分式中考计算题精选
分式方程计算30题(附答案、讲解)
分式方程计算30题(附答案、讲解)郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:3.(2011•咸宁)解方程5.(2011•海)解方程:7.(2011•台州)解方程:9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:..8.(2011•随州)解方程:..6.(2011•潼南县)解分式方程:..4.(2011•乌鲁木齐)解方程:=+1..2.(2011•孝感)解关于的方程:.[键入文字]11.(2011•攀枝花)解方程:13.(2011•茂名)解分式方程:15.(2011•菏泽)解方程:17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.20.(2010•遵义)解方程:[键入笔墨].12.(2011•宁夏)解方程:..14.(2011•昆明)解方程:.16.(2011•大连)解方程:.(2)解分式方程:=+1.21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:24.(2010•恩施州)解方程:26.(2009•聊城)解方程:28.(2009•南平)解方程:30.(2007•孝感)解分式方程:+.23.(2010•西宁)解分式方程:25.(2009•乌鲁木齐)解方程:=127.(2009•南昌)解方程:29.(2008•昆明)解方程:.[键入笔墨]答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检修:当y=时,y(y﹣1)=×(﹣1)=﹣≠,∴y=是原方程的解,∴原方程的解为y=.点评:此题考察相识分式方程,(1)解分式方程的根本头脑是“转化头脑”,把分式方程转化为整式方程求解.(2)解分式方程肯定留意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
中考数学考点专题训练之分式方程精选卷
中考数学考点专题训练之分式方程精选卷一.选择题(共10小题)1.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( ) A .420x −420x−0.5=20 B .420x−0.5−420x =20C .420x−420x−20=0.5D .420x−20−420x=0.52. “五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为( ) A .180x−2−180x =3 B .180x+2−180x =3 C .180x−180x−2=3D .180x−180x+2=33.解方程1x−1−2=3x 1−x去分母,两边同乘(x ﹣1)后的式子为( )A .1﹣2=﹣3xB .1﹣2(x ﹣1)=﹣3xC .1﹣2(1﹣x )=﹣3xD .1﹣2(x ﹣1)=3x4.市政府为了贯彻落实“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程正确的是( ) A .90x−90(1+25%)x=30 B .90x−9025%x=30C .90(1+25%)x−90x=30D .90(1−25%)x−90x=305.现在5G 手机非常流行,5G 手机速度很快,比4G 下载速度每秒多120MB ,下载一部900MB 的电影,5G 比4G 要快200秒,那么5G 手机的下载速度是多少呢?若设5G 手机的下载速度为xMB 秒,则根据题意可列方程为( ) A .900x−900x−120=200 B .900x−120−900x=200C .900x+120+900x=200D .900x+200=900x+1206.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,能够刚好在规定时间送到,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求两匹马的速度.设慢马的速度为x 里/天,则可列方程为( ) A .900x =9002x +3 B .900x +3=9002xC .900x+3=9002xD .900x=9002x+37.习近平总书记指出,中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是( ) A .36000.8x −3600x =4 B .3600x −24000.8x =4 C .24000.8x −3600x =0D .24000.8x−2400x=48.方程2x−3=3x的解为( )A .x =﹣3B .x =3C .x =﹣9D .x =99.已知x =1是方程m 2−x−1x−2=3的解,那么实数m 的值为( )A .﹣2B .2C .﹣4D .410.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50xB .75x=50x−5C .75x+5=50xD .75x=50x+5二.填空题(共9小题)11.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x 株,则可列分式方程为 . 12.分式方程4x−2=2x的解是 .13.关于x 的方程2x−1+5−a 1−x=−2的解为正数,则a 的取值范围为 .14.若关于x 的一元一次不等式组的解集{x −14(4a −2)≤123x−12<x +2是x ≤a ,且关于y 的分式方程2y−a y−1−y−41−y=1有非负整数解,则符合条件的所有整数a 的和为 .15.某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x 满足的分式方程为 . 16.关于x 的分式方程ax−3x−2+1=3x−12−x的解为正数,且使关于y 的一元一次不等式组{3y−22≤y −1y +3>a有解,则所有满足条件的整数a 的值之和是 .17.若关于x 的一元一次不等式组{x ≥−2x +72x −x−12<a 无解,且使关于y 的分式方程3−ay y−2+2=−12−y有整数解,则所有符合题意的整数a 的值之和是 .18.若关于x 的方程x+m x−3+3m 3−x=3的解为正数,则m 的取值范围是 . 19.(2023•武侯区校级模拟)分式方程k x 2−1=1x−1的解是x =0,则k = .三.解答题(共6小题)20.加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任.某社区为了增强社区居民的文明意识和环境意识,营造干净、整洁、舒适的人居环境,准备购买甲、乙两种分类垃圾桶.通过市场调研得知:乙种分类垃圾桶的单价比甲种分类垃圾桶的单价多40元,且用4800元购买甲种分类垃圾桶的数量与用6000元购买乙种分类垃圾桶的数量相同.(1)求甲、乙两种分类垃圾桶的单价;(2)该社区计划用不超过3600元的资金购买甲、乙两种分类垃圾桶共20个,则最少需要购买甲种分类垃圾桶多少个?21.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.22.近期,受俄乌局势影响,国内汽油价格不断上涨.请你根据下面的信息(如图),计算今年4月份汽油的价格.23.某汽车网站对两款价格相同,续航里程相同的汽车做了一次评测,一款为燃油车,另一款为纯电新能源车.得到相关数据如下:燃油车 纯电新能源车 油箱容积:48升 电池容量:90千瓦时 油价:8元/升电价:0.6元/千瓦时(1)设两款车的续航里程均为a 千米,请用含a 的代数式表示燃油车和纯电新能源车的每千米行驶费用;(2)若燃油车每千米行驶费用比纯电新能源车多0.55元.①请分别求出这两款车的每千米行驶费用;②若燃油车和纯电新能源车每年的其它费用分别为4800元和8100元.问:每年行驶里程超过多少千米时,新能源车的年费用更低?(年费用=年行驶费用+年其它费用)24.2022年10月16日,习总书记在第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用3000万元购进A型汽车的数量比2400万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元?(2)该公司决定用不多于3600万元购进A型和B型汽车共150辆,最多可以购买多少辆A型汽车?25.为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:m2)每天施工费用(单位:元)甲x+3003600乙x2200信息二甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.(1)求x的值;(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?。
分式与分式方程(34题)(解析版)—2024年中考数学真题分类汇编(全国通用)
