计量经济学多元线性回归
计量经济学多元线性回归
调整过的R2(The Adjusted R-squared)
因此, R2增加并不意味着加入新的变量一定 会提高模型拟合度。
调整过的R2是R2一个修正版本,当加入新的 解释变量,调整过的R2不一定增加。
R 21(SS /n (R (k 1 ) )1n(k 1 )SSR
SS /n (T 1 )
定义:
y i y 2 to su to a s m flqS ua S总 rT es平
y ˆi y 2exp slu o as m ifq nu e Sd a Sr解 E es释 u ˆi2 ressiu d os m u fq au S l a SrR 残 es 差平
SST= SSE + SSR
3
重新定义变量
为什么我们想这样做? 数据测度单位变换经常被用于减少被估参数小数
点后的零的个数,这样结果更好看一些。 既然这样做主要为了好看,我们希望本质的东西
不改变。
4
重新定义变量:一个例子
以下模型反映了婴儿出生体重与孕妇吸烟量和家 庭收入之间的关系:
(1) b w g h t ˆ 0 ˆ 1 c ig s ˆ 2 fa m in c
explog考虑如果我们想知道时的百分比变化我们不能只报告因为所以22含二次式的模型u的模型我们不能单独将b解释为关于xy变化的度量我们需要将b如果感兴趣的是给定x的初始值和变动预测y的变化那么可以直接使用1
课堂提纲
重新定义变量的影响
估计系数 R 平方 t 统计量
函数形式
对数函数形式 含二次式的模型 含交叉项的模型
24
wage
7.37
3.73
24.4
exper
25
对含二次式模型的进一步讨论
计量经济学课程第4章(多元回归分析)
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS
N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1
2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2
2,
0
HA :
2
2 0
(整理)计量经济学 第三章 多元线性回归与最小二乘估计
第三章 多元线性回归与最小二乘估计3.1 假定条件、最小二乘估计量和高斯—马尔可夫定理1、多元线性回归模型:y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t (3.1) 其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。
对经济问题的实际意义:y t 与x t j 存在线性关系,x t j , j = 0, 1, … , k - 1, 是y t 的重要解释变量。
u t 代表众多影响y t 变化的微小因素。
使y t 的变化偏离了E( y t ) = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 决定的k 维空间平面。
当给定一个样本(y t , x t 1, x t 2 ,…, x t k -1), t = 1, 2, …, T 时, 上述模型表示为 y 1 = β0 +β1x 11 + β2x 12 +…+ βk - 1x 1 k -1 + u 1,y 2 = β0 +β1x 21 + β2x 22 +…+ βk - 1x 2 k -1 + u 2, (3.2) ………..y T = β0 +β1x T 1 + β2x T 2 +…+ βk - 1x T k -1 + u T经济意义:x t j 是y t 的重要解释变量。
代数意义:y t 与x t j 存在线性关系。
几何意义:y t 表示一个多维平面。
此时y t 与x t i 已知,βj 与 u t 未知。
)1(21)1(110)(111222111111)1(21111⨯⨯-⨯---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡T T k k k T k T TjT k j k jT T u u u x x x x x x x x x y y yβββ (3.3) Y = X β + u (3.4)2假定条件为保证得到最优估计量,回归模型(3.4)应满足如下假定条件。
计量经济学第三章多元线性回归模型
⒈零均值假定
E( i) 0 i 1,2,, n
E(U) 0
⒉同方差和无自相关假定
COV (i , j ) E(i E(i ))( j E( j ))
2 i j
E(i
j
)
0
i j
VAR(U ) E(U E(U))(U E(U))
Yˆi ˆ1 ˆ2 X 2i ˆK X Ki
i 1,2,, n
Yi Yˆi ei
