厦门质检数学试题及答案

合集下载

厦门初三质检数学试卷+答案.doc

厦门初三质检数学试卷+答案.doc

2017— 2018 学年 ( 上 ) 厦门市九年级质量检测数学参考答案明:解答只列出的一种或几种解法.如果考生的解法与所列解法不同,可参照分量表的要求相分 .一、(本大共10 小,每小 4 分,共 40 分)号12345678910C AD A A D B C B D二、填空(本大共 6 小,每 4 分,共 24 分)11. 1.12. 1.13.13.14. 向下 .15. m≤ OA.16. 252< x≤368( x 整数)或253≤ x≤368( x 整数)三、解答(本大有9 小,共86 分)17. (本分8 分)解: x2-4x+ 4= 5.⋯⋯⋯⋯⋯⋯ 4 分( x- 2)2= 5.由此可得x- 2=± 5.⋯⋯⋯⋯⋯⋯6分x1=5+ 2,x2=-5+ 2.⋯⋯⋯⋯⋯⋯8 分18.(本分 8 分)明 : 如 1,∵AB∥ DE ,∴∠ BAC=∠ EDF .⋯⋯⋯⋯⋯⋯ 2 分∵AD = CF,∴AD + DC= CF+ DC .即AC= DF .⋯⋯⋯⋯⋯⋯4分又∵AB= DE,∴△ ABC≌△ DEF .⋯⋯⋯⋯⋯⋯ 6 分∴∠ BCA=∠ EFD .∴BC∥ EF .⋯⋯⋯⋯⋯⋯8 分B EA D C F图119. (本分 8 分)解:( 1)如 2,点 B 即所求 . ⋯⋯⋯⋯⋯⋯ 3 分( 2)由二次函数象点P( 1, 3),可解析式· P y= a(x- 1)2+ 3. ⋯⋯⋯⋯⋯⋯ 6 分·B 把 A( 0, 2)代入,得A·a+ 3= 2.解得 a=- 1. ⋯⋯⋯⋯⋯⋯ 7 分图 2数学参考答案第 1 页共6页所以函数的解析式 y=-( x- 1)2+3. ⋯⋯⋯⋯⋯⋯ 8 分F20. (本分8 分) AD 3,接 AF. ⋯⋯⋯⋯⋯⋯ 3 分解:如将△ CBE 点 B 逆旋60°,可与△ ABF 重合 . ⋯⋯⋯⋯ 8 分 EB图 3C21. (本分 8 分)解:由表格可知,随着苗移植数量的增加,苗移植成活率越来越定. 当移植数10000 ,成活率 0.950,于是可以估苗移植成活率0.950. ⋯⋯⋯⋯⋯⋯ 3 分市需要的苗数量28.5÷ 0.950= 30 (万棵) .答:市需向家园林公司30 万棵苗合适 . ⋯⋯⋯⋯⋯⋯ 8 分22.(本分 10 分)(1)(本小分 5 分)解:把 A(-12, 0),B( 2, 5)分代入y= kx+ b,可得解析式y= 2x+ 1.⋯⋯⋯⋯⋯⋯ 3 分当 x=0 , y=1.所以直l1与 y 的交点坐(0,1) .⋯⋯⋯⋯⋯⋯ 5 分( 2)(本小分 5 分)解:如4,把 C( a, a+ 2)代入 y= 2x+ 1,可得 a= 1.⋯⋯⋯⋯⋯⋯点 C 的坐( 1, 3) .∵AC= CD= CE,又∵点 D 在直AC 上,∴点 E 在以段AD 直径的上 .∴∠ DEA = 90° . ⋯⋯⋯⋯⋯⋯ 8 分点 C 作 CF ⊥ x 于点 F ,CF = y C= 3. ⋯⋯⋯⋯⋯⋯ 9 分∵AC= CE,∴ AF =EF又∵AC= CD ,∴CF 是△ DEA 的中位 .∴DE = 2CF = 6.⋯⋯⋯⋯⋯⋯10 分23.(本分 11 分)( 1)(本小分 4 分)解:因当 x=- 2 , y> 0;当 x=- 1 , y< 0,所以方程2x2+ x- 2= 0 的另一个根x2所在的范是- 2< x2<- 1.(2)(本小分 7 分)解:取x=(-2)+(-1)=- 3,因当x=- 3,y>0,22 2又因当x=- 1 , y=- 1< 0,6分yxDCAO F E x图4C⋯⋯⋯⋯⋯⋯ 4 分数学参考答案第 2 页共6页所以- 3< x 2<- 1.⋯⋯⋯⋯⋯⋯7 分2(- 3)+(- 1)取 x =2=- 5,因 当 x =- 5, y < 0,2 44又因 当 x =- 3, y > 0,2所以- 3< x 2<- 5.⋯⋯⋯⋯⋯⋯10 分245 31又因 -4-(- 2)= 4,所以- 3< x 2<- 5即 所求 x 2 的范 .⋯⋯⋯⋯⋯⋯ 11 分2 424. (本 分 11 分)( 1)(本小 分 5 分)解:如 5,∵AB 是半 O 的直径,∴ ∠ M = 90°. ⋯⋯⋯⋯⋯⋯ 1 分在 Rt △ AMB 中, AB = MA 2+ MB 2⋯⋯⋯⋯⋯⋯2 分∴AB =10.A∴ OB = 5.⋯⋯⋯⋯⋯⋯ 3 分∵ OB = ON , 又∵∠ NOB = 60°,∴ △ NOB 是等 三角形. ⋯⋯⋯⋯⋯⋯ 4 分 ∴ NB = OB = 5. ⋯⋯⋯⋯⋯⋯ 5 分( 2)(本小 分 6 分) 明: 方法一:如 6,画⊙ O ,延 MC 交⊙ O 于点 Q , 接 NQ , NB. ∵ MC ⊥ AB ,又∵OM =OQ ,∴ MC = CQ. ⋯⋯⋯⋯⋯⋯ 6 分即 C 是 MN 的中点 M又∵P 是 MQ 的中点,∴ CP 是△ MQN 的中位 . ⋯⋯⋯⋯⋯⋯ 8 分A∴ CP ∥ QN.C∴ ∠ MCP =∠ MQN .11Q∵ ∠ MQN = 2∠MON ,∠ MBN = 2∠ MON , ∴ ∠ MQN =∠ MBN .∴ ∠ MCP =∠ MBN .⋯⋯⋯⋯⋯⋯ 10 分∵ AB 是直径, ∴ ∠ ANB = 90°.∴ 在△ ANB 中,∠ NBA +∠ NAB = 90° .MNO B图 5NPDOB图 6数学参考答案第 3 页共 6 页∴∠ MBN +∠ MBA+∠ NAB=90° .即∠ MCP +∠ MBA+∠ NAB=90° .⋯⋯⋯⋯⋯⋯11 分方法二:如7,接 MO , OP,NO, BN.∵P 是 MN 中点,又∵ OM =ON,∴OP⊥ MN ,⋯⋯⋯⋯⋯⋯ 6 分NPM1且∠ MOP =∠ MON .∵MC ⊥ AB,∴∠ MCO =∠ MPO = 90° . ∴OM 的中点 Q,QM = QO= QC= QP.∴点 C,P 在以 OM 直径的上 .·QAC O B图 7⋯⋯⋯⋯⋯⋯8 分1在中,∠ MCP =∠ MOP =∠ MQP .又∵∠ MOP =12∠MON ,1∴∠ MCP =∠ MON .在半 O 中,∠ NBM =12∠ MON .∴∠ MCP =∠ NBM .⋯⋯⋯⋯⋯⋯10分∵AB 是直径,∴∠ ANB= 90°.∴在△ ANB 中,∠ NBA +∠ NAB= 90° .∴∠ NBM +∠ MBA+∠ NAB=90° .即∠ MCP +∠ MBA+∠ NAB=90° .⋯⋯⋯⋯⋯⋯11分25. (本分14 分)( 1)(本小分 3 分)解:把( 1,- 1)代入 y= x2+ bx+ c,可得 b+ c=- 2,⋯⋯⋯⋯⋯⋯ 1 分又因 b- c= 4,可得 b= 1, c=- 3.⋯⋯⋯⋯⋯⋯3分( 2)(本小分 4 分)解:由 b+ c=- 2,得 c=- 2- b.于 y= x2+ bx+ c,当 x=0 , y=c=- 2- b.抛物的称直x=-b . 2所以 B( 0,- 2- b), C(-b2, 0) .因 b> 0,数学参考答案第 4 页共6页所以 OC = b, OB = 2+ b.⋯⋯⋯⋯⋯⋯ 5 分2当 k =3,由 OC = 3OB 得 b = 3( 2+ b ),此 b =- 6< 0 不合 意 .4 4 2 4所以 于任意的 0< k < 1,不一定存在 b ,使得 OC =k · OB . ⋯⋯⋯⋯⋯⋯ 7 分( 3)(本小 分 7 分)解:方法一:由平移前的抛物 y = x 2+ bx + c ,可得 b b 2 b b 2y =( x + 2) 2-4 + c ,即 y =( x +2) 2- 4 - 2- b.因 平移后 A ( 1,- 1)的 点 A 1( 1- m , 2b - 1)可知,抛物 向左平移m 个 位 度,向上平移2b 个 位 度 .bb 2平移后的抛物 解析式y =( x + 2+ m ) 2- 4 - 2-b + 2b. ⋯⋯⋯⋯⋯⋯ 9 分即 y =( x + b+m ) 2-b 2-2+ b.24把( 1,- 1)代入,得( 1+b+ m ) 2- b 2- 2+ b =- 1.2 42( 1+b 2+ m )2= b4 - b + 1.( 1+b+ m ) 2=( b -1) 2. 2 2所以 1+ b+ m =±( b- 1) .2 2当 1+b2+ m = b2- 1 , m =- 2(不合 意,舍去) ;当 1+ b + m =-( b- 1) , m =- b. ⋯⋯⋯⋯⋯⋯ 10 分2 2因 m ≥- 32,所以 b ≤ 32.所以 0< b ≤3.⋯⋯⋯⋯⋯⋯ 11 分2所以平移后的抛物 解析式y =( x - b) 2-b 2-2+ b.24即 点 (b b 2⋯⋯⋯⋯⋯⋯ 12 分,-- 2+ b ).24p =-b 2- 2+ b ,即 p =- 1( b -2) 2- 1.4 4因 -14< 0,所以当b <2 , p 随 b 的增大而增大 .3因 0< b ≤ ,数学参考答案 第 5 页共 6 页所以当 b = 3 , p 取最大 -17. ⋯⋯⋯⋯⋯⋯ 13 分216此 ,平移后抛物 的 点所能达到的最高点坐 (3,- 17) .⋯⋯⋯⋯⋯⋯ 14 分416方法二: 因 平移后A ( 1,- 1)的 点A 1( 1- m , 2b - 1)可知,抛物 向左平移 m 个 位 度,向上平移 2b 个 位 度 .由平移前的抛物y = x 2+ bx + c ,可得y =( x + b) 2- b 2+ c ,即 2 4平移后的抛物 解析式 2y =( x +b 2) 2- b4 - 2- b. y =( x + b+ m ) 2- b 2- 2-b + 2b.⋯⋯⋯⋯⋯⋯ 9 分2 4即 y =( x + b+m ) 2-b 2-2+ b.24把( 1,- 1)代入,得bb 2( 1+ + m ) 2-- 2+ b =- 1.2 4可得( m + 2)( m + b )= 0.所以 m =- 2(不合 意,舍去)或m =- b.⋯⋯⋯⋯⋯⋯ 10 分33 因 m ≥- 2,所以 b ≤ 2.所以 0< b ≤3.⋯⋯⋯⋯⋯⋯ 11 分2所以平移后的抛物 解析式y =( x - b) 2-b 2-2+ b.2 4即 点 (b b 2⋯⋯⋯⋯⋯⋯ 12 分,-- 2+ b ).24p =-b 2- 2+ b ,即 p =- 1( b -2) 2- 1.4 4因 -14< 0,所以当 b <2 , p 随 b 的增大而增大 .因 0< b ≤3,2所以当 b = 3, p 取最大 -17. ⋯⋯⋯⋯⋯⋯ 13 分216此 ,平移后抛物 的 点所能达到的最高点坐 (3,- 17) .⋯⋯⋯⋯⋯⋯ 14 分416数学参考答案 第 6 页共 6 页。