分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是( )A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是( )A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为( )A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.4.(2024·四川雅安·中考真题)已知()2110a b a b+=+¹.则a aba b +=+( )A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是 .6.(2024·辽宁·中考真题)方程512x =+的解为 .解得:3x =,经检验:3x =是原方程的解,∴原方程的解为:3x =,故答案为:3x =.7.(2024·重庆·中考真题)计算:011(3)(2p --+= .8.(2024·重庆·中考真题)计算:023-+= .【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是 .【答案】4x ¹【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解:Q 分式有意义的条件是分母不能等于0,\40x -¹\4x ¹.故答案为:4x ¹.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是 .【答案】3x ¹【分析】本题主要考查了分式有意义的条件,分式有意义的条件是分母不等于零.根据分式有意义的条件列不等式解答即可.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为 .12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为 .î13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x æö--¸-=ç÷èø.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是 .【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1. 故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是 .17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++ .19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为 .三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a aa a++æö+¸ç÷+,其中4a=.21.(2024·四川资阳·中考真题)先化简,再求值:221412x xx x x+-æö-¸ç÷+,其中3x=.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -æö+¸ç÷--+,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -æö-¸ç÷--+èø,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x26.(2024·青海·中考真题)先化简,再求值:11x y y x y x æöæö-¸-ç÷ç÷èøèø,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +æö-¸ç÷.28.(2024·四川雅安·中考真题)(1()111525-æö-+-´-ç÷èø;(2)先化简,再求值:2221211a a a a a -+æö-¸ç÷-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?【答案】(1)原计划与实际每天铺设管道各为40米,50米(2)该公司原计划最多应安排8名工人施工【分析】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ´,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,32.(2024·四川达州·中考真题)先化简:22224x x x x x x x +æö-¸ç÷-+-èø,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -æö+¸ç÷+èø.【答案】(1)222x y +;34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xxx x-æö+-¸+ç÷+-,其中72x=-.。
中考数学专项练习分式的混合运算(含解析)
中考数学专项练习分式的混合运算(含解析)【一】单项选择题1.计算的结果是〔〕A.B.C.x2+1D.x2﹣12.化简分式〔x-y+〕〔x+y-〕的结果为〔〕A.y2-x2B.x2-y2C.x2-4y2D.4x2-y23.x﹣=﹣y,且x+y≠0,那么xy的值为〔〕A.-1B.0C.1D.24.化简÷〔1+ 〕的结果是〔〕A.B.C.D.5.化简:〔1+ 〕÷结果为〔〕A.4xB.3xC.2xD.x6.化简〔1﹣〕÷的结果是〔〕A.〔x+1〕2B.〔x﹣1〕2C.D.7.以下运算结果为x﹣1的是〔〕A.1﹣B.•C.÷D.8.化简的结果是〔〕A.B.C.x+1D.x﹣19.假设分式□运算结果为x,那么在〝□〞中添加的运算符号为〔〕A.+B.﹣C.+或×D.﹣或÷10.化简的结果是()A.1B.C.D.-111.计算〔﹣〕÷的结果为〔〕A.B.C.D.12.以下等式成立的是〔〕A.+ =B.=C.=D.=﹣【二】填空题13.化简:〔1+ 〕÷的结果为________.14.÷·=________÷·________.15.化简:=________.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:那么第n次运算的结果yn=________〔用含字母x和n的代数式表示〕.17.计算:=________.【三】计算题18.计算:〔1〕;〔2〕.19.计算:〔1〕〔2〕.20.计算:①;②﹣a﹣1;③.21.计算:.22.计算或化简:①计算〔﹣〕÷.②a≠0,且满足a2﹣3a+1=0,求a2+ 的值.23.计算或化简:〔1〕.〔2〕.24.计算:.25.计算:〔1〕÷;〔2〕〔1+ 〕÷.【四】解答题26.:y= ,试说明不论x为任何有意义的值,y值均不变.27.化简:÷.【一】单项选择题1.计算的结果是〔〕A.B.C.x2+1D.x2﹣1【考点】分式的混合运算【解析】【解答】解:原式=[+ ]•〔x+1〕〔x﹣1〕=2x+〔x﹣1〕2=x2+1,应选C【分析】原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可得到最简结果.2.化简分式〔x-y+〕〔x+y-〕的结果为〔〕A.y2-x2B.x2-y2C.x2-4yD.4x2-y2【考点】分式的混合运算【解析】【分析】先算小括号里的,再算乘法,把分子因式分解,化简即可.【解答】〔x-y+)〔x+y-)===x2-y2 .应选B、【点评】当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.需注意:〔x+y)2-4xy=〔x-y)2 ,〔x-y)2+4xy =〔x+y)2的应用.3.x﹣=﹣y,且x+y≠0,那么xy的值为〔〕A.-1B.0C.1D.2【考点】分式的混合运算【解析】【解答】解:∵x﹣=﹣y,∴x+y=+= ,∵x+y≠0,∴xy=1,应选C【分析】等式移项变形,整理后根据x+y不为0求出xy的值即可.4.化简÷〔1+ 〕的结果是〔〕A.B.D.【考点】分式的混合运算【解析】【解答】解:原式=÷= •=,应选C【分析】原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可得到结果.5.化简:〔1+ 〕÷结果为〔〕A.4xB.3xC.2xD.x【考点】分式的混合运算6.化简〔1﹣〕÷的结果是〔〕A.〔x+1〕2B.〔x﹣1〕2C.D.【考点】分式的混合运算【解析】【解答】解:〔1﹣〕÷===〔x﹣1〕2 ,应选B、【分析】先对括号内的式子通分,然后再将除法转化为乘法即可解答此题.7.以下运算结果为x﹣1的是〔〕A.1﹣B.•C.÷D.【考点】分式的混合运算【解析】【解答】解:A、1﹣= ,故此选项错误;B、原式= •=x﹣1,故此选项正确;C、原式= •〔x﹣1〕= ,故此选项错误;D、原式= =x+1,故此选项错误;应选:B、【分析】根据分式的基本性质和运算法那么分别计算即可判断.8.化简的结果是〔〕A.B.C.x+1D.x﹣1【考点】分式的混合运算9.假设分式□运算结果为x,那么在〝□〞中添加的运算符号为〔〕A.+B.﹣C.+或×D.﹣或÷【考点】分式的混合运算【解析】【解答】解:A、根据题意得:+ = ,不符合题意;B、根据题意得:﹣= =x,不符合题意;C、根据题意得:×= ,不符合题意;D、根据题意得:﹣= =x;÷= •=x,符合题意;应选D【分析】将运算符号放入原式,计算即可得到结果.10.化简的结果是()A.1B.C.D.-1【考点】分式的混合运算11.计算〔﹣〕÷的结果为〔〕A.B.C.D.【考点】分式的混合运算【解析】【解答】解:原式=÷= •=.应选A、【分析】首先把括号内的式子通分、相减,然后把除法转化为乘法,进行通分即可.12.以下等式成立的是〔〕A.+ =B.=C.=D.=﹣【考点】分式的混合运算【解析】【解答】解:A、原式= ,错误;B、原式不能约分,错误;C、原式= = ,正确;D、原式= =﹣,错误,应选C【分析】原式各项计算得到结果,即可做出判断.【二】填空题13.化简:〔1+ 〕÷的结果为________.