八年级数学下册《二次根式乘除》
《二次根式乘除》八年级初二数学下册PPT课件(第16.4课时)
=
2
0.1
2
=
5
0
二次根式的性质二
α2
= a =
a(a≥0)
-a(a<0)
即任意一个数的平方的算术平方根等于它本身的绝对值 .
PA R T
02
练一练
02
探索与提高(区别(√)^2 和√(^2 ))
从运算顺序看
2
先开方 , 后平方
2
先平方 , 后开方
从取值范围看
a≥0
a取任何实数
从运算结果看
第十六章04节 二次根式
二次根式的乘除(除法)
主讲人:XXX 人教版 数学八年级下册
学习目标
01
LEARNING OBJECTIVES
1、理解二次根式除法法则。
2、利用二次根式法则法则对其进行化简。
3、理解最简二次根式的特点。
02
目录
03
重点
A KEY
理解二次根式除法法则。
难点
DIFFICULTY
算数平方根的概念: 一般的如果一个正数x的平方等于a,即x^2=a,
那么这个正数x叫做a的算术平方根。
平方根的概念:
如果一个数的平方等于,那么这个数就叫做的平方根或
二次方根,即如果 2 = ,那么x叫做a的平方根。
探究与思考
01
求下列各数的算术平方根:
4
4=2
2
2
1
3
1
3
=
3
3
0
0 =0
根据算术平方根的意义填空:
4
2
1
3
0
2
= 4
2
= 2
2
1
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
人教版八年级数学下册二次根式的乘除二次根式的乘法PPT精品课件
知识讲解
试一试: 你能化简下列二次根式吗?
16 81
解:1681 1296 362 36
8
知识讲解
把 a· b aba 0,b 0) 反过来,就得到
ab a· b (a≥0,b≥0)
两个数的积的算术平方根,等于这两个 数的算术平方根的积。
利用它可以进行二次根式的化简。
9
知识讲解
5.以景物衬托情思,以幻境刻画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。
3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
4.开篇写湘君眺望洞庭,盼望湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
13
小结 计算公式:
a· b aba 0,b 0)
化简公式:
ab a b (a≥0,b≥0)
a2 a(a 0)
14
15
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
2. 中国人对蔬菜的热爱,本质上是对土地 和家乡 的热爱 。本诗 主人公 就是这 样一位 采摘野 菜的同 时,又 保卫祖 国、眷 恋家乡 的士兵 。
初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思
数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。
八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。
大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。
二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。
第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。
第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。
第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。
语言文明,思想健康,积极、认真、扎实。
但有的学生对自己的学习没信心,在自动放弃学习。
三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。
2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件
36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a
b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a
( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)
2
1
.
18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用
把
a
b
aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a
( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a
( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙
人教版八下数学课件-二次根式的乘除
A. 8 3 11
B. 5 2 10
C. 6 ( 2) 12
D. 7 2 14
3.计算: 5 10 8 __2_0_.
探究新知
【思考】你还记得单项式乘单项式法则吗? 试回顾如何计算4a2·5a4= 20a6 .
探究新知
素养考点 2 因数不是1二次根式的乘法运算
解:(1)2 3 5 21
25 321 10 32 7 30 7
(2)3
3 (-
18 ) 4
(2) 3 3 (- 18 )
4
3-14 3 18
3 32 6 4
3 3 6 9 6.
4
4
课堂检测 能力提升题
1.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若 长为 24 ,宽为 8 ,求出它的面积.
不成立!
- 4、- 9没有意义!
因此被开方数a,b需要满足什么条件?
a,b是非负数,即a≥0,b≥0
探究新知
二次根式的乘法法则是:
在本章中, 如果没有特 别说明,所 有的字母都 表示正数.
二次根式相乘,_根__指__数___不变,被__开__方__数__相乘.
语言表述: 算术平方根的积等于各个被开方数积的算术平方根. 注意:a,b都必须是非负数.