高三数学:厦门市2024届高三下学期第二次质量检测试题和答案

高三数学:厦门市2024届高三下学期第二次质量检测试题和答案

厦门市2024届高中毕业班第二次质量检查一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}14A x x =-≤,40x B xx ⎧⎫-=≥⎨⎬⎩⎭,则A B =R ð()A .()0,4B .[)0,4C .[](]3,04,5- D .[)(]3,04,5- 2.已知正项等差数列{}n a 的公差为d ,前n 项和为n S ,且()()22334441,41S a S a =+=+,则d =()A .1B .2C .3D .43.已知,αβ为关于x 的方程2450x x -+=的两个虚根,则αβαβ+=+()A .52B .52-C D .4.已知样本()2,1,3,,4,5x x ∈R 的平均数等于60%分位数,则满足条件的实数x 的个数是()A .0B .1C .2D .35.在平面直角坐标系xOy 中,点P 在直线3410x y ++=上.若向量()3,4a = ,则OP 在a 上的投影向量为()A .34,55⎛⎫-- ⎪⎝⎭B .34,55⎝⎭C .34,2525⎛⎫-- ⎪⎝⎭D .34,2525⎛⎫ ⎪⎝⎭6.设12,F F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,P 为双曲线左支上一点,且满足112PF F F =,直线2PF 与C 的一条渐近线垂直,则C 的离心率为()A .53BC .2D 7.已知()()()cos 140sin 110sin 130ααα-︒++=︒-︒,则tan α=()A .33B .33-C D .8.设集合{}1,0,1A =-,(){}12345,,,,,1,2,3,4,5iB x x x x x x A i =∈=,那么集合B 中满足1235413x x x x x ≤++++≤的元素的个数为()A .60B .100C .120D .130二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得3分,有选错的得0分.9.为了预测某地的经济增长情况,某经济学专家根据该地2023年1~6月的GDP 数据y (单位:百亿元)建立了一元线性回归模型,根据最小二乘法得到的经验回归方程为ˆ0.4ˆ2yx a =+,其中解释变量x 指的是1~6月的编号,其中部分数据如表所示:时间1月2月3月4月5月6月编号x 123456y /百亿元1y 2y 3y 11.1075y 6y (参考数据:621796i i y ==∑,()62170i i y y =-=∑),则()A .经验回归直线经过点()3.5,11B .ˆ10.255a=C .根据该模型,该地2023年12月的GDP 的预测值为14.57百亿元D .第4个样本点()44,x y 的残差为0.10310.如图1,扇形ABC 的弧长为12π,半径为AB 上有一动点M ,弧AB 上一点N 是弧的三等分点,现将该扇形卷成以A 为顶点的圆锥,使得AB 和AC 重合,则在图2的圆锥中()(第10题图1)(第10题图2)A .圆锥的体积为216πB .当M 为AB 中点时,线段MN 在底面的投影长为C .存在M ,使得MN AB⊥D .min 3302MN =11.已知()(),f x g x 都是定义在R 上的奇函数,且()f x 为单调函数,()11f >.x ∀∈R ,()()f g x x a -=(a 为常数),()()()()222g f x g f x x ++=+,则()A .()20g =B .()33f <C .()f x x -为周期函数D .()21422n k f k nn=>+∑三、填空题:本题共3小题,每小题5分,共15分.12.已知抛物线2:4C y x =的焦点为F ,点A 在C 上,且5AF =,O 为坐标原点,则AOF △的面积为______.13.已知函数()()()sin 0f x x ωϕω=+>在ππ,36⎡⎤-⎢⎥⎣⎦上单调,π4ππ633f f f ⎛⎫⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ω的可能取值为______.14.已知函数()()log 0,0,1ab f x x x a b b =->>≠,若()1f x ≥恒成立,则ab 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,三棱柱111ABC A B C -中,侧面11ABB A 是边长为2的菱形,1π3ABB ∠=,AC =,M 为11A B 中点,CM =(第15题图)(1)证明:平面ABC ⊥平面11ABB A ;(2)若2BC =,求平面ABC 与平面1ABC 夹角的余弦值.16.(15分)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC △的面积为S ,三个内角A B C 、、所对的边分别为,,a b c ,且222sin S C c b=-.(第16题图)(1)证明:ABC △是倍角三角形;(2)若9c =,当S 取最大值时,求tan B .17.(15分)已知()2,0A ,()2,0B -,P 为平面上的一个动点.设直线,AP BP 的斜率分别为1k ,2k ,且满足1234k k ⋅=-.记P 的轨迹为曲线Γ.(1)求Γ的轨迹方程;(2)直线PA ,PB 分别交动直线x t =于点C D 、,过点C 作PB 的垂线交x 轴于点H .HC HD ⋅ 是否存在最大值?若存在,求出最大值;若不存在,说明理由.18.(17分)若*n ∀∈N ,都存在唯一的实数n c ,使得()n f c n =,则称函数()f x 存在“源数列”{}n c .已知()(]ln ,0,1f x x x =∈.(1)证明:()f x 存在源数列;(2)(ⅰ)若()0f x≤恒成立,求λ的取值范围;(ⅱ)记()f x 的源数列为{}n c ,证明:{}n c 前n 项和53n S <.19.(17分)小明进行投篮训练,已知每次投篮的命中率均为0.5.(1)若小明共投篮4次,在投中2次的条件下,求第二次没有投中的概率;(2)若小明进行两组训练,第一组投篮3次,投中1X 次,第二组投篮2次,投中2X 次,求()12E X X -;(3)记()P i 表示小明投篮()2,3,i i =⋅⋅⋅次,恰有2次投中的概率.在投篮不超过()2n n ≥次的情况下,若小明投中2次,则停止投篮;若投篮n 次后,投中的次数仍不足2次,则不再继续投篮.记Y 表示小明投篮的次数.证明:()()222n i E Y P i +=≥∑.。

厦门市2024届高三5月质检数学试题参考答案

厦门市2024届高三5月质检数学试题参考答案

(,1)(1,)−∞−+∞;2135212462()()n n n T b b b b b b b b −=+++++++1111(13521)()2446682(22)n n n =+++−++++⨯⨯⨯⨯+ 122n +−......................................................................................................合计 450 600(1)完成22⨯列联表.根据小概率值0.01α=的独立性检验,能否认为体育锻炼达标与性别有关联?(2)若体育锻炼达标的居民体能测试合格的概率为45,体育锻炼未达标的居民体能测试合格的概率为25,以频率估计概率,从该地区居民中随机抽取3人参加体能测试,求3人中合格的人数X 的分布列及期望.(x α对应值见下表.()()()()()22n ad bc a b a c c d b d χ−=++++,)n a b c d =+++α 01. 005. 001.x α2706.3841.6635.方法一:(1)22⨯列联表如下表:不达标 达标 合计 男 50 250 300女 100 200 300 合计150450600...................................................................................................................................... 1分零假设为0H :体育锻炼达标与性别独立,即体育锻炼达标与性别无关.......................... 2分 ()226005020025010020022.222 6.6353003001504509χ⨯−⨯==≈>⨯⨯⨯ ..................................... 5分根据小概率值0.01α=的独立性检验,推断0H 不成立,即认为体育锻炼达标与性别有关联,该推断犯错误的概率不超过0.01. ...................................................................... 6分(2)设事件A =“随机抽取一人体育锻炼达标”,事件B =“随机抽取一人体能测试合格”,则3()4P A =,1()4P B =,4(|)5P B A =,2(|)5P B A = ..................................... 8分所以7()()(|)()(|)10P B P A P B A P A P B A =+= .................................................. 10分X 的可能取值为:0,1,2,3 ..................................................................... 11分3327(0)()101000P X ===12337189(1)()()10101000P X C === ........................................................................... 12分22337441(2)()()10101000P X C ===37343(3)()101000P X === ...................................................................................... 13分所以X 的分布列为X 0 1 23 {#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}7(3,)10B ()X kC ==又平面ABCD ,平面1111A B C D 平面1111ACC A AC =, ........................................................................................................ ................................................................. 3. ........................................... ∥平面1BDC ....................... 5AA ,1AC AA A =,以OB ,OC ,1OC 211(2,0,0)B D =−1232(,,2)22B C =−−.(,,)n x y z =,11100n B D n B C ⎧⋅=⎪⎨⋅=⎪⎩,即,所以(0,2,3)n =的法向量(0,1,0)m =213cos ,13||||m n m n m n ⋅==,与平面11B CD 所成角余弦值为又平面ABCD ,平面1111A B C D ,1AC AA A =,......................... 11分 ......................................................... 12分解:(1)设点(,)P x y '',(,)M x y ,因为OP PQ =,所以(2,0)Q x ',(0)x '≠, .......................................................... 2分由M 为PQ 中点得222322x x x x x y y y y ''+⎧=⎧⎪'=⎪⎪⇒⎨⎨'⎪⎪'==⎩⎪⎩, .......................................................4分 代入224x y ''+=,得2219x y +=. .......................................................................... 5分所以动点M 的轨迹Γ的方程为221(0)9x y x +=≠. ............................................... 6分(2)存在N 满足题意,证明如下: ........................................................................ 7分 依题意直线l 的斜率存在且不为0,设l 的方程:(3)1y k x =−+. 设11(,)A x y ,22(,)B x y ,00(,)N x y联立22(3)119y k x x y =−+⎧⎪⎨+=⎪⎩得222(19)18(13)81540k x k k x k k ++−+−=. .................... 8分 则212122218(13)8154,1919k k k kx x x x k k−−+=−=++ (1) 直线l 方程化为13y x k−=+.联立221319y x k x y −⎧=+⎪⎪⎨⎪+=⎪⎩,得22(19)(62)610k y k y k ++−−+= ...................................... 9分则1212226216,1919k ky y y y k k −−+=−=++ (2) 依题意:2002201021222010200226216191918(13)81541919k k y y y y y y k k k k k k k k x x x x x x k k −−++−−++==−−−−++++ ...................... 10分 222220000022222200000(19)(62)1696(1)(1)(19)18(13)81549(3)18(3)k y k y k y k y k y k x k k x k k x k x k x ++−+−+−+−==++−+−−+−+ ........ 12分 依题意直线NA ,NB 与坐标轴不平行,又12k k 为定值,所以22000220001(1)(3)3(3)y y y x x x −−==−−. .................................................................... 14分 由220000020013(3)(1)(3)3(3)y y y x y x x −=⇒=−−−−.......(3) 22000002001(1)3(3)(1)3(3)y y x x y x x −−=⇒=−−−.......(4) 由(3)(4)得000033x y x y ==−或,代入(3)得00000033232222122222x x x y y y ⎧⎧⎧===−⎪⎪⎪⎪⎪⎪⎨⎨⎨⎪⎪⎪==−=⎪⎪⎪⎩⎩⎩或或. {#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}义为:011()1mm nn a a x a x R x b x b x +++=+++,且满足:,,(2)依题意,2236()()()ln(1)66x xh x f x R x x x x +=−=+−++242222112(33)'()01(66)(1)(66)x x x h x x x x x x x ++=−=++++++≥ ........................................ 5分故()h x 在(1,)−+∞单调递增, ................................................................................... 6分 由(0)0h =,故(1,0)x ∀∈−,()0h x <,(0,)x ∀∈+∞,()0h x > 综上,1x ∀>−,()0xh x ≥; .................................................................................... 7分(3)不妨设123x x x <<,令1()ln ()t x x x xλ=−−,22211'()(1)x x t x x x x λλλ−+−=−+=(0)x > 当0λ≤时,'()0t x >,此时()t x 单调递增,()0t x =不存在三个不等实根; .... 8分当0λ>时,令2()s x x x λλ=−+−,其判别式214λ∆=−若2140λ∆=−≤,即12λ≥,()0s x ≤恒成立,即'()0t x ≤,此时()t x 单调递减,()0t x =不存在三个不等实根; ............................................ 9分 若2140λ∆=−>,即102λ<<,'()0t x =存在两个不等正实根1212,()r r r r <,此时有 当1(0,)x r ∈时,'()0t x <,()t x 单调递减; 当12(,)x r r ∈时,'()0t x >,()t x 单调递增;当2(,)x r ∈+∞时,'()0t x <,()t x 单调递减; ...................................................... 10分 又因为(1)0t =,且'(1)120t λ=−>,故1()0t r <,2()0t r >因为ln 1(1)x x x <−≠,所以11ln 1x x <−,即2ln 2x x >− 所以44455423212111()ln ()2(2)(2)0t λλλλλλλλλλλ=−−>−−+=−+−>所以存在411(,)x r λ∈,满足1()0t x =; ................................................................... 11分又因为1111()ln ()ln ()()t x x x t x x x x x λλ=−−=−+−=−故存在311x x =,满足3()0t x =;故当且仅当102λ<<时,1ln ()x x xλ=−存在三个不等实根, ........................... 13分 且满足1231x x x <=<,且131x x =由(2)可知,当0x >时,2236ln(1)66x xx x x ++>++因此,2233ln 41x x x x −>++(1)x >................................................................................15分 故23332333331ln ()41x x x x x x λ−=−>++,化简可得:233312333413143x x x x x x x x λ++<=++=+++ 因此123113x x x λ++>−,命题得证. ..................................................................... 17分 {#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}。