【考点】分式的混合运算14.÷·=________÷·________.【考点】分式的混合运算15.化简:=________.【考点】分式的混合运算【解析】【解答】解:=1﹣=1﹣= = .【分析】把第二个分式的分子分母先因式分解,再把除法统一成乘法化简,最后算减法.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:那么第n次运算的结果yn=________〔用含字母x和n的代数式表示〕.【考点】分式的混合运算17.计算:=________.【考点】分式的混合运算【三】计算题18.计算:〔1〕;〔2〕.【考点】分式的混合运算【解析】【分析】〔1〕原式利用除法法那么变形,约分即可得到结果;〔2〕原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.19.计算:〔1〕〔2〕.【考点】分式的混合运算【解析】【分析】〔1〕原式通分并利用同分母分式的加法法那么计算,即可得到结果;〔2〕原式括号中通分并利用同分母分式的减法法那么计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.20.计算:①;②﹣a﹣1;③.【考点】分式的混合运算【解析】【分析】①原式利用除法法那么变形,约分即可得到结果;②原式两项通分并利用同分母分式的减法法那么计算即可得到结果;③原式括号中两项通分并利用同分母分式的加减法那么计算,约分即可得到结果.21.计算:.【考点】分式的混合运算【解析】【分析】原式括号中三项通分并利用同分母分式的减法法那么计算,约分即可得到结果.22.计算或化简:①计算〔﹣〕÷.②a≠0,且满足a2﹣3a+1=0,求a2+ 的值.【考点】分式的混合运算【解析】【分析】①原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分即可得到结果;②等式整理求出a + 的值,再利用完全平方公式即可求出所求式子的值.23.计算或化简:〔1〕.〔2〕.【考点】分式的混合运算【解析】【分析】〔1〕、〔2〕根据分式混合运算的法那么进行计算即可.24.计算:.【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.25.计算:〔1〕÷;〔2〕〔1+ 〕÷.【考点】分式的混合运算【解析】【分析】〔1〕原式利用除法法那么变形,约分即可得到结果;〔2〕原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可得到结果.【四】解答题26.:y= ,试说明不论x为任何有意义的值,y值均不变.【考点】分式的混合运算【解析】【分析】先算乘除,约分化为最简分式,后算加减,得到不论x为任何有意义的值,y值均不变.27.化简:÷.【考点】分式的混合运算【解析】【分析】利用分式的混合运算顺序求解即可.。
中考数学试卷分式运算
一、选择题(每小题3分,共30分)1. 若a,b,c是等差数列,且a+b+c=9,a-b+c=3,则b+c的值为:A. 6B. 3C. 9D. 122. 已知x²+4x+3=0,则x+2的值为:A. -1B. 1C. 3D. -33. 若a,b,c是等比数列,且a+b+c=9,a²+ab+ac=27,则b²+bc+c²的值为:A. 36B. 27C. 18D. 94. 若m,n,p是等差数列,且m+n+p=12,m²+mn+mp=36,则n²+np+p²的值为:A. 36B. 72C. 144D. 2165. 若x,y,z是等比数列,且x+y+z=9,xy+xz+yz=27,则x²+y²+z²的值为:A. 81B. 36C. 18D. 96. 已知x²+2x-3=0,则x³+6x²-9x的值为:A. 0B. 3C. 6D. 97. 若x,y,z是等差数列,且x²+2xy+2xz=27,y²+2yz+z²=81,则x²+y²+z²的值为:A. 36B. 54C. 72D. 1088. 已知x²+4x+4=0,则x³+12x²+48x的值为:A. 0B. 4C. 8D. 169. 若a,b,c是等比数列,且a+b+c=9,ab+ac+bc=27,则a²+b²+c²的值为:A. 36B. 27C. 18D. 910. 若x,y,z是等差数列,且x²+2xy+2xz=27,y²+2yz+z²=81,则x²+y²+z²的值为:A. 36B. 54C. 72D. 108二、填空题(每小题3分,共30分)11. 若x²-5x+6=0,则x²+5x的值为______。
分式方程计算30题(附答案、讲解)
郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)解方程:16.(2011•大连)解方程:.17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=1 27.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
中考数学分式方程专题训练有答案解析
分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。
(完整版)初一数学分式方程练习题(中考经典计算)
一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)(1)解方程:(2)解不等式组.16.(2011•大连)解方程:.17.(2011•常州)①解分式方程;②解不等式组.18.(2011•巴中)解方程:.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=127.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
全国2024年中考数学试题精选50题分式二次根式含解析
2024年全国中考数学试题精选50题:分式、二次根式一、单选题1.(2024·绵阳)若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣12.(2024·淄博)化简的结果是()A. a+bB. a﹣b C.D.3.(2024·威海)人民日报讯,2024年6月23日,中国胜利放射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为()A. B.C.D.4.(2024·威海)分式化简后的结果为()A. B.C.D.5.(2024·滨州)冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B.米 C.米 D. 米6.(2024·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.D.7.(2024·赤峰)2024年6月23日9时43分,我国胜利放射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为()A. B.C.D.8.(2024·云南)下列运算正确的是()A. B.C. D.9.(2024·南通)下列运算,结果正确的是()A. B.C. D.10.(2024·上海)下列各式中与是同类二次根式的是()A. B.C.D.11.(2024·呼和浩特)下列运算正确的是()A.B.C. D.12.(2024·包头)的计算结果是()A. 5B.C.D.13.(2024·包头)下列计算结果正确的是()A. B.C. D.14.(2024·长沙)下列运算正确的是()A. B.C. D.15.(2024·邵阳)下列计算正确的是()A.B.C.D.16.(2024·郴州)下列运算正确的是()A. B.C. D.17.(2024·郴州)年月日,北斗三号最终一颗全球组网卫星在西昌卫星放射中心点火升空.北斗卫星导航系统可供应高精度的授时服务,授时精度可达纳秒(秒= 纳秒)用科学记数法表示纳秒为()A. 秒B.秒 C.秒 D. 秒18.若关于x的分式方程=+5的解为正数,则m的取值范围为()A. m<﹣10B. m≤﹣10 C. m≥﹣10且m≠﹣6 D. m>﹣10且m≠﹣6二、填空题19.(2024·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.20.(2024·东营)2024年6月23日9时43分,“北斗三号”最终一颗全球组网卫星放射胜利,它的授21.(2024·永州)在函数中,自变量x的取值范围是________.22.(2024·南县)若计算的结果为正整数,则无理数m的值可以是________.(写出一个符合条件的即可)23.(2024·昆明)要使有意义,则x的取值范围是________.24.(2024·营口)(3 + )(3 ﹣)=________.25.(2024·山西)计算:________.26.(2024·呼和浩特)分式与的最简公分母是________,方程的解是________.27.(2024·包头)计算:________.28.(2024·包头)在函数中,自变量的取值范围是________.29.(2024·邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.21 6330.(2024·郴州)若分式的值不存在,则________.31.(2024·黑龙江)在函数中,自变量x的取值范围是________.三、计算题32.(2024·眉山)先化简,再求值:,其中.33.(2024·烟台)先化简,再求值:÷ ,其中x=+1,y=﹣1.34.(2024·滨州)先化筒,再求值:其中35.