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
课堂检测
3. 计算:
基础巩固题
(1)3 15=__3__5__ (2) 6 12 =__6__2__
(3)3 2 2 =__2__6__
4. 比较下列两组数的大小(在横线上填“>”
“<” 或“=”):
八年级下册数学二次根式乘除
八年级下册数学:深入探索二次根式的乘除运算一、引言在八年级下册的数学学习中,二次根式的乘除运算是我们必须掌握的重要内容之一。
这一章节不仅要求我们理解二次根式的概念,还要掌握其乘除运算的规则和方法。
通过学习和实践,我们可以发现二次根式的乘除运算在实际生活中有着广泛的应用,如计算面积、体积等。
因此,本文将详细解析二次根式的乘除运算,帮助同学们更好地掌握这一知识点。
二、二次根式的概念在探讨二次根式的乘除运算之前,我们首先需要了解什么是二次根式。
二次根式是指形如√a(a≥0)的代数式,其中a是一个非负实数。
例如,√4、√9等都是二次根式。
二次根式的一个重要性质是,它们可以表示为一个实数的平方。
例如,√4=2,√9=3。
三、二次根式的乘法运算二次根式的乘法运算遵循一定的规则。
当两个二次根式相乘时,我们可以将它们的被开方数相乘,然后再开方。
具体来说,如果有两个二次根式√a和√b(a≥0,b≥0),那么它们的乘积为√(a×b)。
例如,√4×√9=√(4×9)=√36=6。
此外,如果两个二次根式的被开方数相同,那么它们相乘的结果就是这个被开方数的平方根与被开方数本身的乘积。
例如,√2×√2=2。
四、二次根式的除法运算二次根式的除法运算也有其特定的规则。
当两个二次根式相除时,我们可以将被除数和除数的被开方数相除。
具体来说,如果有两个二次根式√a和√b(a≥0,b>0),那么它们的商为√(a/b)。
例如,√8÷√2=√(8/2)=√4=2。
需要注意的是,在进行二次根式的除法运算时,我们必须确保除数的被开方数大于0,否则运算将没有意义。
五、实际应用二次根式的乘除运算在实际生活中有着广泛的应用。
例如,在计算矩形的面积时,我们需要将矩形的长和宽相乘,这就涉及到了二次根式的乘法运算。
同样地,在计算圆柱体的体积时,我们需要将圆柱体的底面积和高相乘,这也涉及到了二次根式的乘法运算。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
人教版八年级下册数学《二次根式的乘除》课件
=
8 2 5
同学们自己来算吧!
看谁算得既快又准确!
1 a a
=
a
请坐
计算
8 27 18
8 27 18
8 27 18
解: 8 27 18
= =
=
43
= 2 3
练习: (1)
1 2 6 2 3
=
2
3 3
(2) 2 5 30 = (3 ) (4)
1 1 ( 3 ) 3 3
合作学习
思考:
?
复习所学知识,完成以下问题: 9 ×___, 25 我 (1) 9 25 ___ 们这样做的依据是__________; (2)
3 64
ab a b
=
3 64 _________,
我
a a b b 们这样做的依据是______.
5
合作学习
思考:
?
(3)参考上面的结果,用 “>、<或=”填空.
二次根式的乘除(1)
1
上海自来水来自海上,
江南唱歌团歌唱南江。 山东落花生花落东山, 天上明月光月明上天。
2
整式的乘法:
因式分解:
平方差公式:
2
平方差公式:
(a b) (a b) a b
2
a b (a b)(a b)
2 2
完全平方公式:完全平方公式:
(a b) a 2ab b
22
计算: 解法一:
2y 4 xy
2y 4 xy
=
y 1 2 xy
=
:
2y 1 4 xy
=
y 1 xy= 2 xy
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
1.通过探究二次根式的乘除运算,培养学生的逻辑思维能力和运算能力。
2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
3.引导学生运用数形结合的方法,通过图形直观地理解二次根式的乘除运算。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
针对以上问题,我制定了以下教学策略,以提高学生的学习效果和解决问题的能力。
二、教学目标
(一)知识与技能
1.理解二次根式的乘除法则,能够正确进行二次根式的乘除运算。
2.掌握二次根式的性质和化简方法,能够将二次根式进行化简。
3.能够运用二次根式的乘除运算解决实际问题,提高运用数学知识解决实际问题的能力。
2.二次根式的化简方法:引导学生总结二次根式的化简方法,掌握提取公因数、应用平方差公式等技巧,提高解题效率。
3.实际问题解决:引导学生总结如何运用二次根式的乘除运算解决实际问题,培养学生的应用能力和解决问题的能力。
(五)作业小结
1.布置作业:设计具有针对性和实践性的作业,让学生巩固和应用所学知识,提高学生的实际操作能力。
2.培养学生勇于探索、坚持不懈的学习精神,培养学生的自主学习能力。