厦门市初三质检数学

厦门市初三质检数学

2021年福建省厦门市初三下数学第一次质检诊断卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)﹣的倒数为()A.B.2C.﹣2D.﹣12.(4分)二元一次方程组的解是()A.B.C.D.3.(4分)下列各式计算正确的是()A.﹣=B.(a3b)2=a6b2C.﹣=D.a9÷a3=a34.(4分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1B.C.D.5.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆6.(4分)如图,过直线l1外一点P作它的平行线l2,其作图依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行7.(4分)已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.(4分)某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲乙合作了4天B.甲先做了4天C.甲先做了工程的D.甲乙合作了工程的9.(4分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.210.(4分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1二.填空题(共6小题,满分20分)11.(4分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是.12.(4分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为.13.(4分)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.14.(4分)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.15.(4分)观察分析下列方程:①x+=3;②x+=5;③x+=7.请利用它们所蕴含的规律,求关于x的方程x+=2n+5(n为正整数)的根,你的答案是.16.计算:(15y2﹣5y)÷5y=.三.解答题(共9小题,满分86分)17.(12分)(1)计算:(π﹣2020)0﹣+4sin45°﹣()﹣1.(2)解不等式组:,并把不等式组的解集表示在如图的数轴上.18.(8分)先化简,再求值:(﹣)÷,其中a=2sin60°+1.19.(8分)如图,四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D,BC =CE,求证:∠CAD=∠D.20.(8分)如图,已知四边形ABCD是矩形.(1)请用直尺和圆规在边AD上作点E,使得EB=EC.(保留作图痕迹)(2)在(1)的条件下,若AB=4,AD=6,求EB的长.21.(8分)已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sin A+sin B的值.22.(8分)对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m 为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.23.(11分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A 、B 两种型号车的进货和销售价格如表:A 型车B 型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240024.(11分)如图,在正方形ABCD 中,AB =4,点E 在对角线BD 上,△ABE 的外接圆交BC 于点F .连接AF 交BD 于点G .(1)求证:AF =AE ;(2)若FH 是该圆的切线,交线段CD 于点H ,且FH =FG ,求BF 的长.25.(12分)已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,顶点为C ,且△ABC 为等腰直角三角形.(1)当A (﹣1,0),B (3,0)时,求a 的值;(2)当b =﹣2a ,a <0时.①求该二次函数的解析式(用只含a 的式子表示);②在﹣1≤x ≤3范围内任取三个自变量x 1,x 2,x 3,所对应的三个函数值分别为y 1,y 2,y 3,若以为y 1,y 2,y 3为长度的三条线段能围成三角形,求a 的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)﹣的倒数为()A.B.2C.﹣2D.﹣1【解答】解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.故选:C.2.(4分)二元一次方程组的解是()A.B.C.D.【解答】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.故选:B.3.(4分)下列各式计算正确的是()A.﹣=B.(a3b)2=a6b2C.﹣=D.a9÷a3=a3【解答】解:A、﹣,无法计算,故此选项错误;B、(a3b)2=a6b2,故此选项正确;C、﹣=,故此选项错误;D、a9÷a3=a6,故此选项错误.故选:B.4.(4分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1B.C.D.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝下的概率是.故选:D.5.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFDC重合,∴平行四边形ABCD是平移重合图形,故选:A.6.(4分)如图,过直线l1外一点P作它的平行线l2,其作图依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行【解答】解:由图可知,直线l1和直线l2之间的内错角相等,则可以判定这两条直线平行,故选:D.7.(4分)已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c【解答】解:A、例如a=5,b=1,c=2,满足条件a>b+c,但是不满足结论c<0,故本选项错误;B、例如a=5,b=8,c=﹣6,满足条件a>b+c,c<0,但是不满足结论a>b,故本选项错误;C、例如a=5,b=1,c=2,满足条件a>b,a>b+c,但是不满足结论c<0,故本选项错误;D、∵c<0,∴a+c<a,即a>a+c,∵a>b,∴a+c>b+c,∴a>b+c,故本选项正确.故选:D.8.(4分)某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲乙合作了4天B.甲先做了4天C.甲先做了工程的D.甲乙合作了工程的【解答】解:∵某同学设规定的工期为x天,根据题意列出了方程:,∴甲工作了4天,乙工作了x天,即甲乙合作了4天,剩下的工程由乙队单独做,也正好如期完工,∴可知在③应填入的内容为:甲乙合作了4天,故选:A.9.(4分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.10.(4分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.二.填空题(共6小题,满分20分)11.(4分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是.【解答】解:∵在△ABC中,∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==.故答案为.12.(4分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为70°.【解答】解:∵∠B=40°,∠C=30°,∴∠CAD=∠B+∠C=70°,故答案为:70°.13.(4分)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.14.(4分)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为2.【解答】解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.15.(4分)观察分析下列方程:①x+=3;②x+=5;③x+=7.请利用它们所蕴含的规律,求关于x的方程x+=2n+5(n为正整数)的根,你的答案是x=n+4或x=n+5.【解答】解:x+=3,解得:x=2或x=1;x+=5,解得:x=2或x=3;x+=7,解得:x=3或x=4,得到规律x+=m+n的解为:x=m或x=n,所求方程整理得:x﹣4+=2n+1,根据规律得:x﹣4=n或x﹣4=n+1,解得:x=n+4或x=n+5.故答案为:x=n+4或x=n+516.计算:(15y2﹣5y)÷5y=3y﹣1.【解答】解:原式=15y2÷5y﹣5y÷5y=3y﹣1,故答案为:3y﹣1.三.解答题(共9小题,满分86分)17.(12分)(1)计算:(π﹣2020)0﹣+4sin45°﹣()﹣1.(2)解不等式组:,并把不等式组的解集表示在如图的数轴上.【解答】解:(1)原式=1﹣2+4×﹣2=1﹣2+2﹣2=﹣1;(2),解不等式①,得x≤2.解不等式②,得x>﹣3.所以该不等式组的解集是﹣3<x≤2.表示在数轴上为:.18.(8分)先化简,再求值:(﹣)÷,其中a=2sin60°+1.【解答】解:原式=•=,∵a=2sin60°+1,∴a=+1,∴原式==﹣.19.(8分)如图,四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE,求证:∠CAD=∠D.【解答】证明:∵∠BCE=∠ACD,∴∠BCE﹣∠ACE=∠ACD﹣∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴AC=DC,∴∠CAD=∠D.20.(8分)如图,已知四边形ABCD是矩形.(1)请用直尺和圆规在边AD上作点E,使得EB=EC.(保留作图痕迹)(2)在(1)的条件下,若AB=4,AD=6,求EB的长.【解答】解:(1)如图所示,点E即为所求;(2)连接EB,EC,由(1)知EB=EC,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC=4,∴Rt△ABE≌Rt△DCE(HL),∴AE=DE=AD=3,在Rt△ABE中,EB===5.21.(8分)已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sin A+sin B的值.【解答】解:(1)方程整理为(c﹣a)x2+2bx+a+c=0,根据题意得△=4b2﹣4(c﹣a)(a+c)=0,∴a2+b2=c2,∴△ABC为直角三角形;(2)∵a2+b2=c2,3c=a+3b∴(3c﹣3b)2+b2=c2,∴(4c﹣5b)(c﹣b)=0,∴4c=5b,即b=c,∴a=3c﹣3b=c∵sin A=,sin B=,∴sin A+sin B===.22.(8分)对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m 为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.23.(11分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵50﹣m≥0,∴m≤50,∴16≤m≤50∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.24.(11分)如图,在正方形ABCD中,AB=4,点E在对角线BD上,△ABE的外接圆交BC于点F.连接AF交BD于点G.(1)求证:AF=AE;(2)若FH是该圆的切线,交线段CD于点H,且FH=FG,求BF的长.【解答】(1)证明:∵四边形ABCD为正方形,∴∠1=∠2=45°,∠ABC=90°,∴=,AF为直径,∴AE=FE,∠AEF=90°,∴△AEF为等腰直角三角形,∴AF=AE;(2)解:∵FH是该圆的切线,∴AF⊥FH,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠5=∠4,∴Rt△ABF∽Rt△FCH,∴=,∵FH=GF,∴=,∵AD∥BF,∴△ADG∽△FGB,∴=,即=+1,∴=+1,而FC=4﹣BF,∴=+1,整理得BF2+4BF﹣16=0,解得BF=﹣2+2或BF=﹣2﹣2(舍去),即BF的长为2﹣2.25.(12分)已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,顶点为C,且△ABC为等腰直角三角形.(1)当A(﹣1,0),B(3,0)时,求a的值;(2)当b=﹣2a,a<0时.①求该二次函数的解析式(用只含a的式子表示);②在﹣1≤x≤3范围内任取三个自变量x1,x2,x3,所对应的三个函数值分别为y1,y2,y3,若以为y1,y2,y3为长度的三条线段能围成三角形,求a的取值范围.【解答】解:(1)∵A(﹣1,0),B(3,0),∴抛物线对称轴为直线x=1,AB=4,设对称轴交AC于点H,∵△ABC为等腰直角三角形,∴CH=2,∴当抛物线开口向上时,点C坐标为(1,﹣2),设y=a(x﹣1)2﹣2,把B(3,0)代入,可得a=,∴当抛物线开口向下时,点C坐标为(1,2),设y=a(x﹣1)2+2,把B(3,0)代入,可得a=﹣∴a的值为或﹣;(2)①当b=﹣2a时,y=ax2﹣2ax+c=a(x﹣1)2+c﹣a ∴点C(1,c﹣a),∴点B(1+c﹣a,0),∴a(c﹣a)2+c﹣a=0,∴(c﹣a)(ac﹣a2+1)=0,∵c﹣a≠0,∴ac﹣a2+1=0,∴c=a﹣,∴y=a(x﹣1)2﹣,②∵﹣1≤x≤3,a<0,∴当x=﹣1或3时,y有最小值为4a﹣,当x=1时,y有最大值﹣,若以y1,y2,y3为长度的三条线段能围成三角形,则2(4a﹣)>﹣,整理的8a2﹣1<0,∴﹣<a<0.。

2023届福建省厦门市高三年级上册学期12月第一次质量检测模拟考数学试题【含答案】

2023届福建省厦门市高三年级上册学期12月第一次质量检测模拟考数学试题【含答案】

厦门市2023届高中毕业班第一次质量检测模拟考数学试卷满分150分 考试时间120分钟考生注意:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则等于( ){}2log 1A x x =≥{}260B x x x =--<()R A B A. B. C. D.{}21x x -<<{}22x x -<<{}23x x ≤<{}2x x <2.已知函数,则的值为( )()12log ,03,0xx x f x x >⎧⎪=⎨⎪≤⎩()4f f ⎡⎤⎣⎦A. B. C.D.919-9-193.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A.样本中的女生数量多于男生数量 B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D.样本中的女生偏爱文科4.如图,是边长为的正方形,点,分别为边,的中点,将ABCD E F BC CD ,,分别沿,,折起,使,,三点重合于点ABE △ECF △FDA △AE EF FA B C D ,若四面体的四个顶点在同一个球面上,则该球的表面积是( )P PAEFA. B. C. D.6π12π18π5.已知,若,则等于( )()2cos 221xxf x ax x =+++23f π⎛⎫= ⎪⎝⎭3f π⎛⎫- ⎪⎝⎭A. B. C.0D.12-1-6.数列满足,,,则{}n a 1a =2a =()0n a >()22221122112n nn n n n a a aa n a a -+-+--=≥( )2017a = C. D.13233327.过抛物线的焦点的直线交抛物线于、两点,分别过、两点作准线的24y x =F A B A B 垂线,垂足分别为,两点,以线段为直径的圆过点,则圆的方程为1A 1B 11A B C ()2,3-C ( )A. B.()()22122x y ++-=()()22115x y ++-=C. D.()()221117x y +++=()()221226x y +++=8.已知函数,则方程恰有两个不同的实根时,实数的()()()11,14ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩()f x ax =a 取值范围是( )A. B. C. D.10,e ⎛⎫⎪⎝⎭11,4e ⎡⎫⎪⎢⎣⎭10,4⎛⎫ ⎪⎝⎭1,e 4⎡⎫⎪⎢⎣⎭二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设,为复数,且,下列命题中正确的是( )1z 2z 12z z ≠A.若,则12z z =12z z =B.若,则的实部与的虚部互为相反数12i z z =1z 2z C.若为纯虚数,则为实数12z z +12z z -D.若,则,在复平面内对应的点不可能在同一象限12z z R ∈1z 2z10.四张外观相同的奖券让甲,乙,丙,丁四人各随机抽取一张,其中只有一张奖券可以中奖,则( )A.四人中间概率与抽取顺序无关B.在甲未中奖的条件下,乙或丙中奖的概率为23C.事件甲或乙中奖与事件丙或丁中奖互斥D.事件甲中奖与事件乙中奖互相独立11.已知函数,则下列结论中正确的是( )()22sin cos f x x x x =-A.的对称中心的坐标是()f x (),026k k Z ππ⎛⎫+∈⎪⎝⎭B.的图象是由的图象向右移个单位得到的()f x 2sin 2y x =6πC.在上单调递减()f x ,03π⎡⎤-⎢⎥⎣⎦D.函数内共有7个零点()()g x f x =+[]0,1012.在正四面体(所有棱长均相等的三棱锥)中,点在棱上,满足D ABC -E AB ,点为线段上的动点设直线与平面所成的角为,则下列结2AE EB =F AC DE DBF α论中正确的是( )A.存在某个位置,使得B.不存在某个位置,使得DE BF⊥4FDB π∠=C.存在某个位置,使得平面平面D.存在某个位置,使得DEF ⊥DAC 6πα=三、填空题:本题共4小题,每小题5分,共20分.13.据统计,夏季期间某旅游景点每天的游客人数服从正态分布,则在此期()21000,100N 间的某一天,该旅游景点的人数不超过1300的概率为______.附:若,则:,()2,X Nμσ ()0.6826P X μσμσ-<≤+=,.()220.9544P X μσμσ-<≤+=()330.9974P X μσμσ-<≤+=14.若,则等于______.()()7280128112x x a a x a x a x +-=++++ 127a a a +++ 15.已知抛物线的焦点为,,为抛物线上两点,若,为坐标24y x =F A B 3AF FB =O 原点,则的面积为______.AOB △16.已 知 数 列与满足,若,{}n a {}n b ()1122*n n n n a b b a n +++=+∈N 19a =且对一切恒成立,则实数的取值范()3*n n b n =∈N ()33633n n a n λλ≥+-+*n ∈N λ围是______.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在中,点在边上,ABC △D BC,,.4CAD π∠=72AC =cos ADB ∠=(Ⅰ)求的值;sin C ∠(Ⅱ)若的面积为7,求的长.ABD △AB 18.(本小题满分12分)如图,已知矩形所在平面垂直于直角梯形所在平面,ABCD ABPE 平面平面,且,,,ABCD ABPE AB =2AB BP ==1AD AE ==AE AB ⊥.AE BP∥(Ⅰ)设点为棱中点,求证:平面;M PD EM ∥ABCD (Ⅱ)线段上是否存在一点,使得直线与平面所成角的正弦值等于?PD N BN PCD 25若存在,试确定点的位置;若不存在,请说明理由.N 19.(本小题满分12分)已知数列是公比大于1的等比数列,为数列的前{}n a n S {}n a 项和,,且,,成等差数列.数列的前项和为,n 37S =13a +23a 34a +{}n b n n T 满足,且.*n N ∀∈1112n n T T n n +-=+11b =(Ⅰ)求数列和的通项公式;{}n a {}n b (Ⅱ)令,记数列的前项和为,求.22,,n n n n nn b b c a b n +⎧⎪⋅=⎨⎪⋅⎩为奇数为偶数{}n c 2n 2n Q 2n Q 20.(本小题满分12分)近年来我国电子商务行业迎来发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(Ⅰ)能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?(Ⅱ)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量:X ①求对商品和服务全好评的次数的分布列(概率用组合数算式表示);X ②求的数学期望和方差.X()2P K k ≥0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(,其中)()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++21.(本小题满分12分)已知椭圆的左、右焦点分别为,()2222:10x y E a b a b+=>>1F ,离心率为,过点的直线交椭圆于,两点,过点的直线交椭圆于2F 121F 1l E A B 2F 1l E ,两点,且,当轴时,.C D AB CD ⊥CD x ⊥3CD =(Ⅰ)求的标准方程;E (Ⅱ)求四边形面积的最小值.ACBD 22.(本小题满分12分)已知函数,.()ln 1x f x e x =-()xx g x e =(Ⅰ)若在上有两个不等实根,求的范围;()g x a =()0,2a (Ⅱ)证明:.()()20f x eg x +>参考答案一、单选题题号12345678答案BCDCAABB二、多选题题号9101112答案BD ABCABDBC三、填空题13.0..25315.16.13,18⎛⎫+∞⎪⎝⎭四、解答题17.(1)因为…(2分)cos ADB ∠=sin ADB ∠=又因为,所以,4ACD π∠=4C ADB π∠=∠-所以:4sin sin sin cos cos sin 4445C ADB ADB ADB πππ⎛⎫∠=∠-=∠-∠==⎪⎝⎭,…(6分)(2)在中,由正弦定理得,ADC △sin sin AD ACC ADC=∠∠故…(8分)()sin sin sin sin sin sinAC C AC C AC C ADADC ADB ADB π⋅∠⋅∠⋅∠=====∠-∠∠,解得,…(10分)11sin 722ABD S AD AB ADB BD =⋅⋅⋅∠=⋅=△5BD =在中,由余弦定理得:ADB △,所以,2222cos 8252537AB AD BD AD BD ADB ⎛=+-⋅⋅∠=+-⨯⨯= ⎝….(12分)AB =18. (Ⅰ)证明:∵平面平面,平面平面,ABCD ⊥ABEP ABCD ABEP AB =,BP AB ⊥∴平面,又,∴直线,,两两垂直,BP ⊥ABCD AB BC ⊥BA BP BC 以为原点,分别以,,为轴,轴,轴建立如图所示的空间直角坐标B BA BP BC x y z 系.则,,,,,∴,()0,2,0P ()0,0,0B ()2,0,1D ()2,1,0E ()0,0,1C 11,1,2M ⎛⎫ ⎪⎝⎭∴,.11,0,2EM ⎛⎫=- ⎪⎝⎭ ()0,2,0BP =∵平面,∴为平面的一个法向量,BP ⊥ABCD BPABCD ∵,∴.又平面,∴11002002EM BP ⋅=-⨯+⨯+⨯= EM BP ⊥ EM ⊄ABCD 平面.EM ∥ABCD (Ⅱ)当点与点重合时,直线与平面所成角的正弦值为.N D BN PCD 25理由如下:∵,,()2,2,1PD =- ()2,0,0CD =设平面的法向量为,则.令,得.PCD (),,n x y z = 20220x x y z =⎧⎨-+=⎩1y =()0,1,2n = 假设线段上存在一点,使得直线与平面所成角的正弦值等于.PD N BN PCD α25设,∴.()()2,2,01PN PD λλλλλ==-≤≤ ()2,22,BN BP PN λλλ=+=-∴.2cos ,5BN n ==∴,解得或(舍去)。