(2024·呼伦贝尔)先化简,再求值:,其中.36.(2024·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满意a2+2a﹣15=0.37.(2024·赤峰)先化简,再求值:,其中m满意:.38.(2024·永州)先化简,再求值:,其中.39.(2024·南县)先化简,再求值:,其中40.(2024·云南)先化简,再求值:,其中.41.(2024·营口)先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2024·宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.43.(2024·南通)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)44.(2024·娄底)计算:45.(2024·郴州)计算:46.(1)计算:sin30°+ ﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣4847.(2024·长沙)先化简,再求值,其中48.(2024·娄底)先化简,然后从,0,1,3中选一个合适的数代入求值.49.(2024·山西)(1)计算:(2)下面是小彬同学进行分式化简的过程,请仔细阅读并完成相应任务.第一步其次步第三步第四步第五步第六步任务一:填空:①以上化简步骤中,第________步是进行分式的通分,通分的依据是________或填为________;②第________步起先出现不符合题意,这一步错误的缘由是________;(3)任务二:请干脆写出该分式化简后的正确结果;解;.任务三:除订正上述错误外,请你依据平常的学习阅历,就分式化简时还须要留意的事项给其他同学提一条建议.50.(2024·通辽)用※定义一种新运算:对于随意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.答案解析部分一、单选题1.【答案】 A【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】干脆利用二次根式有意义的条件分析得出答案.2.【答案】 B【解析】【解答】解:原式====a﹣b.故答案为:B.【分析】跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.3.【答案】 B【解析】【解答】,故答案为:B.【分析】依据科学记数法的表示形式(n为整数)进行表示即可求解.4.【答案】 B【解析】【解答】解:故答案为:B.【分析】依据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再依据同分母分式相加减的法则计算.5.【答案】 C【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所确定.6.【答案】 D【解析】【解答】解:依据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故答案为:D .【分析】依据二次根式的性质,被开方数大于或等于0,可以求出x的范围.7.【答案】 C【解析】【解答】解:0. 000 000 009 9用科学记数法表示为.8.【答案】 D【解析】【解答】解:A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确;故答案为:D.【分析】依据一个正数的正的平方根就是该数的算术平方根即可推断A;依据与互为倒数即可推断B;依据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可推断C;依据同底数幂的除法,底数不变,指数相减即可推断D.9.【答案】 D【解析】【解答】解:A. 与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C. ,此选项错误;D. ,此选项计算正确.故答案为:D.【分析】(1)由同类二次根式的定义可知与不是同类二次根式,所以不能合并;(2)同理可知不能合并;(3)由二次根式的除法法则可得原式=;(4)由二次根式的乘法法则可得原式=.10.【答案】 C【解析】【解答】解:A、和是最简二次根式,与的被开方数不同,故A选项不符合题意;B、,3不是二次根式,故B选项不符合题意;C、,与的被开方数相同,故C选项符合题意;D、,与的被开方数不同,故D选项不符合题意;故答案为:C.【分析】依据同类二次根式的概念逐一推断即可.11.【答案】 C【解析】【解答】解:A、,不符合题意;B、,不符合题意;C、=== ,符合题意;D、,不符合题意;故答案为:C.【分析】分别依据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则推断即可.12.【答案】 C【解析】【解答】= ,故答案为:C.【分析】依据二次根式的运算法则即可求解.13.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】依据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的学问逐项解除即可.14.【答案】 B【解析】【解答】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故答案为:B.【分析】依据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用解除法求解.15.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】分别运用二次根式、整式的运算、分式的运算法则逐项解除即可.16.【答案】 A【解析】【解答】A. ,计算符合题意,符合题意;B. ,故本选项不符合题意;C. ,故本选项不符合题意;D. 不能计算,故本选项不符合题意;故答案为:A.【分析】依据积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项法则进行计算得出结果进行推断即可.17.【答案】 A【解析】【解答】∵1秒=1000000000纳秒,∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.故答案为:A.【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定.18.【答案】 D【解析】【解答】解:去分母得,解得,由方程的解为正数,得到,且,,则m的范围为且,二、填空题19.【答案】 k>-2且k≠2【解析】【解答】解:方程两边同乘(x-2)得,1+2x-4=k-1,解得,,且故答案为:且【分析】利用解分式方程的一般步骤解出方程,依据题意列出不等式,解不等式即可.20.【答案】【解析】【解答】因为,故答案为:.【分析】依据科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所确定,进而求解.21.【答案】x≠3【解析】【解答】∵在函数中,x-3≠0,∴x≠3.故答案是:x≠3.【分析】依据分式有意义的条件,即可求解.22.【答案】(答案不唯一)【解析】【解答】解:∵ ,∴ 时的结果为正整数,故答案为:(答案不唯一).【分析】依据为12,即可得到一个无理数m的值.23.【答案】x≠﹣1【解析】【解答】解:要使分式有意义,需满意x+1≠0.即x≠﹣1.故答案为:x≠﹣1.【分析】依据分式的分母不能为0,建立不等式即可求解.24.【答案】 12【解析】【解答】解:原式=(3 )2﹣()2=18﹣6=12.故答案为:12.【分析】干脆利用平方差公式去括号,再依据二次根式的性质化简,最终利用有理数的减法计算得出答案.25.【答案】 5【解析】【解答】原式=2+2 +3−2 =5.故答案为5.【分析】敏捷运用完全平方公式进行求解.26.【答案】;x=-4【解析】【解答】解:∵ ,∴分式与的最简公分母是,方程,去分母得:,去括号得:,移项合并得:,变形得:,解得:x=2或-4,∵当x=2时,=0,当x=-4时,≠0,∴x=2是增根,∴方程的解为:x=-4.【分析】依据最简公分母的定义得出结果,再解分式方程,检验,得解.27.【答案】【解析】【解答】解:=== .故答案为.【分析】先将乘方绽开,然后用平方差公式计算即可.28.【答案】【解析】【解答】在函数中,分母不为0,则,即,故答案为:.【分析】在函数中,分母不为0,则x-3≠0,求出x的取值范围即可.29.【答案】【解析】【解答】解:由题意可知,第一行三个数的乘积为:,设其次行中间数为x ,则,解得,设第三行第一个数为y ,则,解得,∴2个空格的实数之积为.故答案为:.【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最终一行的三个数相等都是,即可求解.30.【答案】 -1【解析】【解答】∵分式的值不存在,∴x+1=0,解得:x=-1,故答案为:-1.【分析】依据分式无意义的条件列出关于x的方程,求出x的值即可.31.【答案】【解析】【解答】解:函数中:,解得:.故答案为:.【分析】干脆利用二次根式和分式有意义的条件列出不等式组求解即可.三、计算题32.【答案】解:原式,,.当时,原式【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.33.【答案】解:÷=÷=×=当x=+1,y=﹣1时原式==2﹣.