Yˆi
ˆ j
E(Y
j
X 2i ,,
X Ki
)
注意:β1一般情况下没有明确的经济含义,但一般 总包含在回归模型中。
3.1多元线性回归模型及古典假定
二、多元线性回归模型的矩阵形式
总体回归函数描述了一个被解释变量与多个解释
变量之间的线性关系,线性是针对参数而言的。
其中, j 为偏回归系数,表示:在控制其他变量 不变的条件下,第j个解释变量的单位变动对被解释 变量平均值的影响。
j
Y X j(保持其他变量不变)
Y X j
3.1多元线性回归模型及古典假定
样本回归函数:
(XX)1 X 2ΙX(XX)1 2 (XX)1 XX(XX)1 2 (XX)1
i 1
ei 0
N
( ei2 )
i 1
ˆ2
N
2
N i 1
(Yi
ˆ1
ˆ2 X 2i
ˆK
X Ki ) X 2i
2
ei X 2i 0
偏 导
第三章多元线性回归模型(计量经济学,南京审计学院)
Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I
由
可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt
计量经济学-多元线性回归模型
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
计量经济学(庞浩)第三章-多元线性回归模型(1)
矩阵X的秩为K(注意X为n行K列)。
Ran(X)= k
Rak(X'X)=k
即 (X'X) 可逆 假定6:正态性假定
ui ~ N (0, 2 )
u ~ N (0, 2I)
12
第二节 多元线性回归模型的估计
一、普通最小二乘法(OLS)
原则:寻求剩余平方和最小的参数估计式 min : ei2 (Yi Yˆi )2
1
X 22
Xk
2
2
u2
Yn
1 X 2n
X
kn
k
un
Y
X
βu
n 1
nk
k 1 n1
9
9
矩阵表示方式
总体回归函数 E(Y) = Xβ 或 Y = Xβ + u
样本回归函数 Yˆ = Xβˆ 或 Y = Xβˆ + e
其中: Y,Yˆ,u,e 都是有n个元素的列向量
β, βˆ 是有k 个 元素的列向量
多重可决系数:在多元回归模型中,由各个解释
变量联合起来解释了的Y的变差,在Y的总变差中占
的比重,用 R2表示 与简单线性回归中可决系数 r的2 区别只是 不Yˆi 同
多元回归中
Yˆi ˆ1 ˆ2 X2i ˆ3 X3i ˆk Xki
多重可决系数可表示为
R2 ESS TSS
(Yˆi Y )2 (Yi Y )2
0
2
X 2i
Yi
(ˆ1
ˆ2
X 2i
ˆ3
X 3i
ˆki
X ki )
0
(i 1, 2, n)
( j 1, 2, n)
ei 0
X2iei 0
2
计量经济学第二章(第二部分)
其中,有k个解释变量;k+1个回归参数
3
计量经济学 第二章B
同 上
(2)矩阵形式: Y XB N Y1 Y2 Y ... Y n 1 1 X ... 1 0 u1 1 u2 , B , N ... ... u n 1 k (k 1) 1 n n 1 X 11 X 12 ... X 1n X 21 X 22 ... X 2n ... ... ... ... X k1 X k2 ... X kn n (k 1)
2
(2)当 R
2
k n -1
时,
R
2
<0 ,此时, 使
2
用 R 将失去意义。因此, R 只适
2
用于Y与解释变量整体相关程度较的
情况。
34
计量经济学 第二章B
四、回归方程的显著性检验
(1) 提出原假设 (2) 构造统计量 H 0 : 1 2 ... k 0 F ESS/k RSS/n (3) 对于给定的显著性水平 (4)判定方程的显著性, 若 F F , 则拒绝原假设 若 F F ,则接受原假设 H 0,即模型的线性关系 F 检验; - k -1 ~ F(k, n - k - 1) ( 在 H 0 成立时) F
不管其质量的好坏,而所要求的样本容量
的下限。
20
计量经济学 第二章B
同 上
ˆ 由 B ( X X)
-1
ˆ X Y 中看到,要使 B
存在,
必须保证(XˊX)-1存在,因此,必须满
足|XˊX|≠0 ,即XˊX为满秩矩阵,而
计量经济学-3多元线性回归模型
2020/12/8
计量经济学-3多元线性回归模型
•第一节 概念和基本假定
•一、基本概念: • 设某经济变量Y 与P个解释变量:X1,X2,…,XP存在线性依
存关系。 • 1.总体回归模型:
•其中0为常数项, 1 ~ P 为解释变量X1 ~ XP 的系数,u为随机扰动项。 • 总体回归函数PRF给出的是给定解释变量X1 ~ XP 的值时,Y的期 望值:E ( Y | X1,X2,…,XP )。 • 假定有n组观测值,则可写成矩阵形式:
计量经济学-3多元线性回归模型
•2.样本回归模型的SRF
计量经济学-3多元线性回归模型
•二、基本假定: • 1、u零均值。所有的ui均值为0,E(ui)=0。 • 2、u同方差。Var(ui)=δ2,i=1,2,…,n
计量经济学-3多元线性回归模型
•
计量经济学-3多元线性回归模型
•
•第二节 参数的最小二乘估 计
•五、预测
•(一)点预测 •点预测的两种解释:
计量经济学-3多元线性回归模型
•(二)区间预测
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•例5,在例1中,若X01=10,X02=10,求总体均值E(Y0|X0) 和总体个别值Y0的区间预测。
•
Yi=β0+β1Xi1+β2Xi2+ui
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•三、最小二乘估计的性质
计量经济学-3多元线性回归模型
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
计量经济学实验报告(多元线性回归 自相关 )
计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。
它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。
本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。
2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。
例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。
多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。
例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。
接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。
在实际的研究中,我们需要对多元线性回归模型进行评价。
其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。
$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。
3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。
但实际上,各个误差项之间可能会互相影响,产生自相关性。
例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。
我们可以通过自相关函数来研究误差项之间的相关性。
自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。
其中,$l$ 称为阶数。
自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。
多元线性回归模型计量经济学
多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。
计量经济学-多元线性回归模型
e e ˆ n k 1 n k 12e i2 3-21
*二、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
易知
Yi ~ N ( X i β , 2 )
Y的随机抽取的n组样本观测值的联合概率 ˆ, L (β 2 ) P (Y1 , Y2 , , Yn )
解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
3-14
正规方程组的矩阵形式
n X 1i X ki
X X
1i 2 1i
X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
ˆ 1 ˆ ˆ 2 β ˆ k
在离差形式下,参数的最小二乘估计结果为
ˆ β ( x x) 1 x Y
ˆ ˆ ˆ 0 Y 1 X 1 k X k
3-20
随机误差项的方差2的无偏估计
可以证明:随机误差项 的方差的无偏估计量为:
第三章
多元线性回归模型
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
3-1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