厦门市八年级下学期质量检测数学试题及答案

厦门市八年级下学期质量检测数学试题及答案

厦门市八年级下学期质量检测数学试题一、选择题(共10题,每题4分,共40分)1、 2-1等于( ) A. 2B. -2C.21 D. 21-2、若数轴上点A 、B 表示的数分别是5,-3,则A 、B 两点间的距离可以表示为( ) A. -3+5 B. -3-5 C.|-3+5| D.|-3-5|3、下列计算正确的是( ) A.3233=+B.633=+C.3233=⨯D.3232=+4、在平面直角生标系中,o 为坐标原点,四边形0ACE 是菱形,点C (6,0),点A 的纵坐标2 则点B 的坐标是( )A. (2,3)B. (3,2)C. (2,-3)D. (3,-2) 5、已知点(-1,y 1)(21,y 2).(2,y 3)都在直线y=x+b 上.则y 1,y 2,y 3的大小关系为( ) A. y 1>y 2>y 3 B. y 1>y 3>y 2 C. y 1<y 2<y 3 D. y 1<y 3 <y 26、 一组数据由五个正整数组成,中位数和众数都是2,则这五个数的和的最小值是( ) A. 7 B. 8 C.9 D. 107、如图1,在△ABC 中,∠ACB=90O,分别以点A 和B 为圆心,以相同的长(大于21AB) 为半径作弧,两弧相交于M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( ) A. ∠ADE=∠ACB B.∠A=∠ADC C.∠B=∠DCB D.∠A=∠BED8、如图 2,在△ABC 中,∠C=90°,AC=2,点D 在BC 边上,∠ADC=2∠B, AD =5,则BC 的长为( )A. 13+B. 13- C 15+. D. 15-9、已知等腰三角形周长为20,腰长为y ,底边长为x ,则下列能正确表示y 关于x 的函数关系的图象是( )yx A–55101520–551015Oyx B–55101520–551015OyxD–551015–551015OyxC–551015–55101520O10、若a=2016×2018-2016×2017,b=2015×2016-2013×2017, c =1020162+ ,则a,b,c的大小关系是( )A. a<b<cB. a<c<bC.b<a<cD.b<c<a 二、填空题(共6题,每题4分,共24分)11、若式子1-x 在实数范围内有意义,则x 的取值范围是12、在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC=4,则DE= 13、图3是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:S 甲2 S 乙2(填“>“或“<”)14、在△ABC 中,∠C=90。

2024年福建省厦门一中中考数学质检试卷及答案解析

2024年福建省厦门一中中考数学质检试卷及答案解析

2024年福建省厦门一中中考数学质检试卷一.选择题(本大题有10小题,每小题4分,共40分)1.(4分)目前代表华为手机最强芯片的麒麟990处理器采用0.0000007cm工艺制程,数0.0000007用科学记数法表示为()A.7×10﹣6B.7×10﹣7C.0.7×10﹣6D.0.7×10﹣72.(4分)如图是由长方体和圆柱体组成的几何体,则它的左视图是()A.B.C.D.3.(4分)下列算式,能按照“底数不变,指数相乘”计算的是()A.a2+a B.a2•a C.(a3)2D.a3÷a4.(4分)如图,在Rt△ABC中,AB=8,∠A=30°,D、E分别为AB、AC的中点,则DE的长为()A.2B.3C.4D.5.(4分)下表是某社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是()A.平均数B.方差C.中位数D.众数6.(4分)如图,△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转90°得对应△DEC,连接BE,则∠BED的大小为()A.45°B.30°C.22.5°D.15°7.(4分)如图,四边形ABCD内接于⊙O,⊙O的半径为4,∠D=120°,则的长是()A.πB.C.D.4π8.(4分)已知点M(6,a﹣3),N(﹣2,a),P(2,a)在同一个函数图象上,则这个函数图象可能是()A.B.C.D.一.选择题(本大题有10小题,每小题4分,共40分)9.(4分)小明按照以下步骤画线段AB的三等分点:画法图形(1)以A为端点画一条射线;(2)用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;(3)过点C、D分别画BE的平行线,交线段AB于点M、N.M、N就是线段AB的三等分点.这一画图过程体现的数学依据是()A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例10.(4分)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G 上两点,若y1<y2,则m的取值范围是()A.m<﹣1或m>0B.<m<C.0≤m<D.﹣1<m<1二.填空题(本大题有6小题,每小题4分,共24分)11.(4分)因式分解:x2﹣2x+1=.12.(4分)二次函数y=2(x﹣1)2+3的图象的对称轴是直线.13.(4分)某校为了解该校1200名学生参加家务劳动的情况,随机抽取40名学生,调查了他们的周家务劳动时间并制作成频数分布直方图(如图),那么估计该校周家务劳动时间不少于2小时的学生大约有名.14.(4分)某手表厂抽查了10只手表的日走时误差,数据如表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差是s.15.(4分)如图,在△ABC中,∠ACB=90°,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于.16.(4分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为.三.解答题(本大题有9小题,共86分)17.(8分)解不等式组:,并将解集在数轴上表示出来.18.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF.求证:△ADE≌△CBF.19.(8分)先化简,再求值:,其中.20.(10分)如图,AB是⊙O的直径,AD平分∠BAC,交⊙O于点D,过点D作直线DE⊥AC,交AC 的延长线于点E,交AB的延长线于点F,(1)求证:EF是⊙O的切线;(2)过点O作OH⊥AD,交AD于点H,连接BD,若BD=6,AH=3,求⊙O的半径长.21.(10分)如图,已知∠MON=90°,A,B为射线ON上两点,且OB<BA.(1)求作菱形ABCD,使得点C在射线OM上(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AC,OD,当△OAC∽△OCB时,求tan∠ODC的值.22.(10分)一副扑克牌(大、小王除外)有四种花色,且每种花色皆有13种点数,分别为2、3、4、5、6、7、8、9、10、J、Q、K、A,共52张.某扑克牌游戏中,玩家可以利用“牌值”来评估尚未发出的牌值点数大小.“牌值”的计算方式为:未发牌时先设“牌值”为0;若发出的牌点数为2至10时,表示发出点数小的牌,则“牌值”加2;若发出的牌点数为J、Q、K、A时,表示发出点数大的牌,则“牌值”减2.例如:从该副扑克牌发出了6张牌,点数依序为3、A、8、9、Q、5,则此时的“牌值”为0+2﹣2+2+2﹣2+2=4.请根据上述信息回答下列问题:(1)若该副扑克牌发出了1张牌,求此时的“牌值”为﹣2的概率;(2)已知该副扑克牌已发出32张牌,且此时的“牌值”为24.若剩下的牌中每一张牌被发出的机会皆相等,求下一张发出的牌是点数大的牌的概率.23.(10分)小明发现用吸管吹气,能发出不同的音调.通过查阅资料,他得知:用吸管吹气时,吸管内部的空气振动导致声音产生,而吸管的长度影响了空气振动的频率,并最终决定了音调的不同,所以发出不同的音调.小明和同学动手试验,并按以下步骤操作:①将若干根同规格的吸管剪成不同的长度;②用同样的力气通过吸管吹气,借助仪器记录下吸管中空气振动的频率;③将吸管的长度和相应吸管中空气振动的频率分别记为x(mm)和y(kHz),对收集到的数据检查、整理;④将整理所得的数据对应的点在平面直角坐标系中描出,绘制成如图所示的y与x对应关系的散点图.(1)表1记录了收集到的四组(A、B、C、D)数据,同学们在仔细检查、整理数据时,发现这四组数据中的一组有错,请直接写出有出错的这组数据(填写组别代号),不必说明理由;(表1)数据组别A B C D吸管的长度x(mm)6080100100空气振动的频率y(kHz) 1.43 1.080.860.42(2)根据散点图,同学们猜想y与x的对应关系符合初中阶段已学过的一种函数关系,并将由每组数据计算所得的系数(精确到个位)作为y与x的对应关系中的系数.小明根据表2的数据剪出合适长度的吸管,成功地吹奏出la的音.(表2)音调do re mi fa sol la si 频率y(kHz)0.260.290.330.350.390.440.49你知道小明剪出的吸管长度是多少(精确到个位)?并说明你的理由.24.(10分)抛物线y=﹣ax2+3ax+4a(a>0)与y轴交于点C,与x轴交于点A、B,CD平行于x轴交抛物线于另一点D,点M是x轴上一动点,连接MD,过点M作MK⊥MD交y于点K(点K在线段OC 上,不与点O重合),(1)求A、B、D三点的坐标(D点坐标用含a的式子表示).(2)若点K的坐标为,则线段OB存在唯一一点M,①求抛物线的解析式②如图2,连接BC,点P为直线BC上方抛物线上的动点,过点P作PQ⊥BC于点Q,连接CP,是否存在点P使△PCQ中某个角恰好等于∠ABC的2倍?若存在,请求出点P的横坐标,若不存在,请说明理由.25.(10分)在Rt△EBC中,∠EBC=90°,点A在EB边上.以AC为斜边作Rt△DAC,使得B、D两点在直线AC的异侧,且∠DAC=∠BEC,AD与EC交于点F.(1)求证:∠DCF=∠ACB;(2)连接DE,若∠BEC=45°,判断DE与AC的数量关系;(3)若CA=BE,过点A作AH⊥EC,垂足为H.求证:EH=AF.2024年福建省厦门一中中考数学质检试卷(3月份)参考答案与试题解析一.选择题(本大题有10小题,每小题4分,共40分)1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000007=7×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】根据左视图是从左面看到的图形求解即可.【解答】解:从左边看,看到的图形分为上下两部分,下面一部分是一个长方形,上面一部分左上角有一个小长方形,即看到的图形如下:故选:B.【点评】本题主要考查了简单组合体的三视图,解题的关键是具有一定的空间概念.3.【分析】直接利用同底数幂的乘除运算、幂的乘方运算法则判断得出答案.【解答】解:能按照“底数不变,指数相乘”计算的是(a3)2.故选:C.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.【分析】根据含30度角的直角三角形的性质得到,再由三角形中位线定理可得.【解答】解:在Rt△ABC中,AB=8,∠A=30°,∠C=90°,∴,∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴,故选:A.【点评】本题主要考查了三角形中位线定理,含30度角的直角三角形的性质,解题的关键是掌握三角形中位线定理.5.【分析】根据平均数、方差、中位数和众数的定义即可得出答案.【解答】解:由于13岁和14岁的人数不确定,所以平均数、方差和众数就不确定,因为该组数据有20个,中位数为第10个和11个的平均数:=12,所以仍能够分析得出关于这20名成员年龄的统计量是中位数.故选:C.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.【分析】由旋转得CE=CB,∠BCE=90°,∠DEC=∠ABC=30°,所以∠CEB=∠CBE=45°,则∠BED=∠CEB﹣∠DEC=15°,于是得到问题的答案.【解答】解:∵将△ABC绕点C顺时针旋转90°得对应△DEC,∴CE=CB,∠BCE=90°,∠DEC=∠ABC=30°,∴∠CEB=∠CBE=45°,∴∠BED=∠CEB﹣∠DEC=45°﹣30°=15°,故选:D.【点评】此题重点考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,证明CE=CB,∠BCE=90°是解题的关键.7.【分析】根据∠D=120°得到∠B=60°,从而得到∠O=2∠B=120°,结合求解即可得到答案.【解答】解:∵四边形ABCD内接于⊙O,∠D=120°,∴∠B=60°,∵,∴∠O=2∠B=120°,∴,故选:C.【点评】本题考查弧长的计算,关键是掌握圆内接四边形对角互补及扇形弧长公式.8.【分析】由点N(﹣2,a),P(2,a)关于y轴对称,可排除选项B、C,再根据M(6,a﹣3),N(2,a),可知在y轴的右侧,y随x的减小而减小,从而排除选项D.【解答】解:由N(﹣2,a),P(2,a)在同一个函数图象上,可知图象关于y轴对称,故选项B、C 不符合题意;由M(6,a﹣3),N(2,a),可知在y轴的右侧,y随x的减小而减小,故选项D不符合题意,选项A 符合题意;故选:A.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.一.选择题(本大题有10小题,每小题4分,共40分)9.【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵CM∥DN∥BE,∴AC:CD:DE=AM:MN:NB,∵AC=CD=DE,∴AM=MN=NB,∴这一画图过程体现的数学依据是两条直线被一组平行线所截,所得的对应线段成比例,故选:D.【点评】本题考查的是平行线分线段成比例定理,尺规作图,掌握平行线分线段成比例定理是解题的关键.10.【分析】通过计算可知,(m﹣1,1),(m+1,1)为抛物线y=﹣x2+2mx﹣m2+2上关于对称轴对称的两点,根据y轴与(m﹣1,1),(m+1,1)的相对位置分三种情形:①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y 轴右侧时,分别讨论求解即可.【解答】解:在y=﹣x2+2mx﹣m2+2中,令x=m﹣1,得y=﹣(m﹣1)2+2m(m﹣1)﹣m2+2=1,令x=m+1,得y=﹣(m+1)2+2m(m+1)﹣m2+2=1,∴(m﹣1,1)和(m+1,1)是关于抛物线y=﹣x2+2mx﹣m2+2对称轴对称的两点,①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),则点(m﹣1,1)经过翻折得M(m﹣1,y1),点(m+1,1)经过翻折得N(m+1,y2),如图:由对称性可知,y1=y2,∴此时不满足y1<y2;②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),则点(m﹣1,1)即为M(m﹣1,y1),点(m+1,1)即为N(m+1,y2),∴y1=y2,∴此时不满足y1<y2;③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y轴右侧时,如图:此时M(m﹣1,1),(m+1,1)翻折后得N,满足y1<y2;由m﹣1<0<m+1得:﹣1<m<1,故选:D.【点评】本题属于二次函数综合题,考查了二次函数的性质,轴对称翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,正确作出图形是解决问题的关键.二.填空题(本大题有6小题,每小题4分,共24分)11.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣1)2.故答案为:(x﹣1)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.12.【分析】由抛物线解析式可求得其对称轴.【解答】解:∵y=2(x﹣1)2+3,∴抛物线对称轴为x=1,故答案为:x=1.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).13.【分析】用总人数乘以样本中劳动时间不少于2小时的学生人数所占比例即可.【解答】解:估计该校周家务劳动时间不少于2小时的学生大约有1200×=780(名),故答案为:780.【点评】本题主要考查频数分布直方图和用样本估计总体,从统计图中得到必要的信息是解决问题的关键.14.【分析】利用加权平均数的计算方法进行计算即可.【解答】解:这10只手表的平均日走时误差是:=1.1(s);故答案为:1.1.【点评】本题考查加权平均数的意义和计算方法,掌握计算方法是正确计算的前提.15.【分析】连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4﹣x,在△ACE中利用勾股定理可得x的长,即得CE的长.【解答】解:连接AE,∵DE为AB的垂直平分线,∴AE=BE,∵在△ABC中,∠ACB=90°,AC=3,AB=5,由勾股定理得BC=4,设CE的长为x,则BE=AE=4﹣x,在Rt△ACE中,由勾股定理得:x2+32=(4﹣x)2,解得:x=,故答案为:.【点评】本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.16.【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.【解答】解:如图,∵双曲线y=(x>0)经过点D,=k=,∴S△ODF=2S△ODF=,即OA•BE=,则S△AOB∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.三.解答题(本大题有9小题,共86分)17.【分析】先求出不等式的解集,再根据不等式的解集求出不等式组的解集即可.【解答】解:∵∴解不等式①得:x≥﹣2解不等式②得:x<3,∴不等式组的解集为﹣2≤x<3,在数轴上表示解集,如图所示:【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集得出不等式组的解集是解此题的关键.18.【分析】根据平行四边形的性质可得∠A=∠C,AD=BC,CD=AB,进而可得CF=AE,然后利用SAS 定理判定△ADE≌△CBF.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,CD=AB,∵E、F分别为边AB、CD的中点,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).【点评】此题主要考查了平行四边形的性质,全等三角形的判定与性质;熟练掌握平行四边形的性质,熟记全等三角形的判定方法是解决问题的关键.19.【分析】先把小括号内的式子通分,再把除法变成乘法后约分化简,最后代值计算即可.【解答】解:===,当时,原式=.【点评】本题主要考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则是关键.20.【分析】(1)连接OD,根据垂直定义可得∠E=90°,再根据角平分线的定义和等腰三角形的性质可得EA∥DO,然后利用平行线的性质可得∠E=∠ODF=90°,即可解答;(2)根据垂径定理可得AD=6,然后根据直径所对的圆周角是直角可得∠ADB=90°,从而在Rt △ABD中,利用勾股定理求出AB的长,即可解答.【解答】(1)证明:连接OD,∵DE⊥AC,∴∠E=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴EA∥DO,∴∠E=∠ODF=90°,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵OH⊥AD,AH=3,∴AD=2AH=6,∵AB是⊙O的直径,∴∠ADB=90°,∵BD=6,∴AB===12,∴⊙O的半径长为6.【点评】本题考查了切线的判定与性质,圆周角定理,勾股定理,垂径定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.【分析】(1)根据题目的要求作出图形即可;(2)根据相似三角形的性质得到∠OCB=∠OAC,根据菱形的性质得到BC=AB,根据三角函数的定义即可得到结论.【解答】解:(1)如图所示,菱形ABCD即为所求;(2)∵△OAC∽△OCB,∴∠OCB=∠OAC,∵四边形ABCD是菱形,∴BC=AB,∴∠BAC=∠ACB,∠DCA=∠CAB,∴∠BCO=∠ACB=∠ACD,∵CD∥OA,∴∠DCO=90°,∴∠BCO=30°,设BC=CD=a.则OC=a,∴tan∠ODC===.【点评】本题考查了相似三角形的判定,菱形的判定和性质,三角函数的定义,正确地作出图形是解题的关键.22.【分析】(1)利用「牌值」的计算方式解答即可;(2)利用方程组的思想求得已发出的28张牌中的点数大的张数与点数小的张数,从而得到剩余的牌中点数大的张数与点数小的张数,再利用计算概率的方法解答即可.【解答】解:(1)因为该副扑克牌中,点数大的牌共有16张,且,所以“牌值”为﹣2的概率是;(2)设该副扑克牌已发出的32张牌中点数大的张数为x张,依题意,得2(32﹣x)﹣2x=24,解得x=10,∴已发出的32张牌中点数大的张数为10张,∴剩余的20张牌中点数大的张数为6张,∵剩下的牌中每一张牌被发出的机会皆相等,∴下一张发出的牌是点数大的牌的概率是.【点评】本题主要考查了概率公式,用样本估计总体的思想方法,事件概率的计算方法,本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.23.【分析】(1)根据表中数据,可发现x与y的乘积为定值约等于86,从而可得答案;(2)根据x与y都是正数,并观察图象可知,可得这条曲线是反比例函数的一支,根据xy≈86,可得x与y的函数解析式;再将表2中la的音频率y代入即可解答.【解答】解:(1)A:x1•y1=60×1.43≈86,B:x2⋅y2=80×1.08≈86,C:x3⋅y3=100×0.86=86,D:x4•y4=100×0.42=42,所以,可能出错的为D组.故答案为:D.(2)根据给定图象可知,y与x的对应关系可以用反比例函数来确定,所以可设,依据表1中A、B、C三组数据求得:k1=x1•y1=60×1.43≈86,k2=x2⋅y2=80×1.08≈86,k3=x3⋅y3=100×0.86=86,∴k=86,∴,当y=0.44时,.答:小明剪出的吸管长度是195mm.【点评】本题考查了反比例函数的应用,解答本题的关键是仔细观察表格,得出x与y的积为定值,从而得出函数关系式.24.【分析】(1)分别令x=0和y=0可得A,B,C三点的坐标,将抛物线的解析式配方成顶点式可知对称轴是:,根据对称性可得点D的坐标;(2)①先作辅助线,构建相似三角形,证明△KOM∽△MED,则,列方程,根据Δ=0,可得a的值,求出抛物线的解析式,②当△PCQ中某个角恰好等于∠ABC的2倍时,存在两种情况:(i)当∠PCB=2∠ABC时,延长PC交x轴于F,确定点F的坐标,设FC的解析式为:y=kx+b,联立方程组可得P的横坐标;(ii)当∠CPQ=2∠ABC时,作CF=FB,证明△COF∽△CQP和△CGQ∽△QHP,表示P的坐标,代入抛物线的解析式中可得结论.【解答】解:(1)当x=0时,y=4a,∴C(0,4a),当y=0时,﹣ax2+3ax+4a=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),B(4,0),又∵CD∥y轴,∴,解得,x1=3,x2=0,∴D(3,4a);(2)①∵点是线段OB存在唯一一点M,如图2,过D作DE⊥x轴于E,设OM=m,则EM=3﹣m,∵∠OKM=∠DME,∠KOM=∠MED=90°,∴△KOM∽△MED,∴,∴,∴2m2﹣6m+9a=0,∵只有一个K点,所以方程只有一个解,∴Δ=36﹣4×2×9a=0,∴,∴,②(i)当∠PCB=2∠ABC时,延长PC交x轴于F,如图3,∵CD∥AB,∴∠PCD=∠PFB,∠DCB=∠CBF,∵∠PCB=2∠ABC,∠PCD=∠DCB,∴∠PFB=∠CBA,∴CB=CF,∴F(﹣4,0),∵C(0,2),设FC的解析式为:y=kx+b,则,解得:,∴FC的解析式为:,联立,解得:x1=0(舍),x2=2,∴点P的横坐标为2;(ii)当∠CPQ=2∠ABC时,如图4,作CF=FB,设OF=n,∴n2+22=(4﹣n)2,解得,,∵CF=FB,∴∠CBF=∠BCF,∴∠CFO=2∠CBO,∴∠CFO=∠CPQ,∵∠COF=∠CQP=90°,∴△COF∽△CQP,∴,即,过Q作x轴的平行线交y轴于G,同时过P作PH⊥GH于H,∵∠CGQ=∠QHP=90°,∠GCQ=∠PQH,∴△CGQ∽△QHP,∴,设,则,,∴,∴,代入抛物线的解析式中得:,解得:x1=0(舍),,∴P的横坐标为,综上,存在两个点P,点P的横坐标是2或.【点评】本题主要考查了抛物线的对称性,一次函数,根的判别式,相似三角形的判定和性质,解题的关键是添加辅助线,利用抛物线的性质来求解.25.【分析】(1)根据∠E B C=90°,∠A D C=90°得∠,由于∠DAC=∠E,则∠DCA=∠ECB,由此可得出结论;(2)取AC的中点M,连接DM,BM,证明△EDC∽△BMC,得出即可.(3)作△ABC的外接圆⊙O,交CE于H,连接AH,BH,则AC为⊙O的直径,由此得AH⊥EC,∠EBH=∠ACH,由此判定△EBH和△ACF全等,由全等三角形的性质可得出结论.【解答】(1)证明:∵Rt△DAC是以AC为斜边的直角三角形,∴∠ADC=∠EBC=90°,∴∠DAC+∠DCA=90°,∠E+∠ECB=90°,∵∠DAC=∠E,∴∠DCA=∠ECB,即∠DCF+∠ECA=∠ACB+∠ECA,∴∠DCF=∠ACB;(2)解:取AC的中点M,连接DM,BM,∵∠CBE=∠CDA=90°,∠BEC=45°,∴∠DAC=∠DCA=∠BCE=∠BEC=45°,∴△ACD,△BCE,△CDM是等腰直角三角形,∴,∴,∴,由(1)知∠DCF=∠ACB,∴△EDC∽△BMC,∴,∴.(3)证明:作△ABC的外接圆⊙O,交CE于H,连接AH,BH,如图所示:∵∠EBC=90°,∴AC为⊙O的直径,∴∠AHC=90°,即AH⊥EC,∵点B,H都在⊙O上,∵∠EBH=∠ACH,在△EBH和△ACF中,∠EBH=∠ACH,CA=BE,∠DAC=∠E,∴△EBH≌△ACF(ASA),∴EH=AF.【点评】此题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,解直角三角形,直角三角形的性质等知识点,熟练掌握相似三角形的判定和性质,全等三角形的判定和性质是解决问题的关键。