【解析】【分析】依据分式四则运算依次和运算法则对原式进行化简÷ ,得到最简形式后,再将x=+1、y=﹣1代入求值即可.34.【答案】解:,,,;∵ ,所以,原式.【解析】【分析】干脆利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.35.【答案】解:原式== ,将代入得:原式=-4+3=-1,故答案为:-1.【解析】【分析】先依据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.36.【答案】(1)解:解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)解:原式=====,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.【解析】【分析】(1)分别求出每一个不等式的解集,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先依据分式的混合运算依次和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.37.【答案】解:原式为==== ,又∵m满意,即,将代入上式化简的结果,∴原式= .【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并依据m所满意的条件得出,将其代入化简后的公式,即可求得答案.38.【答案】解:当时,原式【解析】【分析】先依据分式的混合运算步骤进行化简,然后代入求值即可.39.【答案】解:时,原式=【解析】【分析】先利用分式的运算法则化简,然后代入计算即可.40.【答案】解:当上式【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.41.【答案】解:原式===﹣2﹣x.∵x≠1,x≠2,∴在0≤x≤2的范围内的整数选x=0.当x=0时,原式=﹣2﹣0=﹣2.【解析】【分析】先通分计算括号内异分母分式的减法,再将能分解因式的分子、分母分解因式,化除法为乘法进行约分化简,然后依据分式有意义的条件取x的值,代入求值即可.42.【答案】解:原式=÷( ﹣)=÷=·=,当x=﹣2时,原式===.【解析】【分析】先通分计算括号内异分母分式的减法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式,最终将x的值代入计算可得.43.【答案】(1)解:原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)解:原式====.【解析】【分析】(1)依据完全平方公式,平方差公式去括号,再合并同类项即可;(2)括号内先通分计算,将各个分式的分子、分母能分解因式的分别分解因式,然后变除为乘,进行约分即可.44.【答案】原式.【解析】【分析】先计算肯定值运算、特别角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.45.【答案】.【解析】【分析】依据负整指数幂的性质,特别角的三角函数值,肯定值,零指数幂的性质,干脆计算即可.46.【答案】(1)sin30°+ ﹣(3﹣)0+|﹣|=+4﹣1+=4;(2)3a2﹣48=3(a2﹣16)=3(a+4)(a﹣4).【解析】【分析】(1)先用特别角的三角函数值、零指数幂的性质、肯定值的性质、算术平方根的学问化简,然后计算即可;(2)先提取公因式3,再运用平方差公式分解因式即可.四、解答题47.【答案】.将x=4代入可得:原式= .【解析】【分析】先将代数式化简,再代入值求解即可.48.【答案】原式分式的分母不能为0解得:m不能为,0,3则选代入得:原式.【解析】【分析】先计算括号内的分式减法,再计算分式的除法,然后选一个使得分式有意义的x的值代入求值即可.五、综合题49.【答案】(1)原式(2)三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号(3)解:答案不唯一,如:最终结果应化为最简分式或整式;约分,通分时,应依据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【解析】【解答】(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号;故答案为:五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号;【分析】(1)先分别计算乘方,与括号内的加法,再计算乘法,再合并即可得到答案;(2)先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,依据同分母分式的加减法进行运算,留意最终的结果必为最简分式或整式.50.【答案】(1)===(2)∵ ,∴解得:将解集表示在数轴上如下:【解析】【分析】(1)依据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)依据新定义列出关于x的不等式,解不等式即可得.。
分式的中考试题及答案
分式的中考试题及答案1. 计算:(1/3)+(2/5)=解答:要计算这个分式的和,我们需要找到它们的最小公倍数作为分母。
最小公倍数为15,所以:(1/3)+(2/5)= (5/15)+(6/15)= 11/15答案:11/152. 计算:(4/7)-(3/5)=解答:同样的,我们需要找到这两个分式的最小公倍数作为分母。
最小公倍数为35,所以:(4/7)-(3/5)= (20/35)-(21/35)= -1/35答案:-1/353. 计算:(2/3)×(5/8)=解答:将这两个分式相乘,我们得到:(2/3)×(5/8)= 10/24答案:10/244. 计算:(7/8)÷(1/4)=解答:将除法转换为乘法的倒数,我们得到:(7/8)÷(1/4)=(7/8)×(4/1)= 28/8答案:28/85. 计算:(2/5)+(3/8)-(1/10)=解答:计算这个表达式时,我们首先需要找到三个分式的最小公倍数作为分母。
最小公倍数为40,所以:(2/5)+(3/8)-(1/10)= (16/40)+(15/40)-(4/40)= 27/40答案:27/406. 计算:(3/4)×(2/5)÷(2/3)=解答:将这个表达式转换为乘法,然后根据除法的倒数,我们得到:(3/4)×(2/5)÷(2/3)=(3/4)×(2/5)×(3/2)= 9/20答案:9/207. 计算:(3/7)-(2/3)÷(5/6)=解答:首先,我们需要计算(2/3)÷(5/6)。
将除法转换为乘法的倒数,我们得到(2/3)×(6/5)= 12/15。
然后我们计算(3/7)-(12/15):(3/7)-(12/15)= (45/105)-(84/105)= -39/105答案:-39/1058. 计算:(2/3)÷(4/5)+(1/2)×(3/4)=解答:首先计算两个乘法,然后计算除法,最后相加:(2/3)÷(4/5)+(1/2)×(3/4)=(2/3)×(5/4)+(1/2)×(3/4)=10/12+3/8=10/12+9/12=19/12答案:19/129. 简化:(8/12)÷(2/3)=解答:我们可以直接将这两个分式简化,得到:(8/12)÷(2/3)=(2/3)÷(2/3)=1/1答案:1/110. 简化:(6/9)+(9/12)-(3/4)=解答:将三个分式找到它们的最小公倍数,之后进行计算:(6/9)+(9/12)-(3/4)=(8/12)+(9/12)-(9/12)=8/12答案:8/12。
初中分式及分式方程100道计算题
初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1)$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)}$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2}$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x$j) $(x+y) \cdot \frac{x}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a})$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x}$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} +\frac{2b^2}{16}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1}$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2)$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x)$2.