3.通过对实际问题的解决,让学生体验到数学与生活的紧密联系,培养学生的应用意识和社会责任感。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,也是评价教学效果的重要依据。在教学过程中,我将紧紧围绕以上教学目标,采用多种教学方法和手段,引导学生积极参与,主动探究,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
一、案例背景
苏科版数学八年级下册《12.2二次根式的乘除》说课稿5
苏科版数学八年级下册《12.2 二次根式的乘除》说课稿5一. 教材分析苏科版数学八年级下册《12.2 二次根式的乘除》这一节,是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教学的。
本节课的主要内容是二次根式的乘除法运算,这是初中数学中的一个重要内容,也是学生学习过程中比较难以理解的内容。
教材通过例题和练习题的形式,引导学生掌握二次根式的乘除法运算规则,培养学生的运算能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二次根式的基本性质,对二次根式的加减法运算有一定的了解。
但是,由于二次根式的乘除法运算涉及到分数的乘除法运算,以及根号内的乘除法运算,这些内容对学生来说是比较陌生的,因此,学生在学习本节课的时候可能会感到困惑。
同时,由于二次根式的乘除法运算的规则不是直观易懂的,需要学生通过大量的练习才能够理解和掌握。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式的乘除法运算规则,能够熟练地进行二次根式的乘除法运算。
2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的运算能力、解决问题的能力和合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生体验到成功的喜悦。
四. 说教学重难点1.教学重点:使学生掌握二次根式的乘除法运算规则,能够熟练地进行二次根式的乘除法运算。
2.教学难点:理解二次根式的乘除法运算的规则,能够灵活运用规则进行二次根式的乘除法运算。
五. 说教学方法与手段在本节课的教学中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。
在教学过程中,我将充分利用多媒体教学手段,通过动画、图像和文字的结合,使抽象的二次根式的乘除法运算变得形象直观,帮助学生理解和掌握二次根式的乘除法运算规则。
六. 说教学过程1.导入:通过复习二次根式的加减法运算,引导学生进入二次根式的乘除法运算的学习。
2.自主学习:学生自主探究二次根式的乘除法运算的规则,教师给予适当的引导和帮助。
八年级数学下册课件(人教版)二次根式的乘除
例3 计算:(1) 14 7; (2) 3 5 2 10;
(3) 3 x 1 xy .
3
解:(1) 14 7 14 7 72 2 72 2 =7 2;
(2) 3 5 2 10 3 2 510 6 52 2
6 52 2 6 5 2 30 2;
(3) 3 x 1 xy 3x 1 xy x2 y
二次根式的乘除
第1课时
复习提问
1.什么叫二次根式?
形如 a (a≥ 0)的式子叫做二次根式 .
2.两个基本性质:
2 a =a (a≥ 0)
a2 =∣a∣ =
a (a≥ 0) -a (a<0)
知识点 1 二次根式的乘法法则
探究 计算下列各式,观察计算结果,你能发现什么规律?
(1) 4 9 =_______, 4 9 =_______; (2) 16 25 =_______, 16 25 =_______;
1 下列各式计算正确的是( C )
A.
3 3 22
B.
8 2
2
C. 3 3 42
D. a a 9b 3b
2
若
1a a2
1a a
,则a 的取值范围是( D )
A.a≤0 B.a<0
C.a>0 D.0<a≤1
3 下列等式不一定成立的是( A )
A. a a =(b≠0) bb
B.a
3·a-5=
(3) 2a 6a ;(4)
b 5
b 20a 2
.
解: (1) 3;
(2) 2 3;
(3) 3 ; 3
(4)2a.
2
a 3 a 3 成立的条件是( D )
a1 a1
八年级数学下册教学-16.2 二次根式的乘除 课件(共16张PPT).ppt
02
练一练
1.(2019·海口市丰南中学初三期末)已知: 是整数,则满足条件
的最小正整数为(
A.2
)
B.3
C.4
D.5
【答案】D
【解析】
∵ 20 = 4 × 5 = 2 5 ,且 20 是整数,
∴2 5是整数,即5n是完全平方数,
∴n的最小正整数为5.
故选D.
02
练一练
2.已知 = , = ,则 = (
PA R T
02
练一练
02
练一练
计算:
1) 14 × 7 = 14 × 7 = 2 × 72 = 7 2
2)2 10 × 3 5 = 2 × 3 × 10 × 5
= 6× 2×5×5
= 6 × 52 × 2=30 2
3) 3 ×
1
3
= 3 × 1 =
3
× 2= = 2 × =
A.2a
B.ab
C.