福建省厦门市(新版)2024高考数学部编版质量检测(评估卷)完整试卷

福建省厦门市(新版)2024高考数学部编版质量检测(评估卷)完整试卷

福建省厦门市(新版)2024高考数学部编版质量检测(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,若对任意的,当时,都有,则实数的取值范围为()A.B.C.D.第(2)题双曲线的顶点到渐近线的距离为()A.2B.C.D.1第(3)题已知直线与圆相交于A,B两点,当取得最大值时,则m=()A.B.C.1D.3第(4)题执行下面的程序框图,如果输入三个实数、、,要求输出这三个数中最小的数,那么空白的判断框中应填入()A.B.C.D.第(5)题若,则()A.B.C.D.第(6)题2020年1月17日,国家统计局发布了2019年全国居民人均消费支出及其构成的情况,并绘制了如图的饼图.根据饼图判断,下列说法不正确的是()A.2019年居民在“生活用品及服务”上人均消费支出的占比为6%B.2019年居民人均消费支出为21350元C.2019年居民在“教育文化娱乐”上人均消费支出小于这8项人均消费支出的平均数D.2019年居民在“教育文化娱乐”、“生活用品及服务”、“衣着”上的人均消费支出之和大于在“食品烟酒”上的人均消费支出复数对应的点在第三象限内,则实数m的取值范围是()A.B.C.D.无解第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,且,,,则()A.的取值范围为B.存在,,使得C.当时,D.t的取值范围为第(2)题盒中有编号为1,2,3,4的四个红球和编号为1,2,3,4的四个白球,从盒中不放回的依次取球,每次取一个球,用事件表示“第次首次取出红球”,用事件表示“第次取出编号为1的红球”,用事件表示“第次取出编号为1的白球”,则()A.B.C.D.第(3)题设动直线l:()交圆C:于A,B两点(点C为圆心),则下列说法正确的有()A.直线l过定点(2,3)B.当取得最大值时,C.当∠ACB最小时,其余弦值为D.的最大值为24三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若对于任意,都有,则实数的取值范围是___________.第(2)题若函数在区间内恰有一个零点,则实数a的取值范围是___.第(3)题设复数,若复数对应的点在直线上,则的最小值为___________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线的虚轴长为,点在上.设直线与交于A,B两点(异于点P),直线AP与BP的斜率之积为.(1)求的方程;(2)证明:直线的斜率存在,且直线过定点.第(2)题已知函数f(x)=2|x+1|+|x-2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足a+b+c=m,求证:.第(3)题记的内角,,的对边分别为,,,已知,.(1)若,求的面积;(2)若,求.如图,为圆锥的顶点,是底面圆的一条直径,,是底面圆弧的三等分点,,分别为,的中点.(1)证明:点在平面内.(2)若,求平面与平面夹角的余弦值.第(5)题已知函数,且.(1)证明:曲线在点处的切线方程过坐标原点.(2)讨论函数的单调性.。