计量经济学(2012B)(第二章多元线性回归)详解
2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2
(ˆ
n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受
,
0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551
计量经济学-多元线性回归分析
yi ˆ1 x1i ˆ2 x2i ˆk xki ei 其矩阵形式为
i=1,2…n
y xβˆ e
其中 :
y1
y
y2
yn
x11
x
x12
x 21
x 22
xk1 xk2
x1n x2n xkn
ˆ1
βˆ
ˆ 2
ˆk
在离差形式下,参数旳最小二乘估计成果为
模型中解释变量旳数目为(k)
模型:Yt 1 2t X 2t k X kt ut
也被称为总体回归函数旳随机体现形式。它 旳 非随机体现式为:
E(Yi | X 2i , X 3i , X ki ) 1 2 X 2i 3 X 3i k X ki
方程表达:各变量X值固定时Y旳平均响应。
0.17033
2.652155 0.0157
R-squared
0.9954 Mean dependent var
928.4909
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟随机误差项旳方差旳无偏估计
能够证明,随机误差项旳方差旳无偏估计量为
ˆ 2 ei2 ee
nk nk
四、参数估计量旳性质
在满足基本假设旳情况下,其构造参数旳一般
最小二乘估计、最大或然估计及矩估计仍具有: 线性性、无偏性、有效性。
ˆ1
Байду номын сангаас
Q0
ˆ2
Q
计量经济学第三章第3节多元线性回归模型的显著性检验
人均国内生 产总值 1602.3 1727.2 1949.8 2187.9 2436.1
1983
1984 1985
572.8
635.6 716
931.4
1059.2 1185.2
1995
1996 1997
1213.1
1322.8 1380.9
2663.7
2889.1 3111.9
1986 1987
1988 1989
(2) 当k =0时,即只有截距项式时,R = R (3) 当k 0时,R R
2 2 2 2 2
2 k (4) R 会出现负值,当R < 时,会出现 R <0的情况 n-1 2
此时,将理解为R =0
2
(5)对调整后拟合优度的补充说明:
RSS n k 1 n 1 RSS R 1 1 TSS n 1 n k 1 TSS
第三节 显著性检验及预测
一、拟合优度检验
二、变量的显著性检验 三、回归方程的显著性检验
四、利用方程进行预测
一、多元线性回归模型的统计检验
<一> 拟合优度
• 类似一元回归,多元回归同样可以用拟合优度R2度量样本 回归方程拟合样本观察值的程度。R2越接近1,拟合的越好。
(1)总离差平方和分解 设多元线性回归模型为:
(6) 修正的拟合优度总结
• 解释变量的增加,有可能导致样本回归方程与 样本观察值拟合程度的提高,也会由于变量的个数 的增加导致拟合优度虚假的提高。 • 调整后的拟合优度,是剔除由于解释变量个数 增加导致拟合数值虚假提高,而拟合程度并没有实 际提高的部分。 由此可见,修正的拟合优度 R 比一般意义的拟合 优度 R 2 更准确的反映了解释变量对被解释变量的影响 程度。因此在一般情况下修正拟合优度 R 比 R 应用 更广。
计量经济学第三章第3节多元线性回归模型的显著性检验
当增加一个对被解释变量有较大影响的解释变量时, 残差平方和减小的比n-k-1 减小的更显著,拟合优度 就增大,这时就可以考虑将该变量放进模型。 如果增加一个对被解释变量没有多大影响的解释变量, 残差平方和减小没有n-k-1减小的显著,拟合优度会减 小,其说明模型中不应该引入这个不重要的解释变量, 可以将其剔除。
在对话框中输入:
y c x y(-1)
y c x y(-1) y(-2)
字母之间用空格分隔。 注:滞后变量不需重新形成新的时间序列,软件 自动运算实现,k期滞后变量,用y(-k)表示。
• 使用k期滞后变量,数据将损失k个样本观察值, 例如:
序号 2000 2001 2002 2003 2004 2005 2006 2007 2008 y 3 4 5 6 7 8 9 10 11 Y(-1) Y(-2) Y(-3)
2
2
2
*赤池信息准则和施瓦茨准则
• 为了比较所含解释变量个数不同的多元回归模型的 拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) e e 2( k 1) AIC ln n n 施瓦茨准则(Schwarz criterion,SC)