改写:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} \div (-2) \div (1) =\frac{-3b^2c^2a}{2a^2-6a+9-aa^2}$b) $\frac{(3-x)(x+1)}{(x-3)(3+x)} \cdot \frac{-(1-x)}{(1+x)^2} = \frac{(x-3)(x+1)(1-x)}{(3+x)(1+x)^2}$c) $\frac{4-b^2}{2+b} \div \frac{3a-9}{16a^2bc^2a} =\frac{-2b}{a(3a-9)}$d) $\frac{2x^2-6x+1}{4-4x+x^2} \div (x+3) \cdot 6 = \frac{-6x+18}{x-3}$e) $\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y^2-6y+9} \cdot 6 = \frac{2(y+1)}{(y-3)(y-1)}$f) $\frac{x-y}{x-3y} \div \frac{x^2-y^2}{x^2-6xy+9y^2} = \frac{y}{x-3y}$g) $\frac{a^2-2a+1}{a-1} \cdot \frac{a-2}{-(a-1)} = -(a-2)$h) $\frac{xy-x^2}{x-y} \div \frac{xy}{x^2} = x$i) $\frac{x}{x-2} - \frac{x}{x+2} \div 4x = \frac{2x^2-8x+1}{x(x-2)(x+2)}$j) $(x+y) \cdot \frac{x}{x-2} = \frac{x(x+y)}{x-2}$k) $\frac{3b^2}{16a} \div \frac{bc^2a}{2a^2} \cdot (-\frac{b}{2a}) = -\frac{3b^3c^2}{32a^3}$l) $\frac{a^2-6a+9}{3-a} \cdot \frac{x^2y}{yz-x} = -\frac{a-3}{y-xz} \cdot x^2y$m) $\frac{4-b^2}{2+b} \div \frac{3a-9}{a^2-6a+9} = \frac{-2b(a-3)}{(2+b)(a-3)^2}$n) $\frac{x^2y}{xz(-y)} \div \frac{-xy}{yz} = -\frac{z}{x}$o) $\frac{a^2+3}{a^2-1} - \frac{a-1}{a+1} + \frac{2b^2}{16} = \frac{4a^2b^2+2a^2+2b^2-2a}{16(a^2-1)}$p) $\frac{a-b}{a+b} - \frac{a+b}{a-b} = -\frac{4ab}{a^2-b^2}$q) $\frac{1}{1+3x} - \frac{1-x^2}{x+1} = \frac{-2x^3-3x^2-3x}{(1+3x)(x+1)(x-1)}$r) $x(1-\frac{1}{x}) + \frac{x^2-1}{x+1} = x+1$s) $\frac{3-x}{x-2} \div \frac{x+2-5}{x-2} = \frac{3-x}{x-3}$t) $\frac{(3x-x^3)(x-2)}{x-2} \div (x+2) = -(x-1)(3x-x^2)$u) $\frac{1}{x-y} + \frac{1}{xy} \cdot \frac{x+y}{x+y} \div (x^2-y^2) = \frac{2xy}{(x+y)(y-x)(x+y)}$v) $\frac{(x+1)}{2(x-2)} \cdot \frac{x-2}{x+2} \div (4x^2-x) = \frac{1}{2x(x-2)}$2.解方程⑴ $\dfrac{3x-2}{5x}=\dfrac{6}{x+2}$化简得:$3x^2+4x-8=0$,解得:$x=1$ 或 $x=-\dfrac{4}{3}$⑵ $\dfrac{x}{x-5}=\dfrac{x-2}{x-6}$化简得:$x^2-8x+12=0$,解得:$x=2$ 或 $x=6$⑶ $\dfrac{2-x}{x+1}=-2$化简得:$x^2+3x+4=0$,无实数解⑷ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑸ $\dfrac{1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$ 或 $x=4$⑹ $\dfrac{2x-4}{x-8}+\dfrac{x-5}{x-9}=\dfrac{x-8}{x-6}+\dfrac{x-6}{x-2}$化简得:$x=10$⑺ $\dfrac{2x-3}{2x-4}-\dfrac{1}{x-1}=\dfrac{2x+3}{x-3}$化简得:$x=-\dfrac{3}{2}$ 或 $x=4$⑻ $\dfrac{x-7}{x-1}+\dfrac{1}{x-2}=\dfrac{x-6}{x-2}+\dfrac{1}{x-2}$化简得:$x=3$ 或 $x=8$⑼ $\dfrac{x-1}{x-2}+3=\dfrac{x-2}{x-2}$化简得:$x=3$⑽ $\dfrac{2x-4}{x-3}-\dfrac{x-2}{x-1}=1$化简得:$x=3$ 或 $x=\dfrac{7}{3}$⑾ $\dfrac{1}{x-3}-\dfrac{1}{x-2}+1=\dfrac{3}{2-x}$化简得:$x=1$ 或 $x=4$⑿ $\dfrac{2}{x-3}=\dfrac{1}{x}$化简得:$x=6$⒀ $\dfrac{1}{x+3}+\dfrac{1}{x-3}-\dfrac{2}{x}=1$化简得:$x=2$ 或 $x=4$⒁ $\dfrac{x-1}{x+1}-\dfrac{x+2}{x-1}=\dfrac{x+3}{x+4}-\dfrac{x+4}{x+3}$化简得:$x=-\dfrac{7}{2}$⒂ $\dfrac{3}{x+1}-\dfrac{5}{x+3}=\dfrac{1}{x+3}-\dfrac{1}{x+1}$化简得:$x=-\dfrac{1}{2}$ 或 $x=-\dfrac{7}{3}$3.已知 $x+y=-4$,$xy=-12$,求$\dfrac{y+1}{x+1}+\dfrac{x+1}{y+1}$ 的值。
中考数学—分式的真题汇编及解析
一、选择题1.已知12x y-=3,分式4322x xy y x xy y +-+-的值为( )A .32B .0C .23D .942.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=3.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 4.下列分式:24a 5b c ,23c 4a b ,25b2ac 中,最简公分母是 A .5abc B .2225a b cC .22220a b cD .22240a b c5.分式:22x 4- ,x 42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-6.分式a x ,22x y x y +-,2121a a a --+,+-x y x y 中,最简分式有( ). A .1个 B .2个C .3个D .4个7.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的138.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 9.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a10.函数1y x =-中自变量x 的取值范围是( ) A .x ≥﹣2B .x ≥﹣2且x ≠1C .x ≠1D .x ≥﹣2或x ≠111.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米12.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.分式b ax ,3c bx -,35a cx 的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 514.下列各式变形正确的是()A .x y x y x y x y-++=---B .22a b a bc d c d--=++ C .0.20.03230.40.0545a b a bc d c d --=++D .a b b ab c c b--=-- 15.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .16.已知m ﹣1m 7,则1m+m 的值为( ) A .±11B 11C .±7D .1117.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事2(21)12a a +=--,则12a ≥-; 181822a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个18.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1919.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯ B .90.710⨯C .8710-⨯D .710⨯820.分式212xy 和214x y的最简公分母是( ) A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 321.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1522.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-23.下列运算错误的是( )A 4=B .12100-=C 3=-D 2=24.