散点图——提供原始数据的不一致程度 和用线性模型计算出来的欧氏距离间散点图——模型拟合效果比较 好。
分别采用非线性拟合以及变换后拟合的散点图——拟合效果不比 线性的更好。
多维尺度分析(PROXSCAL) ALSCAL提供比较经典的5个分析模型 分析结果不全相等, 有对应关系
例如;希望研究消费者对自己公司某个品牌的产品和另外几个 主要竞争对手产品的认可程度,则使用多维尺度分析可以回答 下列问题:
1、消费者认为那些品牌的产品类似与我们的产品?
2、在这些品牌中消费者用于评价相似性的是哪些特征?
分析原理:将观察数据分配到“概念空间”(二、三维)的特 殊位臵,数据点间的距离由计算出的不相似性决定,从而可以 在低度空间描述相似性和不相似性,以得到对象关系的“空间” 理解。
选择多矩阵框
采用个体差异模型进行分析
分析前考虑的问题:
1、定义几维空间进行分析?(一般1-3维,系统默认2 维) 2、采用0-100评分
3、有十个个体的距离阵,采用个体差异模型
4、作为初步分析,其他选项采用默认
给出各种饮料在所规定的公共空间两个维度上的坐标值
相应公共空间的状态空间图,得到如下的信息:
进一步分析:
维度设 置1-9
1、碎石图
如果在Plots子对话框中使用Individual spaces复选框,则结果中 会输出所有个体的空间图
5号在第一维度上区分程度不太高,第二维度区分的很好。 7号则正好相反,第一维度区分的非常好。 4号的情况居于两者之间。
例:对七种彩电品牌的相似程度评价情况: 1、对七种彩电品牌两两组合(21对) 2、对这些对子相似程度打分(1分—10分,1分——最相似) 3、分值平均 4、形成七种品牌相似评分矩阵 5、多维尺度分析可以对该矩阵进行分析,用图形化将结果 呈现出来。(哪些品牌靠得比较近)
例1、该数据是假设七个受试验者按照1至7的尺度(1表示非常相近,7 表示非常的不同)排列出一些饮料间两两相似的感知程度。共有28种可 能(n(n-1)/2)。用此数据分析哪些饮料消费者认为是相似的。(可 用多维尺度分析完成)
1、所有饮料分成两类: yukon、可口可乐、百事可乐、shasta、 rc、pepper为一类 无糖pepper、无糖可口可乐、无糖百事 可乐、tab为一类 2、第一维度方向上: 两种pepper在最右侧,两种百事可乐在中 间, (饮料自身口味) 两种可口可乐靠左,除RC和百事可乐比较 接近外,另外三种饮料均比较靠左。 第二维度方向上: 三种无糖饮料在上方,而对应的原始饮料 在下方。 (饮料对健康 的有益程度)
图8(P224)是多维尺度分析中最为重要的输出——概念空间图
1、哪些散点比较接近(相似),所有的散点大致被分为几类。
2、有可能,为每个维度找到一个合理的解释。
3、寻找图形散点间相关性合理解释。
上题:
1、所有运动被分为两类:第一类篮球、足球和曲棍球 第二类为高尔夫球、槌球和乒乓球(比 较分散) 2、第一维度方向上: 动作舒缓、节奏较慢的高尔夫球、槌球 在最左侧 (运动的剧烈程度) 频率较快、运动量适中的乒乓球靠中间 运动量最大的篮球、足球和曲棍球在最 右侧 第二维度方向上: 双人对打乒乓球在最下方 (参与人数的多少) 其余多人参加的运动在中上部 3、散点间的相关性寻求解释: 1)距离最近是足球和曲棍球: 一群人抢一个球在草地上,目 的——抢球往对方球门里送,区别—足球只能用脚。 2)离足球和曲棍球是篮球:一群人抢一个球,不在草地上而在硬 地板上,抢球往对方的蓝筐里送。 3)其余三中运动差异较大:
受试者
做多维尺度分析图(Group plots)
当Improvement值小于0,001时迭代终止。本题到第四 步为0.00062.

Stress(%)
拟合度 差 一般 好 较好
Stress和RSQ是两个多维尺度分析的信度和效度的估计值。
20 10 5 2。5
RSQ越大越理想,一般在0.60是可接受的,本例 值偏小。
例2:美国9大城市间飞行距离如表,试以多维尺度分析。
二维坐标值
例3:台湾9大城市间的车行距离:
例4:收集体育爱好者对六种体育运动相似性的评分(1分最为相 似,6分最不相似)。对此进行多维尺度分析.
Hockey(曲棍球)football(足球)basketball(篮球)tennis(乒 乓球)golf(高尔夫球)croquet(橄榄球)
多维尺度分析
多维尺度分析是市场调查、分析数据的统计方法之一 。 通过多维尺度分析,可以将消费者对商品相似性的判断产生一 张能够看出这些商品间相关性的图形。 例如:有十个百货商场,让消费者排列出对这些百货商场两两 间相似的感知程度,根据这些数据,用多维尺度分析,可以判 断消费者认为哪些商场是相似的,从而可以判断竞争对手。 用于反映多个研究事物间相似(不相似)程度,通过适当 的降维方法,将这种相似(不相似)程度在低维度空间中用点 与点之间的距离表示出来,并有可能帮助识别那些影响事物间 相似性的潜在因素。这种方法在市场研究中应用得非常广泛。 它使用的数据是消费者对一些商品相似程度(或差异程度 的评分,通过分析产生一张能够看出这些商品间相关性的图形 (感知图)。
坐标点
1、对每一维寻找合理的解释(2维看将七种饮料分为两类,牛奶、果汁、苏 打和矿泉水属于营养型饮料,啤酒、葡萄酒、咖啡和茶属于提神型饮料)
2、寻找图形散点间相关性的合理解释:(三组聚点,意味着消费者认为彼 此相似的这些产品:咖啡和茶、果汁和牛奶、啤酒和葡萄酒。说明这些相似 饮料在市场占有率上彼此有竞争。)
个体空间的拟合信息:个距离阵来源(个体)在两个公共空间维度 上的权重大小,P231
用图形的方式将个体权重表达出来。(图10。23)
1、5、6号受访者的权重比较接近,他们的评分对第二维度的贡献较 大; 2、1、4、9、号受访者的权重比较接近,他们的评分在二维度上的 贡献差不多大; 3、 2、3、7、8、10号受访者的权重比较接近,他们的评分则主要 对第一维度的贡献较大。 实际反映消费者中分别是重视口味、重视健康和两者均重视 的消费人群,并且重视口味的消费者占较大的比重。
PROXCAL提供了4个更高级的模型
区别:A只能分析不相似性(大的数据值)数据 P可对相似性或不相似性数据都能进行分析。提供更加丰富 的模型诊断、设臵和结果输出。
数据文件:mds.sav 例5:10位受访者对常见的10中饮料的不相似性评分(分值在0-100之间) 每位个体的数据形成了一个距离阵,十个距离阵被纵向叠加在一起,请 从中分析各种饮料的相似性。
相关文档
最新文档