2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题一、选择题(本大题共10小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.下列计算正确的是()2=3=-C.=D.)213=2.若37m n =,则m n n +的值为()A.107 B.710 C.37 D.473.下列事件中,是随机事件的是()A.在一副扑克牌中抽出一张,抽出的牌是黑桃6B.在一个只装了红球的袋子里,摸出一个白球C.投掷一枚质地均匀的骰子,朝上一面的点数小于7D.画一个三角形,其内角和是180°4.用配方法解方程22470x x --=,下列变形结果正确的是()A.()2712x -=B.()2912x -=C.()223x -=D.2172x ⎛⎫-= ⎪⎝⎭5.已知关于x 的一元二次方程()22230m x mx m -+++=有实根,则m 的取值范围是()A.2m ≠ B.6m ≥-且0m ≠ C.6m ≤ D.6m ≤且2m ≠6.已知12p <<2+=()A.1 B.3C.32p -D.12p -7.如图,一枚运载火箭从地面L 处发射,雷达站R 与发射点L 距离6km ,当火箭到达A 点时,雷达站测得仰角为43︒,则这枚火箭此时的高度AL 为()A.6sin 43︒B.6cos 43︒C.6tan 43︒ D.6tan 43︒8.如图,D 是ABC 边AB 延长线上一点,添加一个条件后,仍不能使ACD ABC 的是()A.ACB D∠=∠ B.ACD ABC ∠=∠C.CD AD BC AC = D.AC AD AB AC=9.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为()A.()()402301686x x --=⨯ B.3040230401686x x ⨯-⨯-=⨯C.()()30240168x x --= D.()()40230168x x --=10.如图,四边形ABCD 中,AD CD ⊥于点D ,2BC =,8AD =,6CD =,点E 是AB 的中点,连接DE ,则DE 的最大值是()A.5B.42C.6D.2二、填空题(本大题共6小题,共24分)11.要使代数式3x -有意义,则x 的取值范围是__________.12.福建省体育中考的抽考项目为:篮球绕杆运球、排球对墙垫球、足球绕杆运球.2025年泉州市体育中考的抽考项目抽中“排球对墙垫球”的概率为__________.13.已知α、β是方程2210x x +-=的两个实数根,则23ααβ++的值为__________.14.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的项点均是格点,则sin BAC ∠的值是__________.15.如图,ABD 中,60A ∠=︒.点B 为线段DE 的中点,EF AD ⊥,交AB 于点C ,若3AC BC ==,则AD =__________.16.若关于x 的一元二次方程20x bx c ++=有两个不相等的实数根1x ,212()x x x <,且110x -<<.则下列说法正确的有__________.(将正确选项的序号填在横线上)①若20x >,则0c <;②12x x +=③若212x x -=,则112426b c b c b c -+-++>++-;④若441222127x x x x +=⋅,则2b c =-.三、解答题(本大题共9小题,共86分)17.(8112tan 45sin 602-⎛⎫+︒-︒- ⎪⎝⎭18.(8分)解方程:2620x x ++=19.(8分)定义:如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程是“邻根方程”.例如:一元二次方程20x x +=的两个根是120,1x x ==-,则方程:20x x +=是“邻根方程”.(1)通过计算,判断下列方程220x x +-=是否是“邻根方程”(2)已知关于x 的一元二次方程2(3)30x k x k ---=(k 是常数)是“邻根方程”,求k 的值.20.(8分)如图,点C 是ABD 边AD 上一点,且满足CBD A ∠=∠.(1)证明:BCD ABD ;(2)若:3:5BC AB =,16AC =,求BD 的长.21.(8分)某景区在2022年春节长假期间,共接待游客达20万人次,预计在2024年春节长假期间,将接待游客达28.8万人次.(1)求该景区2022至2024年春节长假期间接待游客人次的年平均增长率;(2)该景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2024年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(10分)某校为了了解九年级男生的体质锻炼情况,随机抽取部分男生进行1000米跑步测试,按照成绩分为优秀、良好、合格与不合格四个等级,其中良好的学生人数占抽取学生总数的40%,学校绘制了如下不完整的统计图:(1)求被抽取的合格等级的学生人数,并补全条形统计图;(2)为了进一步强化训练,学校决定每天组织九年级学生开展半小时跑操活动,并准备从上述被抽取的成绩优秀的学生中,随机选取1名担任领队,小明是被抽取的成绩优秀的一名男生,求小明被选中担任领队的概率;(3)学校即将举行冬季1000米跑步比赛,预赛分为A ,B ,C 三组进行,选手由抽签确定分组,求某班甲、乙两位选手在预赛中恰好分在同一组的概率是多少?请画出树状图或列表加以说明.23.(10分)如图,在Rt ABC 中,90,ACB A B ∠∠∠=︒<.(1)在AB 的延长线上,求作点D ,使得CBD ACD (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若5,5ABC AB S == ,求tan CDB ∠的值.24.(12分)如图,在ABC 中,90BAC ∠=︒,42AB AC ==,点D ,E 是边AB ,AC 的中点,连接DE ,DC ,点M ,N 分别是DE 和DC 的中点,连接MN .图1图2备用(1)如图1,MN 与BD 的数量关系是_________;(2)如图2,将ADE 绕点A 顺时针旋转,连接BD ,写出MN 和BD 的数量关系,并就图2的情形说明理由;(3)在ADE 的旋转过程中,当B ,D ,E 三点共线时,根据以上结论求线段MN 的长.25.(14分)问题背景:(1)如图1,点E 是ABC 内一点,且ABC DEC ,连接AD ,BE ,求证.ADC BEC (2)如图2,点C 是线段AB 垂直平分线上位于AB 上方的一动点,PCB 是位于AB 上方的等腰直角三角形,且PB BC =,则,①PA PC CB +________1(填一个合适的不等号);②PA PB 的最大值为________,此时CBA ∠=________°.问题组合与迁移:(3)如图3,AD 是等腰ABC 底边BC 上的高,点E 是AD 上的一动点,PEC 位于BC 的上方,且ABC PEC ,若2cos 5ABC =∠,求PA PB的最小值.图1图2图3答案和解析一.选择题(共10小题,40分)1.C2.A3.A4.B5.D6.A7.D8.C9.A 10.C 二.填空题(共6小题,24分)11.2x ≥-且3x ≠12.1313.1-14.5515.9216.①③16.【详解】解:(1)110x -<< ,20x >,120c x x c a∴==<,故①正确;110x -<< ,12x x <,1a =,112b x x ∴=-=,22b x -=,当20x >时,222b x x -==,1221x x x x ∴+=-=当20x <时,222b bc x x =-=,1221x x x x b ∴+=--=,故②错误;110x -<< ,12x x <,212x x -=,212x ∴<<,022b b x a --∴==>,0b ∴<,当=1x -时,10y b c =-+>,11b c b c ∴-+=-+,当1x =时,10y b c =++<,1(1)b c b c ∴++=-++,当2x =时,420y b c =++>,4242b c b c ∴++=++,1122b c b c c ∴-+-++=+,2426422b c b c ++-=++,22422c b c +>++ ,112426b c b c b c ∴-+-++>++-,故③正确;12x x b +=- ,12x x c =,22212x x c ∴=,44222222212121212[()2]2(2)2x x x x x x x x b c c ∴+=+--=--, 441222127x x x x +=⋅,2222(2)27b c c c ∴--=,222(2)90b c c ∴--=,22(23)(23)0b c c b c c ∴-+--=,22()(5)0b c b c ∴+-=,2b c ∴=-或25b c =,故④错误;故①③;三.解答题(共86分)17.(8分)【详解】112tan 45sin 602222-⎛⎫︒-︒-=-- ⎪⎝⎭32=-332= (8)分18.(8分)【详解】(1)解:2620x x ++=∴1,6,2a b c ===,2436828b ac ∆=-=-=,∴622b x a -±-±==,…………………………………6分解得:13x =-23x =-…………………………………………8分19.(8分)【详解】(1)解:∵()()2212x x x x +-=-+∴()()120x x -+=∴121,2x x ==-∵12>-,()121--≠,故该方程不是“邻根方程”……………………………4分(2)解:()()2(3)33x k x k x k x ---=-+∴()()30x k x -+=∴12,3x k x ==-由题意得:31k =-+或31k -=+解得:2k =-或4k =-……………………………8分20.(8分)【详解】(1)证明:在BCD 与ABD 中CBD A ∠=∠,D D ∠=∠,∴BCD ABD ;……………………4分(2)解:∵BCD ABD ,∴BC CD BD AB BD AD ==,即35CD BD BD AD ==,53AD BD =35CD BD =又∵AD AC CD =+,且16AC =∴15BD =……………………8分21.(8分)【详解】(1)解:设年平均增长率为x ,根据题意得:()220128.8x +=,解得:10.220%x ==,2 2.2x =-(不符合题意,舍去),∴年平均增长率为20%;……………………4分(2)解:设当每杯售价定为y 元时,店家在此款奶茶实现平均每天6300元的利润额,由题意得:()()630030256300y y -+-=⎡⎤⎣⎦,整理得:241420y y -+,解得:120y =,221y =,∵让顾客获得最大优惠,20y ∴=,∴当每杯售价定为20元时,店家在此款奶茶实现平均每天6300元的利润额.……………………8分22.(10分)【详解】(1)解:合格等级的人数为1640%121648÷---=,补全条形统计图如图:……………………2分(2)解:∵被抽取的成绩优秀的学生有12人,∴小明被选中担任领队的概率为112.……………………6分(3)解:根据题意画树状图如下:∵共有9种等可能的结果数,其中甲、乙两人恰好在同一组的结果数为3,∴甲、乙两人恰好分在同一组的概率是3193=.……………………10分23.(10分)【详解】(1)利用尺规作图如图,点D 为所求.依据:有作图,DCB A ∠=∠,∵BDC CDA ∠=∠,∴CBD ACD ;……………………5分(2)法一:如图,过点C 作CM AB ⊥于点M ,过点B 作BN CD ⊥于点N .5,5ABC AB S == ,152AB CM ∴⋅=,2CM ∴=.90,90BCM CBA A CBA ∠=-∠∠=-∠ ,BCM A ∴∠=∠,tan tan BCM A ∴∠=,即BM CM CM AM=,225BM BM ∴=-,解得1BM =,(5BM =舍去).设,BD x CD y ==,,BCD A CDB ADC ∠=∠∠=∠ ,CBD ACD ∠∴ ,CD BD AD CD∴=,2CD BD AD ∴=⋅,()25y x x ∴=+,在Rt CDM 中,222CD DM CM =+,222(1)2y x ∴=++,()225(1)2x x x ∴+=++,解得53x =,58133DM ∴=+=,23tan 843CM CDB DM ∴∠===.……………………10分法二:如图,过点C 作CM AB ⊥于点M ,取AB 的中点O ,连接OC.5,5ABC AB S == ,152AB CM ∴⋅=,2CM ∴=.90,90BCM CBA A CBA ∠=-∠∠=-∠ ,BCM A ∴∠=∠,tan tan BCM A ∴∠=,即BM CM CM AM=,225BM BM ∴=-,解得1,(5BM BM ==舍去).ABC 是直角三角形,AO BO =,1522OC AB OA OB ∴====,ACO A ∴∠=∠,BCD A ∠=∠ ,ACO BCD ∴∠=∠,90ACO OCB ∠+∠= ,90BCD OCB ∴∠+∠= ,即90DCO ∠= .90CDB COD ∴∠+∠= ,90OCM COD ∠+∠= ,CDB OCM ∴∠=∠,53122OM OB BM =-=-= ,332tan tan 24OM CDB OCM CM ∴∠=∠===24(12分)【详解】(1)解:∵点D ,E 是边AB ,AC 的中点,12CE AC ∴=,12BD AB =, AB AC ==,CE BD ∴=,∵点M ,N 分别是DE 和DC 的中点,MN ∴是DCE 的中位线,12MN CE ∴=,12MN BD ∴=,故答案.12MN BD =……………………2分(2)解:12MN BD =,理由如下:如图,连接EC ,由(1)同理可得:AD AE =,由旋转得:90BAC DAE ∠=∠=︒,DAB BAE EAC BAE ∴∠+∠=∠+∠,DAB EAC ∴∠=∠,在DAB 和EAC 中AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴≅ (SAS ),BD CE ∴=,∵点M ,N 分别是DE 和DC 的中点,12MN CE ∴=,12MN BD ∴=.…………………6分(3)解:①如图,当点E 在线段BD 上时,过点A 作AP BD ⊥于点P ∴90APD ∠=︒,90BAC ∠=︒,42AB AC ==45ABC ACB ∴∠=∠=︒,在(1)中:∵点D ,E 是边AB ,AC 的中点,DE BC ∴∥,12AD AB ==∴45ADE AED ABC ∠=∠=∠=︒,90DAE ∠=︒ ,AD AE =,PD PA ∴=,222PD PA AD ∴+=,(222PD ∴=,2PD ∴=,在Rt ADB 中,PB ∴===2BD BP PD ∴=+=+;112MN BD ==……………………9分②如图,当点D 在线段BE 上时,过点A 作AQ BE ⊥于点Q ,在Rt ADQ 中,90AQD ∠=︒,45ADE ∠=︒,12AD AB ==,由①同理可求2AQ DQ ==,在Rt AQB 中,90AQB ∠=︒,AB =,2AQ =,BQ ∴=2BD BQ DQ ∴=-=;112MN BD ==.综上所述,1MN =+1-.……………………12分25(14分)【详解】解:(1)ABC DEC ,AC DC BC EC∴=,BCA ECD ∠=∠,,BCE BCA ECA ACD DCE ECA ∠=∠-∠∠=∠-∠ ,BCE ACD ∠∠∴=,ADE BEC ∴ ; (3)(2)①连接AC ,如图所示,图2∵点C 是线段AB 垂直平分线上位于AB 上方的一动点,AC BC ∴=,PA PA PC BC PC AC∴=++,AC PC PA +≥ ,1PA PC BC ∴≤+,故≤;……………………5分②由①得AC BC =,AC PC PA +>,PB BC =,PB BC AC ∴==,111PA PA AC PC PC PCPB AC AC AC PB+∴=<=+=+=+,……………………7分∴当点C 在AP 上时,此时AP 最大,为AC PC +,此时PA PB 也最大,为1+,如图所示,∵点C 是线段AB 垂直平分线上位于AB 上方的一动点,AC BC ∴=,CAB CBA ∴∠=∠,PCB 是等腰直角三角形,45BCP ∴∠=︒,BCP CAB CBA ∠=∠+∠ ,22.5CBA ∴∠=︒,……………………9分21+,22.5︒;(3)连接BE ,如图所示,图3AD 是等腰ABC 底边上的高,2,BC BD BE EC ∴==,2cos 5ABC ∠=,25BD AB ∴=,,2AB AC BC BD == ,54AC BC ∴=,ABC PEC ,AC PC BC EC ∴=,BCA ECP ∠=∠,,BCE BCA ECA ACP PCE ECA ∠=∠-∠∠=∠-∠ ,BCE ACP ∴∠=∠,APC BEC ∴ ,54AP AC BE BC ∴==,得:45BE EC AP ==,54PE AB EC BC == ,PE AP ∴=,PE BE PB +≥ ,4955AP AP AP PB ∴+=≥,59PA PB ∴≥,PA PB ∴最小值为59.……………………14分。