)
D.
【答案】D
【详解】
解: 18 = 2 × 3 × 3 = 2 × 3 ×
3 = ⋅ ⋅ = 2 .
故选D.
3.(2019·肇庆市端州区南国中英文学校初二期中)下列
各数中,与2 的积为有理数的是(
A.2
B.3
C.
)
【答案】D
【详解】
解:A、2×2 3=4 3为无理数,故不能;
01
二次根式的乘法法则变形
注意公式成立条件
ab = • ≥ 0,b ≥ 0
在本章中,如果没有特别说明,所有的字母都表示正数.
计算:
1) 16 × 81 =
=
苏科版八年级数学下册《二次根式的乘除》评课稿
苏科版八年级数学下册《二次根式的乘除》评课稿一、教材分析《二次根式的乘除》是苏科版八年级数学下册的一章内容,主要介绍了二次根式的乘法和除法运算,以及相关的概念和性质。
该章节共包含多个知识点,如二次根式的定义、乘法法则、除法法则等。
通过学习这一章,学生将能够掌握二次根式的基本运算方法,并能够灵活运用于实际问题中。
二、教学目标2.1 知识目标•了解二次根式的概念和基本性质;•掌握二次根式的乘法法则和除法法则;•能够在实际问题中应用二次根式的乘除方法。
2.2 能力目标•能够准确理解和运用二次根式的乘除法则;•能够分析和解决实际问题,并运用二次根式进行计算。
2.3 情感目标•培养学生对数学的兴趣和热爱;•培养学生良好的数学思维习惯和解决问题的能力。
三、教学重点和难点3.1 教学重点•二次根式的定义和性质;•二次根式的乘法法则和除法法则;•实际问题中的应用。
3.2 教学难点•确保学生正确理解和运用二次根式的乘除法则;•培养学生灵活运用二次根式解决问题的能力。
四、教学策略和方法4.1 教学策略•以问题为导向,启发学生的思考和探究;•结合实例,引导学生理解和应用二次根式的乘除法则。
4.2 教学方法•讲授法:通过讲解和示范,让学生掌握知识和方法;•演示法:通过实例演示,引导学生理解并应用所学内容;•课堂练习:通过课堂练习巩固学生的基本技能;•问题解决:组织学生解决与二次根式乘除相关的问题。
五、教学过程5.1 导入通过一个实际问题导入本节课的内容:小明在修建一个矩形花坛,长为$\\sqrt{12}$米,宽为$\\sqrt{6}$米。
他想知道这个花坛的面积是多少,你能帮助他吗?引导学生思考并解决这个实际问题,并讨论解决过程,引出二次根式的乘法法则。
5.2 二次根式的乘法法则讲解二次根式的乘法法则,包括同根号相乘、不同根号相乘以及带有系数的乘法法则。
通过示例演示如何进行乘法运算,并要求学生进行练习。
5.3 二次根式的除法法则讲解二次根式的除法法则,包括同根号相除、不同根号相除以及带有系数的除法法则。
新人教版《二次根式的乘除》课件公开课PPT
n(n2-1)+n n2-1
=
综设上AE所的述长,符为合m,条△件AD的E点的P面只积有为一S个,求,其S关坐于标m为的(2函,-2数√(关"3系" )式). ,并写出自变量m的取值范围;
"(i∴)当△四C边DE形的C最DM大N面是积平为行" 四"8边1"形/",8∵" M,此向时下A平E=移m4=个"9单" /"位2"得"N,B,∴E=NA的B-坐A标E=为" ("39+"n/,"n2-"2).,
按团体票一次性购买16张门票需要35×60%×16=336(元).
示为( B ) ②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
解:由题意,得:①甲组单独施工12天完成,商店需付装修费用3 600元;乙组单独施工24天完成,商店需付装修费用3 360元,比较可 知,甲组比乙组早12天完工,商店早开业12天可盈利200×12=2 400(元). 知识点四 列一元一次不等式解应用题
A. 13
B. 12
C. a3
D.
5 3
8.把下列二次根式化成最简二次根式:
(1) 3.5 ;
解:原式=
14 2
(2)
4 15
;
解:原式=35 5
(3)
27 3x
;
(4) 16x3+32x2 (x>0).