计算()22ab ---的结果是( )A .42b a-B .42b aC .24a b -D .24a b25.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一 B .二 C .三 D .四【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】 解:∵12x y-=3, ∴2x-y=-3xy , ∴原式=()()2232x y xyx y xy-+-+,=633xy xy xy xy -+-+, =32xy xy--, =32,【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.2.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.3.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.4.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b 2ac 的最简公分母是:22220a b c . 故选C.5.D解析:D 【解析】∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x--、的最简公分母是:2(2)(2)x x +-.6.B解析:B 【解析】试题解析:a x ,+-x yx y是最简分式,221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.7.B解析:B 【解析】解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y +,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .8.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.9.D解析:D【解析】解:A .原式=1,故A 错误;B .x 3与x 4不是同类项,不能进行合并,故B 错误;C .原式=a 4b 6,故C 错误;D .正确. 故选D .10.B解析:B 【分析】根据二次根式、分式有意义的条件可得关于x 的不等式组,解不等式组即可得. 【详解】解:由题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1,故选B.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D【解析】A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.C解析:C【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积.【详解】最简公分母为3⨯5⨯a⨯b⨯c⨯x3=15abcx3故答案选:C.【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.14.D解析:D【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案.【详解】A、原式x yx y-=+,所以A选项错误;B、原式=2a bc d-+(),所以B选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.B解析:B【解析】【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【详解】,变形得:f=.故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=. 故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.17.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.18.D解析:D 【解析】 【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可. 【详解】(16)0×3﹣2=11199⨯=, 故选D . 【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.19.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为8710-⨯.故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.21.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x xx y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.22.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.B解析:B 【解析】【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可.【详解】A 、∵42=16=4,故本选项正确;B 、12100-110,故本选项错误;C 、∵(-3)3=-273=-,故本选项正确;D =2,故本选项正确.故选B .【点睛】本题考查的是立方根及算术平方根,熟知立方根及算术平方根的定义是解答此题的关键.24.B解析:B【解析】【分析】根据负整数指数幂和幂的乘方和积的乘方解答.【详解】原式=(-1)-2a -2b 4=21a •b 4 =42b a. 故选B .【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.A解析:A【解析】【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限.【详解】解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号,可知三个都是负数或两正数,一个是负数,当三个都是负数时:若x y abc a-=,则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立,即a ,b ,c 不能同时是负数,所以,P (ab ,bc )不可能在第一象限.故选:A.【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.。
初中分式及分式方程100道计算题
初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$b) $\frac{(x^2+2x-3)(9-x^2)}{(3-x)^2} \cdot \frac{-(1-x)^2}{x+2}$c) $\frac{1}{2x}-\frac{1}{x+y} \cdot \frac{x+y}{2x-x-y}$2.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3} \cdot \frac{-6}{3-x}$3.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$4.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$5.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$6.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$7.$\frac{a^2-2a+1}{a-1} \cdot \frac{-a+2}{a+1}$8.$\frac{xy-x^2}{x-y} \div \frac{x}{y}$9.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$10.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$11.$\frac{xy-x^2}{x-y} \cdot \frac{1}{xy}$12.$(x+y) \cdot \frac{x-1}{x+1}$13.$\frac{1}{x(1-\frac{1}{x})}+\frac{x^2-1}{x^2-1}$14.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$15.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$16.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$17.$\frac{x^2y}{324} \div \frac{-y(x-1)}{xz} \cdot \frac{-x}{yz}$18.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$19.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$20.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$21.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$22.