2024年厦门市初三质检数学参考答案

2024年厦门市初三质检数学参考答案

2024年厦门市初中毕业年级模拟考试参考答案数 学说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共8小题,每题4分,共32分)9.25. 10. (a -3) (a +3). 11.∠BOC . 12.1<x <2. 13.3. 14.小正方形的边长. 15.12和48或25和35或9和51(写出其中任意一组即可).16.4或12.三、解答题(本大题有10小题,共86分) 17.(本题满分8分)解:原式=1-2+12=-12.18.(本题满分8分)证明:∵ 四边形ABCD 是矩形, ∴ AD ∥BC ,∠C =90°. ∴ ∠ADF =∠DEC . ∵ AF ⊥DE ,∴ ∠AFD =90°. ∴ ∠AFD =∠C .∵ ∠ADF =∠DEC ,∠AFD =∠C ,AF =DC , ∴ △ADF ≌∠DEC . ∴ AD =DE . 19.(本题满分8分)解:原式=a -2a +2÷a 2-2a a 2+4a +4=a -2a +2÷a (a -2)(a +2)2=a -2a +2•(a +2)2a (a -2) =a +2a. 当a =2时,原式=2+22=2+1.20.(本题满分8分)解:(1)(本小题满分5分)根据图11,可估计这30名男生40秒对墙垫球的平均个数为22×6+26×9+30×11+34×2+38×230=28(个). (2)(本小题满分3分)P (A )=2+230=430=215.21.(本题满分8分)解:(1)(本小题满分3分)由题意得,该种盆栽每天租出的数量为(95-5x )盆. (2)(本小题满分5分)设该公司每天租出该种盆栽的总收益为w 元, 由题意得:w =(95-5x )(x +15) =-5x 2+20x +1425=-5(x -2)2+1445. 由(1)可知,0≤95-5x ≤95, 所以0≤x ≤19.因为-5<0,所以当x =2时,w 有最大值.所以当0≤x <2时,w 随x 的增大而增大;当2<x ≤19时,w 随x 的增大而减小. 答:(1)该种盆栽每天租出的数量为(95-5x )盆;(2)当该种盆栽每盆租金上涨0到2 元时,该公司每天租出该种盆栽的总收益随着租金的上涨而增加;当该种盆栽每盆租金上涨2到19元时,该公司每天租出该种盆栽的总收益随着租金的上涨而减少.22.(本题满分10分) 解:(1)(本小题满分5分)CD 与AC 也垂直,理由如下: 连接AD ,由测量数据可知,AB =AE +BE =30,AC =AF +CF =30. ∴ AB =AC .又∵ AD =AD ,BD =CD ,∴ △ABD ≌△ACD . ∴ ∠ABD =∠ACD =90°. ∴ DC ⊥AC .(2)(本小题满分5分)解法一:小梧可以完成验证,过程如下: 过点E 作EG ⊥AD ,垂足为点G .由数据可知,在Rt △ABD 中,AB =30,BD =∴ tan ∠BAD =BD AB =∴ ∠BAD =30°.∴ AD =2BD =203.在Rt △AEG 中,∠EAG =30°,AE =15.∴ AG =cos ∠EAG ·AE =32×15=1523,GE =12AE ∴ GD =AD -AG =2523.在Rt △DGE 中与Rt △DCF 中,∵ GE CF =GD CD =54,且∠EGD =∠FCD =90°,∴ △DGE ∽△DCF . ∴ ∠EDG =∠FDC .∴ ∠EDF =∠EDG +∠FDG =∠FDC +∠FDG . 即 ∠EDF =∠ADC .由(1)可知,在Rt △ACD 中,∠ADC =∠ADB =60°, ∴ ∠EDF =60°.所以照射角∠EDF 符合要求.解法二:小梧可以完成验证,过程如下: 过点F 作FH ⊥AB ,垂足为点H ,连接EF . 在Rt △ABD 中,AB =30,BD =103, ∴ tan ∠BAD =BD AB =∴ ∠BAD =30°.由(1)可知,△ABD ≌△ACD . ∴ ∠BAC =∠BAD +∠CAD =60°. 在Rt △AHF 中,∠HAF =60°,AF =24,∴ AH =cos ∠HAF ·AF =12×24=12,HF =sin ∠HAF ·AF =32×24= ∴ HE =AE -AH =3.∴ 在Rt △HEF 中,EF =HE 2+HF 2=21.延长AB 并在AB 的延长线上截取BK =CF ,连接DK , ∴ ∠KBD =90° .∴ 在△KBD 与△FCD 中,BK =CF ,∠KBD =∠FCD =90°,BD =CD . ∴ △KBD ≌△FCD .∴ DK =DF ,∠KDB =∠FDC . 又∵ EK =BE +BK =21, ∴ 在△EDK 与△EDF 中, EK =EF ,DK =DF ,DE =DE .∴ △EDK ≌△EDF . ∴ ∠EDK =∠EDF .即∠EDB +∠KDB =∠EDF . ∵ ∠KDB =∠FDC ,∴ ∠EDB +∠FDC =∠EDF . ∴ ∠EDF =12∠BDC .∵ 在四边形ABDC 中,∠BDC =120°, ∴ ∠EDF =12∠BDC =60°.所以照射角∠EDF 符合要求.23.(本题满分10分)解:(1)(本小题满分5分)当x =m 时,y =am 2-2(m -1)m +2m 2-4m +1=am 2-2m +1.因为a ≠0,m >1, 所以am 2≠0.所以y ≠0-2m +1. 即y ≠1-2m .所以点(m ,1-2m )不在抛物线T 上. (2)(本小题满分5分)假设四边形APBQ 是抛物线T 的“正菱形”, 则AB ,PQ 互相垂直且平分. 因为P 是抛物线T 的顶点,又因为菱形APBQ 的一条对角线在抛物线T 的对称轴上, 所以点Q 在对称轴上,点A ,B 在抛物线上. 所以PQ ⊥x 轴. 所以AB ∥x 轴.所以y A =y B .所以m -n =3,即n =m -3. 所以A (m -2,3),B (m ,3) .因为PQ 垂直平分AB ,且PQ 在抛物线T 的对称轴上, 所以m -1a =(m -2)+m 2.因为m >1,可得a =1.所以抛物线T :y =x 2-2(m -1)x +2m 2-4m +1. 因为点B (m ,3)在抛物线T 上,所以m 2-2(m -1) m +2m 2-4m +1=3. 解得m 1=3+1,m 2=-3+1(舍去). 所以A (3-1,3),B (3+1,3),P (3,2). 所以点Q 的坐标为(3,4). 设对角线PQ ,AB 交于点G , 则点G 的坐标为(3,3). 所以AG =1,QG =1.所以△AGQ 是等腰直角三角形. 所以∠AQP =45°. 所以sin ∠AQP =2 2. 综上所述:存在点Q (3,4),使得四边形APBQ 是抛物线T 的“正菱形”,相应的 sin ∠AQP 的值为2 2.24.(本题满分12分)(1)(本小题满分4分) 解:四边形AOEF 即为所求.(因为所求作的四边形是平行四边形,所以能判定四边形AOEF 是平行四边形的所有作法均可)(2)①(本小题满分4分) 连接AD ,设⊙O 的半径为r . ∵ CD 与⊙O 相切于点D , ∴ ∠ODC =90°. ∵ ∠DCB =30°,∴ 在Rt △COD 中,∠AOD =60°. ∵扇形AOD 的面积为23π,∴ 60πr 2360=23π.可得 r =2.∵ AB 是⊙O 的直径, ∴ ∠ADB =90°.∴ 在Rt △ABD 中,AB =4,∠B =12∠AOD =30°.∴ BD =AB •cos30°=23. ∵ PD =3,∴ PD =12BD ,即P 是BD 的中点.∵ O 是AB 的中点,∴ OP 是△ABD 的中位线. ∴ OP ∥AD .又∵ EF ∥AO ,EF =AO ,∴ 四边形AOEF 是平行四边形. ∴ OP ∥AF .∵ 过直线OP 外点A 有且只有一条直线与已知直线OP 平行, ∴ AD 和AF 为同一条线,即点D 在直线AF 上.(2)②(本小题满分4分) 由(2)①知:∠ODC =90°,∠DCB =30°,AO =DO =2,四边形AOEF 是平行四边形. ∴ 在Rt △COD 中,CO =2DO =4,CD =23. ∴ CA =AO =2.∵ 四边形AOEF 是平行四边形, ∴ FE =AO =CA =2,EF ∥CA .∴ ∠MEF =∠MCA ,∠MFE =∠MAC . ∴ △EFM ≌△CAM .∴ CM =ME ,AM =FM =12AF =12EO .∵ FM ∥EO ,∴ ∠NFM =∠NOE ,∠NMF =∠NEO . ∴ △FMN ∽△OEN . ∴MN EN =MF EO =12. ∴ EN =2MN .当点N 与点D 重合时,设DM =m ,则DE =2m ,CM =ME =3m , ∵ CD =CM +DM =4m ,又CD =23, 可得m =32. ∴ DE =3.过点P 作PH ⊥DO 于H ,设PH =n , 在Rt △PDH 中,∵ ∠ODP =30°,∴ PD =2n ,DH =3n . ∵ ∠ODE =90°,∴∠OHP =∠ODE ,∠HOP =∠DOE . ∴ △OHP ∽△ODE .∴ HP DE =OH OD ,即n 3=2-3n 2. 可得n =235.∴ PD =435.所以当PD =435时,点D ,N 重合,此时由EN =2MN ,可得DE =2DM .当0<PD <435时,点D 在E ,N 之间,∵ EN =2MN ,∴ DE +DN =2(DM -DN ) . ∴ DE +3DN =2DM . 当435<PD <3时,点D 在M ,N 之间, ∵ EN =2MN ,∴ DE -DN =2(DM +DN ). ∴ DE -3DN =2DM . 综上,当0<PD ≤435时,DE +3DN =2DM ;当435<PD <3时,DE -3DN =2DM . 25.(本题满分14分)解:(1)(本小题满分4分)设营养素用量为x mg ,该种幼苗的生长速度为y cm .因为在10°C~15°C 范围内的不同温度下,该种幼苗的生长速度随着营养素用量的增加都会大致呈现出均匀增大的规律,所以可设y =mx +n (m ≠0) .根据表二,函数图象经过(0,1),(0.5,2),代入可得⎩⎪⎨⎪⎧ n =1 0.5m +n =2,解得⎩⎨⎧ m =2 n =1.所以y =2x +1(0≤x ≤0.5).(2)(本小题满分5分)不能提前12天完成,理由如下:由表二可知,在不使用营养素时,该种幼苗的生长速度是1 mm /天. 所以不使用营养素时,该种幼苗从10 mm 培育到30 mm 所需的时间是(30-10)÷1=20天.由表三可知,在10°C 下该种幼苗达到最大生长速度平均所需的营养素是0.540 mg ,即x =0.540.代入(1)中所求函数解析式可得y=2.08.即该种幼苗在10°C使用营养素的最大生长速度是2.08 mm/天.此种情况下,该种幼苗在20-12=8天内的生长高度为2.08×8=16.64 mm.因为10+16.64<30,所以不能提前12天完成.(3)(本小题满分5分)设营养素用量为x mg,该种幼苗的生长速度为y cm.因为在10°C~15°C范围内的不同温度下,该种幼苗的生长速度随着营养素用量的增加都会大致呈现出均匀增大的规律,所以可设y=kx+b(k>0).因为在10°C~15°C的温度下培育一种植物幼苗,该种幼苗在此温度范围内的生长速度相同,结合表二可知,当x=0时,都有y=1,所以b=1.即y=kx+1(k≠0).因为在10°C~15°C范围内的不同温度下,该种幼苗所能达到的最大生长速度始终不变,所以由(2)可知,在10°C~15°C范围内的不同温度下,y最大=2.08.且当y取最大值时,在10°C~15°C范围内的不同温度下,对应的营养素用量如表三中第二行数据所示,将(0.360,2.08),(0.270,2.08),(0.216,2.08),(0.180,2.08),(0.156,2.08)逐一代入y=kx+1,分别可求得在10°C~15°C范围内的不同温度下解析式中相应的k 的值,如下表所示:根据表中数据,k的值与相应的温度值大致符合关系式:k=t-8.所以y=(t-8)x+1,其中0≤x≤1.08t-8.所以在10°C~15°C范围内的不同温度下,该种幼苗的生长速度随营养素用量的增加而增大直至达到最大的规律可用关系式y=(t-8)x+1(0≤x≤1.08t-8)表示.答:(1)该关系式为y=2x+1(0≤x≤0.5);(2)不能提前12天完成;(3)该关系式为y=(t-8)x+1(0≤x≤1.08t-8).。

2023年福建省厦门市高考数学第二次质检试卷+答案解析(附后)

2023年福建省厦门市高考数学第二次质检试卷+答案解析(附后)