解:原式=3x x
解:原式=4x x+2
∴(的2)A函点B数E=从9关9,O点系.CA式=(出9绵,.并发写阳,沿出x中轴自向变考点量Bm)运等的动取式(值点范E与围xx点; - +A,B31不重=合),过点xxE作- +直31线l平成行立于B的C,交xAC的于点取D.设值AE范的长围为在m,△数AD轴E的上面积可为S表,求S关于m
二次根式的乘除(课件)八年级数学下册(苏科版)
2h
.从100米高空抛物到落地所需时间t2是从50米高
10
空抛物到落地所需时间t1的多少倍?
解:由题意得
t2
t1
2 100
10 20 2.
10
2 50
10
课堂练习
1.化简
A.9
18 2 的结果是( B )
B.3
C. 3 2
D.
2 3
2.下列根式中,最简二次根式是( C )
注意:被开方数 a,b 既可以是数,也可以是代数式,但都必须是非
负的.
典型例题
例1 计算:
1
3 5;
2
1
27.
3
解: 1 3 5= 3 5= 15;
2
1
1
27 = 27 = 9=3.
3
3
提示:
两个二次根式相乘,把被开方数
相乘,根指数不变.即:
a b ab (a≥0,b≥0)
7
7
5
× × =
2²×2×5
2 10
=
.
5×5
5
8
5
探究新知
二次根式的乘除混合运算中的四点注意:
(1)带分数要化成假分数;
(2)要注意确定最后结果的符号;
(3)最后结果一般要化为最简二次根式或整式;
(4)在二次根式的乘除混合运算中,有理数的运算法则同样适用.
05
二次根式乘除法的应用
典型例题
例题9. 一个长方形的长和宽分别是 10 和2 2 .求这个
可以发现这些数不能再化简,这些数有两个特点:
(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.2 二次根式的乘除
第一课时
教学内容
(a≥0,b≥0(a≥0,b≥0)及其运用.教学目标
a≥0,b≥0(a≥0,b≥0),并利用它们进行计算和化简
a≥0,b≥0)并运用它进行计算;•
(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键
a≥0,b≥0(a≥0,b≥0)及它们的运用.
a≥0,b≥0).
关键:要讲清(a<0,b<0)=b,如=或
教学过程
一、复习引入
(学生活动)请同学们完成下列各题.
1.填空
(1=______;
(2=_______.
(3.
参考上面的结果,用“>、<或=”填空.
×
2.利用计算器计算填空
(1,(2
(34,
(5.
老师点评(纠正学生练习中的错误)
二、探索新知
(学生活动)让3、4个同学上台总结规律.
老师点评:(1)被开方数都是正数;
(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.
一般地,对二次根式的乘法规定为
a≥0,b≥0)
反过来: (a≥0,b≥0)
例1.计算
(1(2(3(4
分析:a≥0,b≥0)计算即可.
解:(1
(2
(3=
(4
例2 化简
(1(2(3
(4(5
(a≥0,b≥0)直接化简即可.
解:(1×4=12
(2×9=36
(3×10=90
(4
(5
三、巩固练习
(1)计算(学生练习,老师点评)
①②×2
(2) 化简:;
教材P11练习全部
四、应用拓展
例3.判断下列各式是否正确,不正确的请予以改正:
(1
(2=4
解:(1)不正确.
×3=6
(2)不正确.
=
五、归纳小结
本节课应掌握:(1=(a≥0,b≥0(a≥0,b ≥0)及其运用.
六、布置作业
1.课本P151,4,5,6.(1)(2).
2.选用课时作业设计.
第一课时作业设计
一、选择题
1,•那么此直角三角形斜边长是().
A.cm B.cm C.9cm D.27cm
2.化简).
A..
311
x-=)
A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是().
A..
C.×.
二、填空题
1.
2.自由落体的公式为S=1
2
gt2(g为重力加速度,它的值为10m/s2),若物体下落的高
度为720m,则下落的时间是_________.
三、综合提高题
1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?
2.探究过程:观察下列各式及其验证过程.
(1)
验证:=
=
(2)
验证:
=
同理可得:=
=
通过上述探究你能猜测出:(a>0),并验证你的结论.
答案:
一、1.B 2.C 3.A 4.D
二、1.2.12s
三、1.设:底面正方形铁桶的底面边长为x,
则x2×10=30×30×20,x2=30×30×2,
.
2.
验证:=
=。