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3}\cdot \frac{-6}{3-x}$23.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$24.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$25.$\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$26.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$27.$\frac{x}{x-3} \cdot \frac{x^2-4}{x^2} \div (1-\frac{1}{x} - \frac{1}{x-1})$28.$\frac{a+3}{a^2-1} - \frac{a-1}{a+1} + 1$29.$\frac{2b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$30.$\frac{a-b}{a+b}$31.$\frac{1}{1+x} - \frac{1-x^2}{x+1}$32.$\frac{3x}{x^3-2x} - \frac{x+2}{x^2-4}$33.$\frac{x(1-\frac{1}{x})}{x+1} + \frac{x^2-1}{x-1}$34.$\frac{3x}{x^2-4} - \frac{x+2}{x^2-4}$35.$\frac{3-x}{x-2} \div (\frac{x+2}{x-2}-\frac{5}{x-2})$36.$\frac{1}{x} + \frac{1}{y} \div \frac{x-y}{x^2-y^2}$37.$\frac{2(x+1)}{x^2-xx-2x+1} \cdot \frac{x-y}{2}$38.$\frac{1}{x} - \frac{1}{x^2-1} + \frac{1}{x^2-1} \cdot \frac{x}{x+1}$39.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$2.解方程⑴ $\frac{3x-2}{5x}=\frac{4x-4}{x^2-2x}$将分式化简得到 $3(x-2)(x+1)=(4x-4)5$化简后得到 $3x^2-7x-6=0$,解得 $x=3$ 或 $x=-\frac{2}{3}$。
分式中考真题精选
分式中考真题精选一、选择题1.(2011浙江金华,7,3分)计算1a-1 – a a-1的结果为()A . 1+a a -1B . -a a-1C . -1D .1-a 2. (2011山东威海,8,3分)计算:211(1)1m m m+÷⋅--的结果是( ) A .221m m --- B .221m m -+-C .221m m --D .21m - 3.(2011西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+ B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=-4.(2011佳木斯)关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定 5. (2011江苏苏州,7,3分)已知2111=-b a ,则ba ab -的值是 A .21 B .-21C .2D .-2 6. ( 2011重庆江津, 2,4分)下列式子是分式的是( )A .2xB .1+x xC .y x +2D .3x 7. (2011江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于 A. 23 B .3 C .6 D .38. (2011山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x1)的结果是() A .x 1 B .x -1 C .x 1-x D .1-x x 二、填空题1. (2011浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2011山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷x x 2-4的结果为_________. 3.(2011烟台)请选择一组,a b 的值,写出一个关于x 的形如2a b x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________.4.(2011达州)符号“ab c d ”称为二阶行列式,规定它的运算法则为:ab ad bc cd =-,请你根据上述规定求出下列等式中x 的值.2111111xx =-- 三、解答题 1. (2011安徽,15,8分)先化简,再求值:12112---x x ,其中x =-2.2. (2011四川南充市,15,6分)先化简,再求值:21x x -(xx 1--2),其中x =2.3. (2011湖南邵阳,18,8分)已知111x =-,求211x x +--的值.4.(2011江苏泰州,19(2),4分)a b a b a b b a +⋅+)2﹢﹣(5. (2011四川广安,22,8分)先化简22()5525x x x x x x -÷---,然后从不等组23212x x --⎧⎨⎩ ≤的解集中,选取一个你认为符合题意....的x 的值代入求值.6. (2011广东肇庆,19,7分) 先化简,再求值:)211(342--⋅--a a a ,其中3-=a . 7.(2011枣庄)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.答案一.C B BCDBAB二.1. 3x ≠ 2. x -6 3.略4. 解:∵ab ad bc cd =- ∴2111111x x =--可化为 21111x x -=-- 21111x x +=--, 2+1=x-1, x=4 经检验x=4是21111x x -=--的解. ∴求得x=4三.1. 解:原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x . 2. 解:方法一:21(2)1x x x x ---=221211x x x x x x -⋅-⋅--=12(1)(1)(1)(1)x x x x x x x x -⋅-+-+- =121(1)(1)x x x x -++-=12(1)(1)(1)(1)x x x x x x --+-+-=12(1)(1)x x x x --+-=121(1)(1)(1)(1)x x x x x x x ----=+-+- =(1)(1)(1)x x x -++-=11x -- 当x =2时,11x --=121--=-1 方法二:21(2)1x x x x ---=212()1x x x x x x ---=2121x x x x x --⋅-=1(1)(1)x x x x x --⋅+- =(1)(1)(1)x x x x x -+⋅+-=11x -- 当x =2时,11x --=121--=-1. 3. 解:∵111x =-,∴x -1=1. 故原式=2+1=34. 原式=a b a b a b b a b a b a +⋅++++-]))(([2=a b a b a b b a +⋅++-222=ab a b a a +⋅+2=a 5. 解:原式=2(5)(5)52x x x x x+-⨯- =5x +解不等组得:-5≤x <6选取的数字不为5,-5,0即可(答案不唯一)6. 解: )211(342--⋅--a a a =)2122(3)2)(2(----⋅--+a a a a a a =233)2)(2(--⋅--+a a a a a =2+a当3-=a 时,原式=2+a =123-=+-7. 解:设规定日期为x 天.由题意,得 163=++x x x . 解之,得 x =6.经检验,x =6是原方程的根.显然,方案(2)不符合要求;方案(1):1.2×6=7.2(万元);方案(3):1.2×3+0.5×6=6.6(万元).因为7.2>6.6,所以在不耽误工期的前提下,选第三种施工方案最节省工程款.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考《分式》计算题精选
1、(1+)÷
2、(+)(x 2﹣1)
3、 (a 2+3a )÷
4、(a 2b +ab )÷
5、﹣
6、÷
7、 (+2)(x ﹣2)+(x ﹣1)2 8、÷﹣1
9、﹣÷
10、24
24
4422223-+-÷+-+-x x x x x x x x
11、化简求值:
(),其中x =. 12、先化简,再求值:1
)11(22
-⋅+a a a ,其中3=a .
13、先化简,再求值:(﹣)(x﹣1),其中x=2.
14、先化简,在求值:(+)÷,其中x=2.
15、先化简,再求值:﹣3(x﹣1),其中x=2.
16、先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.
17、先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.
18、解分式方程:+=1.19、=1.20、.21、
22、+=1 23、
24、25、
26.、27、
28、某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天。