一元、二元模型的系数均大于0,符合经济意义,三元模型 系数的符号与经济意义不符。 用一元回归模型的预测值是1758.7,二元回归模型的预测值 是1767.4,2001年的实际值是1782.2。一元、二元模型预测 的绝对误差分别是23.5、14.8。
3) 三个模型的拟合优度与残差
二元:R2 =0.9954,E2 ei2 13405 三元:R2 =0.9957,E3 ei2 9707
746.5 788.3
计量经济学复习笔记(四):多元线性回归
计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。
我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。
但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。
另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。
1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。
从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。
⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。
Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。
计量经济学多元线性回归模型及参数估计
-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
2.多元线性回归模型的基本假定(矩阵形式)
V
ar
Cov( N
)
E
N
E(N
)N
E(
N
)
E(
NN
)
1
E
n2 1
2
12
n
E
2 1
n1
12 22
n2
1n
2n
n2
2
0
0
0
2
0
2
I
0
0
2
2.多元线性回归模型的基本假定(矩阵形式)
E(X
N )
E
1 X 11
ei 0 X i1ei 0 X i2ei 0
X ik ei 0
(*) (*)或(**)是多 元线性回归模型正
(**) 规方程组的另一种 写法。
离差形式的样本回归方程
由于
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik
[Yi (ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik )] 0
????eemm??所以有???eem??mnnee???ee?????????????????????????????????????????????nnnnnnnnmmmmmmmmme??????????????2121222211121121????????????????????????????????????????nnnnnnnnnnmmmmmmmmme?????????????????21221122221121221111因为xxxxim?????1为对称等幂矩阵即mm??mmmm???2????????nnnnnnnnnnmmmmmmmmme?????????????????????????????22112222211211221111??nnnnnmmmememem??????????22112222222111?????1212122??????????????kntrtrtrmtr????????xxxxixxxxi其中符号tr表示矩阵的迹其定义为矩阵主对角线元素的和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低碳农业发展影响因素分析——以新疆南疆五地州为例学生姓名方芳学号1075717008所属学院经济与管理学院专业农村与区域发展塔里木大学教务处制目录1 引言 (1)2 数据来源和研究方法 (1)2.1数据来源 (1)2.2研究方法 (2)3 模型检验与结果 (3)3.1初始模型计量 (3)3.2检验 (3)4 结论与建议 (4)5 参考文献 (4)低碳农业发展影响因素分析--以新疆南疆五地州为例方芳摘要:全球变暖问题引起世界各国的广泛关注,这一变化使得自然灾害频发,甚至危及人类安全,因此解决这一问题迫在眉睫。
通过对新疆南疆五地州的农业总产值与化肥施用量、农用机械总动力及农作物总播种面积进行回归分析后,发现化肥施用量对农作物的总产值影响极大,是其主要的制约因素。
要发展低碳农业应转变农业生产方式,实施保护性耕作;应推广施肥新技术,提高化肥利用率;应改进装置,利用新技术生产化肥;发展生态农业,实现经济循环发展。
关键字:低碳农业影响因素回归分析1 引言近年来气候变化所导致的高温热潮、暴雨连连、旱灾、沙尘暴频发事件的概率持续增加,CO2是造成该现象的源头之一,因此,发展低碳经济、发展节能减排成为全球关注的热点。
2014 年《中美气候变化联合声明》提出我国将于2030 年左右达到碳排放峰值的庄严承诺,2015 年12 月12 日,195个缔约方在巴黎达成了新的全球气候协议———《巴黎协议》,提出努力将气温升幅限制在1.5℃内的目标。
农业碳排放量介于电热生产和尾气之间,成为第二大排放源,占我国碳排放总量的17%。
新疆位于亚欧大陆腹地,地处中国西北边陲,是中国面最大、交界邻国最多、陆地边境线最长的省区,肩负着与重要世界经济资源大国沿边开放的重任。
同时,新疆作为我国重要的种植业和畜牧业基地,以8%的绿洲面积承载了90%以上的人口、耕地和生产总值,绿色生态压力相当严峻。
新疆南疆位于天山以南的塔里木盆地 ,四周高山环抱。
在行政区划上包括巴音郭楞、阿克苏、喀什、克孜勒苏、和田等五地州及生产建设兵团的四个农业师。
塔里木河是我国最大的内陆河,它由西向东1321km,流域覆盖新疆南部地区,面积102万km2,人口825.7万 ,分别占新疆自治区的61%和 47%,是我国重要的棉花基地。
冉锦成、苏洋等人研究表明,南疆各地 (州,市) 区域差异明显,喀什地区属碳排放量、碳排放强度“双高”型地区,因此,通过对农业产值与化肥施用量、机械总动力以及农作物播种面积的回归分析,试图找到影响低碳农业发展的主要因素,并提出相关的建议,促进农业实现低碳生产。
2 数据来源和研究方法2.1数据来源本文选取的是新疆2006--2016年的农业生产数据,其中包括:农业总产值(亿)Y,化肥施用量(万吨)(X1)、农用机械总动力(万千瓦)(X2)、农作物总播种面积(万公顷)(X3),数据来源于《中国统计年鉴》和《新疆统计年鉴》(2006--2016),数据见表1。
表1 新疆统计年鉴2006-2016样本数据图1 样本数据折线图其中, Y ——农业总产值(亿),X1——化肥施用量(万吨),X2——农用机械总动力(万千瓦),X3——农作物总播种面积(万公顷)。
从表1可以看出南疆五地州的农业总产值从2005年之2015年呈现逐年增长的趋势,年平均增长率为26.15%,尤其是从2011年开始出现快速增长的趋势,2010年至2014年南疆五地州的农业总产值增加381亿元,年平均增长率为20.83%。
2015年呈现稍微下降趋势,2015年比2014年农业总产值减少60.75亿。
化肥施用量呈现平稳上升趋势,年平均增加率为12.76%,不难看出随着化肥施用量的增加,农业总产值也在呈现出上升的趋势。
农用机械总动力上升趋势最为明显,由2005年360.7693×104kw增加到2015年的1051.4138×104kw,增加了690.6445×104kw,年平均增长率为19.14%,由此看出农业机械总动力的提升对农业生产总值有很大的推动作用。
农作物总播种面积从2005年为147.043×104khm2增加到2015年277.964khm2,种植面积增加了130.921khm2,年平均增长率为8.90%,农作物的总播种面积在逐年平稳增加,这使得农业总产值逐年增加。
总体来看,波动最大的是农用机械总动力,增长趋势基本与农业总产值相一致,波动最小的是化肥的施用量。
2.2研究方法本文选取化肥施用量、农用机械总动力以及农作物总播种面积作为解释变量,对农业总产值进行回归分析,找出对农业总产值影响最为显著的因素,本文应用的模型如下:Y=β0+β1X 1+β2X 2+β3X 3+ε3 模型检验与结果3.1初始模型计量运用普通最小二乘法(OLS 法),利用Eviews 对初始模型对Y=β0+ β1X 1+ β2X 2+ β3X 3+ε进行估计,计算结果如下:表2 模型检验表所以可以得到回归方程为:Y=-146.99+9.94X 1+0.491X 2-1.76X 3Se(c) (3.784) (0.258) (0.926) T (2.626) (1.904) (-1.905) R 2=0.982 F=127.8683.2检验经济意义检验模型估计结果说明,在假定其他量不变的情况下,农业总产值每增长1亿元,化肥施用量增加9.94×104t,农用机械总动力增加0.491×104kw,农业总播种面积减少1.76khm2。
统计检验拟合优度:由检验结果可得到R 2=0.982,修正的可决系数2R =0.974,这说明模型对样本的拟合很好。
F 检验:在5%的显著性水平下,在F 分布表中查出自由度为k-1=3和n-k=10的临界值F a (3,10)=3.71,由于F=127.868>F a (3,10)=3.71,则应拒绝原假设,说明回归方程显著, 即“化肥施用量”、“农用机械总动力”、“农作物总播种面积”这几个变量联合起来对“农业总产值”有显著性影响。
t 检验:给定显著性水平为5%,查得t 分布表得自由度205.0t (n-k )=7的临界值为2.365,说明“化肥施用量”对“农业总产值”有显著性影响,给定显著性水平为10%,查得t 分布表得自由度210.0t (n-k )=7的临界值为1.895,说明“化肥施用量”、“农用机械总动力”、“农作物总播种面积”这几个变量对“农业总产值”均有显著性影响。
Coefficient Std. Error t-Statistic Prob. C -146.9948 86.70483 -1.695347 0.1338 X1 9.936301 3.784249 2.6257 0.0341 X2 0.491613 0.25825 1.903637 0.0987 X3 -1.764502 0.926141-1.905220.0984 R-squared 0.982079 Mean dependent var 503.9753 Adjusted R-squared 0.974399 S.D. dependent var225.6464 S.E. of regression 36.10447 Akaike infocriterion 10.286 Sum squared resid 9124.727 Schwarz criterion 10.43069 Log likelihood -52.57299 Hannan-Quinncriter.10.19479 F-statistic 127.8675 Durbin-Watson stat1.969476Prob(F-statistic)0.00004 结论与建议据最终的模型可知,化肥施用量对农业产值的影响程度最大。
化肥是为农业服务的,我国是世界上化肥消耗量最大的国家。
化肥的需求量巨大,因此农业要作战略性调整,化肥工业应该及时作相应的调整。
因为我国主要是用煤来生产合成氨(如果制成尿素)的,而每吨氨约要排放3.4吨二氧化碳,这仅仅是在化肥的生产过程中释放的CO2。
而施肥不当也会加剧温室效应,土壤本身储存着大量的有机碳,不仅是土壤质量和功能的核心,而且有利于作物的生长。
但由于化肥的大量施用,加速了农田土壤中有碳的矿化,进而向大气中排放了大量的二氧化碳和甲烷等温室气体。
因此,化肥的施用使得农业产值单位GDP碳排量增加,农业产值的背后是不可再生能源的间接消耗和CO2的大量排放,因此,高碳农业向低碳农业转变已成为不可避免的选择。
针对影响低碳农业发展的制约因素,提出以下几点建议:1.转变农业生产方式,实施保护性耕作实施保护性耕作具有防治农田扬尘和水土流失、蓄水保墒、培肥地力、节本增效、减少秸秆焚烧和温室气体排放、促进农业可持续发展等作用。
数据表明:与传统耕作比较,保护性耕作可减少工序3~ 4道,省工5~ 8个/亩,节省柴油约3.2公升/亩;免耕比翻耕减少风蚀量31.76% ,提高土壤有机质0.03% ,减少化肥投入量10%左右,比焚烧秸秆减少30%的二氧化碳排放量。
据初步统计, 2008年我国实施保护性耕作面积4297.85万亩,节省用工约2.1~3.4亿个、新增粮食56~ 168万吨、节本增收总效益大约36.2亿元,减少二氧化碳等温室气体排放量达166~ 364万吨。
2.推广施肥新技术,提高化肥利用率围绕“测土、配方、配肥、供肥、施肥指导” 5个环节,做到“测土到田、配方到厂、供肥到点、指导到户”改变盲目大量施用化肥的习惯,使农民重视有机肥的使用,比如减少不合理施用化肥(纯量) 662吨,相当于节约煤炭927吨,减少二氧化碳排放量2317吨,有力地推动了农业节能减排工作,减少了化肥对地下水和土壤的浸染,改善了土质。
3.改进装置,利用新技术生产化肥运用合成氨装置和尿素装置,将排出的氮气、氢气和二氧化碳回收利用生产化肥。
既能实现原煤“吃干榨净”又能实现煤炭行业低碳排放。
不断研发新技术,巧妙利用二氧化碳“化肥”。
4.发展生态农业,实现经济循环发展进一步调整农业产业结构,大力发展生态农业、有机农业,科学使用农药、化肥和农用薄膜,减少化肥施用量和农用机械的能耗量,研制对温室气体吸收能力强的新型作物,合理使用土地,保护农田生态系统,实现农业循环、低碳发展。
5 参考文献[1]蔡硕.新疆低碳农业发展(以棉花种植为例).经济论坛,2017(22)。
[2]冉锦成,苏洋,胡金凤,唐洪松,汪晶晶,崔盼.新疆农业碳排放时空特征、峰值预测及影响因素研究.2017,38(8)。
[3]漆雁斌,陈卫洪.低碳农业发展影响因素的回归分析.农村经济.2012(2)。