2023年福建省厦门市高考数学第二次质检试卷1. 复数,在复平面内对应的点分别为,,则( )A. B. C. D.2. 的展开式中项的系数等于80,则实数( )A. 2B.C.D.3. 不等式恒成立的一个充分不必要条件是( )A. B. C. D.4. 西施壶是紫砂壶器众多款式中最经典的壶型之一,是一款非常实用的泡茶工具如图西施壶的壶身可近似看成一个球体截去上下两个相同的球缺的几何体.球缺的体积为球缺所在球的半径,h为球缺的高若一个西施壶的壶身高为8cm,壶口直径为如图,则该壶壶身的容积约为不考虑壶壁厚度,取( )A. 494mlB. 506mlC. 509mlD. 516ml5. 厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为( )A. B. C. D.6. 如图,( )A.B.C. D.7. 圆O 为锐角的外接圆,,点P 在圆O 上,则的取值范围为( )A. B.C.D.8. 已知,,,则( )A.B. C. D.9. 李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则( )A.B.C. 李明计划7:34前到校,应选择坐公交车D. 李明计划7:40前到校,应选择骑自行车10. 函数的图象可以是( )A. B.C. D.11. 如图的六面体中,,,则( )A.平面ABCB. AC 与BE 所成角的大小为C.D. 该六面体外接球的表面积为12. 定义在R上的函数满足,函数的图象关于对称,则( )A. 的图象关于对称B. 4是的一个周期C. D.13. 将函数的图象向左平移个单位长度.得到函数的图象,若是奇函数,则______ .14.写出与直线,,和圆都相切的一个圆的方程______ .15.数列满足,若,,则______ .16. 不与x轴重合的直线l过点,双曲线C:上存在两点A、B关于l对称,AB中点M的横坐标为若,则C的离心率为______ .17. 的内角A,B,C的对边分别为a,b,c,已知求B;的角平分线与C的角平分线相交于点D,,,求AC和18. 如图,在直四棱柱中,,证明:四边形为正方形;若直线与平面ABCD所成角的正弦值为,,求平面与平面的夹角的大小.19. 记等差数列的公差为d,前n项和为;等比数列的公比为q,前n项和为,已知,,求d和q;若,,求的前2n项和.20. 移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是年移动物联网连接数W与年份代码t的散点图,其中年份对应的t 分别为根据散点图推断两个变量是否线性相关.计算样本相关系数精确到,并推断它们的相关程度;假设变量x与变量Y的n对观测数据为,,…,,两个变量满足一元线性回归模型随机误差请推导:当随机误差平方和取得最小值时,参数b的最小二乘估计.令变量,则变量x与变量Y满足一元线性回归模型利用中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数.附:样本相关系数,,,,21. 已知函数讨论的单调性:证明:对任意,存在正数b使得且22.已知椭圆C:的离心率为,左、右焦点分别为,,过的直线l交C于A,B两点.当轴时,的面积为求C的方程;是否存在定圆E,使其与以AB为直径的圆内切?若存在,求出所有满足条件的圆E的方程;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:由复数的几何意义可知,,,则故选:首先根据复数的几何意义求复数,再根据复数的乘法公式求解.本题主要考查了复数的运算,考查了复数的几何意义,属于基础题.2.【答案】D【解析】解:展开式的通项公式是,当时,项的系数为,解得:故选:根据展开式的通项公式,确定项的系数,即可求解.本题主要考查了二项式定理的应用,属于基础题.3.【答案】D【解析】解:不等式恒成立,显然不成立,故应满足,解得,所以不等式恒成立的充要条件是,A、C选项不能推出,B选项是它的充要条件,可以推出,但反之不成立,故是的充分不必要条件.故选:先求得不等式恒成立的充要条件,再找其充分不必要条件.本题主要考查充分条件、必要条件的定义,属于基础题.4.【答案】A【解析】解:如图作出几何体的轴截面如下面所示,依题意,,O为球心,D为壶口所在圆的圆心,所以,因为,所以,且,,所以球的半径,所以球缺的高,所以球缺的体积,所以该壶壶身的容积约为:故选:依题意作出几何体的轴截面图,即可求出对应线段的长,进而求出球的半径和球缺的高,再根据球的体积公式和球缺的体积求解即可.本题主要考查了球的体积公式,考查了学生的空间想象能力,属于中档题.5.【答案】C【解析】解:11个景点随机选取相邻的3个游览,共有9种情况,选取景点中有“水”的对立事件是在狐尾山、仙岳山、园山、薛岭山、虎头山、金山中选取3个相邻的,共有4种情况,则其概率,则11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率故选:利用对立事件,结合古典概型公式,即可求解.本题主要考查古典概型及其概率计算公式,属于基础题.6.【答案】A【解析】解:设终边过点Q的角为,终边过点P的角为,由三角函数的定义可得,,,,所以,,所以,故选:利用三角函数的定义和正弦、余弦的两角差公式求得和,再利用余弦的两角和公式计算即可.本题主要考查了三角函数的定义及和差角公式的应用,属于基础题.7.【答案】C【解析】解:由为锐角三角形,则外接圆圆心在三角形内部,如下图示,又,而,若外接圆半径为r,因为,,,两边平方得,,,则,故,且,即,由,对于且P在圆O上,当AP为直径时,当A,P重合时,,综上,,锐角三角形中,则,即恒成立,,则恒成立,综上所述,的取值范围为故选:把转化为,由余弦定理、数量积的定义得,讨论P的位置得,结合锐角三角形恒成立,即可得范围.本题主要考查了平面向量数量积的运算和性质,以及余弦定理的应用,属于中档题.8.【答案】A【解析】解:令,则,所以在上单调递增,又,所以,又,,,所以,故选:根据数的结构构造函数,利用导数法研究函数的单调性,最后利用单调性比较大小即可.本题主要考查了导数与单调性关系在函数值大小比较中的应用,解题的关键是根据已知式子合理构造函数,属于中档题.9.【答案】BCD【解析】解:由条件可知,,根据对称性可知,故A错误;B.,,所以,故B正确;C.,所以,故C正确;D.,,所以,故D正确.故选:首先利用正态分布,确定和,再结合正态分布的对称性,和的原则,即可求解.本题主要考查正态分布曲线的性质,考查运算求解能力,属于中档题.10.【答案】BC【解析】解:由函数解析式可知,a是不变号零点,b是变号零点,A.由图可知,变号零点是0,则,则,不成立,故A错误;B.由图可知,变号零点小于0,不变号零点为0,则,,此时,当,,当,,当时,,满足图象,故B正确;C.由图可知,,,当时,,当时,,当时,,满足图象,故C正确;D.由图可知,,,当时,,与图象不符,所以D 错误.故选:首先根据解析式确定零点类型,再结合图象,判断选项.本题主要考函数图象的判断,考查逻辑推理能力,属于中档题.11.【答案】ACD【解析】解:,,,,即,,又,平面ABC,故A正确;以点C为坐标原点,分别以,,为x轴,y轴,z轴的正方向,建立空间直角坐标系,如图所示:,四面体是正三棱锥,,四面体是正四面体,在正三棱锥中过点C作底面的垂线,垂足为正三角形ABD的中心,同理,在正四面体中,过顶点E作底面的垂线,垂足为正三角形ABD的中心,、G、E三点共线,,,,,且G是正三角形ABD的中心,,设,在正四面体中,,在正三棱锥中,,,解得,,,又,,故AC与BE所成角的大小为,故B错误;,,故C正确;显然,该六面体外接球的球心位于线段CE的中点,,六面体外接球的半径,该六面体外接球的表面积为,故D正确.故选:利用线面垂直的判定定理、空间向量以及球的表面积公式进行计算求解.本题主要考查了直线与平面垂直的判定定理,考查了利用空间向量求异面直线所成的角,以及多面体的外接球问题,属于中档题.12.【答案】AD【解析】解:对A:因为关于对称,有,令,则,的图象关于对称.选项A正确;对B:由题设条件得,令,有,则的图象于对称,因为,有,即,则的图象关于对称.所以,又,所以,所以,所以,所以4为的一个周期,即,则选项B不正确;对C:由上知图象关于对称,对称,则令符合题意,而故C不正确;对D:因为图象关于对称,所以,故,有选项D正确.故选:对A:由函数的图象关于对称可推得的图象关于对称.对B:令,由及可得到的图象于对称且关于对称,故4为的一个周期,而不是的一个周期.对C:举例说明对D:由的周期性求得的值.本题考查函数性质的综合运用,令是解题的关键,通过研究的对称性,周期性得到的性质,关于的求值问题也转化为的求值问题,考查了转化思想以及运算求解能力,属于中档题.13.【答案】【解析】解:函数向左平移个单位长度,得到函数,函数是奇函数,所以,则,,则,,因为,所以故答案为:首先根据平移规律求函数的解析式,再根据函数是奇函数,求的值.本题主要考查三角函数的图象变换,正弦函数的性质,考查运算求解能力,属于基础题.14.【答案】答案不唯一,只需满足与直线,,和圆都相切即可【解析】【分析】本题主要考查直线与圆的位置关系,属于基础题.根据相切关系,列出圆心和半径应该满足的条件即可.【解答】解:设圆的方程为:,和与直线,相切可以得:,和圆相切得:或,若,则,,此时圆的方程:故答案为:答案不唯一,只需满足与直线,,和圆都相切即可15.【答案】【解析】解:,,,,,,故数列的周期为4,又,故答案为:由递推公式可得数列的周期为4,又,则,即可得出答案.本题考查数列的递推式,考查转化思想,考查运算能力,属于基础题.16.【答案】2【解析】解:设,,,则,两式相减得,即,即,所以,因为l是AB垂直平分线,有,所以,即,化简得,故故答案为:由点差法得,结合得,代入斜率公式化简并利用可求得离心率.本题主要考查了点差法的应用,考查了计算的能力,属于中档题.17.【答案】解:由余弦定理可得,,整理可得,则,且,所以;因为AD,CD分别是,的角平分线,连接BD,则BD为的角平分线,即点D为三角形的内心,则,又因为,,在中,由余弦定理可得,,则,过点D,分别做AC,AB,BC的垂线,垂足为E,G,F,在中,,可得,即,在直角三角形BDF中,,则【解析】根据题意,由余弦定理化简即可得到结果;由题意可得,然后由余弦定理即可得到AC,然后在中,由等面积法即可得到DE,从而求得本题主要考查解三角形,考查转化能力,属于中档题.18.【答案】解:证明:根据题意易知,又,且,平面,又平面,,又,且,平面,又平面,,又四边形是矩形,是正方形;如图,以,DC,DA所在直线分别为x轴,y轴,z轴,建立如图所示空间直角坐标系,设,,则,,所以,设ABCD的一个法向量为,设直线与平面ABCD所成的角为,则,解得,,,,,,设平面的法向量为,则,取,设平面的法向量为,则,,取,,又,,平面与平面的夹角为【解析】易证平面,从而得到,再由,以平面,从而得到,然后由正方形的定义证明即可;建立空间直角坐标系,设,,根据直线与平面ABCD所成角的正弦值为求得a,b的关系,再分别求得平面与平面的一个法向量,再通过向量夹角公式计算,即可求解.本题考查线面垂直的判定定理与性质,向量法求解线面角问题,向量法求解面面角问题,化归转化思想,属中档题.19.【答案】解:由已知条件可得:①,②,③,由①②消去得:,由①③得:,所以,得或,所以,或当时,,则,所以,所以,,则的前2n项和S为【解析】根据条件建立关于,,q的方程组,求解即可;可求得,再使用分组求和即可.本题考查等差数列与等比数列的综合运用,考查分组求和法的运用,考查运算求解能力,属于中档题.20.【答案】解:由散点图可以看出样本点都集中在一条直线附近,由此推断两个变量线性相关,因为,所以,所以,所以这两个变量正线性相关,且相关程度很强;,要使Q取得最小值,当且仅当;由知,所以y关于x的经验回归方程,又,所以当时,则,所以预测2024年移动物联网连接数亿户.【解析】根据相关系数计算,若两个变量正相关,若两个变量负相关,越接近于1说明线性相关越强;整理得,根据二次函数求最小值时b的取值;根据计算公式求得经验回归方程,并代入可预测2024年移动物联网连接数.本题主要考查了相关系数的计算,考查了线性回归方程的求解,属于中档题.21.【答案】解:,当,则,则函数在R上单调递减,若,令,得,当,,单调递减,当时,,单调递增,综上可知,当,函数在R上单调递减,当时,在上单调递减,在上单调递增;证明:由可知,当时,,且在上单调递减,在上单调递增,因为,所以,因为,设,,所以在上单调递减,所以,即,由零点存在性定理知,使得,取,则,且【解析】首先求函数的导数,分和两种情况,讨论函数的单调性;由的单调性可知,再通过构造函数,利用导数判断函数的单调性,并结合零点存在性定理证明.本题考查函数的单调性,导数及其应用,考查推理,论证,运算能力,考查函数与方程思想,化归于转化思想,分类与整合思想,本题的关键是根据,构造函数,再根据导数判断,22.【答案】解:已知椭圆C的离心率为,所以;由当轴时,的面积为3,得,即,又,所以,又,则,所以椭圆方程为;当轴时,以AB为直径的圆的圆心为,半径,当l为x轴时,以AB为直径的圆的圆心为,半径,因为直线l过点,所以以AB为直径的所有圆关于x轴两两对称的,根据对称性可知,圆E与以AB为直径的圆内切时,圆心在x轴上.设圆心,半径为R,当以AB为直径的圆在圆E内部与E相切时,则,,故,又,所以,,即,,圆E的方程为,当以AB为直径的圆在圆E外部与E相切时,则,,故,又,所以,,即,,圆E的方程为,当直线l斜率不为零时,设直线l的方程为,,,联立,得,则,,所以AB的中点即以AB为直径的圆的圆心,半径,当圆E的方程为时,,此时,所以以AB为直径的圆与E相切,当圆E的方程为时,,此时,所以以AB为直径的圆与E相切,综上圆E的方程或【解析】由椭圆的离心率及的面积为3,列出两个基本量的方程求解即可;根据对称性可知,圆E的圆心在x轴上,利用直线l特殊位置时求出符合条件的圆E的方程,一般情况下前进性验证即可.本题主要考查了与圆锥曲线相关的圆问题,因为圆的方程在圆锥曲线的求解过程中计算量比较大,所以往往不直接进行求解,而是由特殊位置求解圆的方程或者找到其特征,再一般情况下进行验证即可,属于中档题.。

2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列说法错误的是()A .当3x ≠时,分式453x x +-有意义B .当1x =时,分式11x x +-无意义C .不论a 取何值,分式221a a +都有意义D .当1x =时,分式11x x -+的值为02、(4分)已知正比例函数(0)y kx k =<的图象上两点()11,A x y 、()22,B x y ,且12x x <,下列说法正确的是()A .12y y >B .12y y <C .12y y =D .不能确定3、(4分)如图,将一个矩形纸片ABCD 折叠,使C 点与A 点重合,折痕为EF ,若AB=4,BC=8,则BE 的长是()A .3B .4C .5D .64、(4分)若把分式2xy x y +的x 、y 同时扩大3倍,则分式值()A .不变B .扩大为原来的3倍C .缩小为原来的13D .扩大为原来的9倍5、(4分)已知不等式ax+b >0的解集是x <-2,则函数y=ax+b 的图象可能是()A.B.C.D.6、(4分)下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.一组对边平行,另一组对边相等的四边形是等腰梯形C.如果22a b=,那么a b=D.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月7、(4分)关于x的分式方程233x ax x-=++有增根,则a的值为()A.﹣3B.﹣5C.0D.28、(4分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.10、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y=kx+b (k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B 5的坐标是_____________。

2022-2023学年厦门市九年级质量检查(二检)数学试题及答案

2022-2023学年厦门市九年级质量检查(二检)数学试题及答案

准考证号:___________ 姓名:________(在此卷上答题无效)2023年厦门市初中毕业班模拟考试数学本试卷共6页.满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B铅笔作图.一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.根据国家统计局发布的数据,2022年我国人均可支配收入已超36000元,扣除价格因素,与2021年相比上涨2.9%.其中36000用科学记数法表示为A.36×103B.3.6×103C.3.6×104D.0.36×1052.图1所示的立体图形的左视图是A.B.C.D.3.下列点中,在函数y=x-2的图象上的是A.(2,0)B.(0,2)C.(-2,0)D.(2,2)4.下列运算正确的是A.3a+2a=5a2B.3a-2a=1C.3a2-a=2a D.ab+2ab=3ab5.如图2,在四边形ABCD中,AD//BC,点E在AD边上,BD平分∠EBC.下列角中,与∠BDE相等的是A .∠ABE B.∠AEB C.∠EBD D.∠BDC6.某初中校有七、八、九三个年级.学期初,校医随机调查了35%的七年级学生的身高,并计算出这些学生的平均身高为a米.下列估计最合理的是A.该校学生的平均身高约为a米B.该校七年级学生的平均身高约为a米C.该校七年级女生的平均身高约为a米D.该校七年级男生的平均身高约为a米主视方向图1图2BA ECD7.根据物理学规律,如果把一个小球从地面以10 m/s 的速度竖直上抛,那么小球经过x s 离地面的高度(单位:m )为10x -4.9x 2.根据该规律,下列对方程10x -4.9x 2=5的两根x 1≈0.88与x 2≈1.16的解释正确的是 A .小球经过约1.02 s 离地面的高度为5 m B .小球离地面的高度为5 m 时,经过约0.88 sC .小球经过约1.16 s 离地面的高度为5 m ,并将继续上升D .小球两次到达离地面的高度为5 m 的位置,其时间间隔约为0.28 s 8.小梧要在一块矩形场地上晾晒传统工艺制作的蜡染布.如图3所示,该矩形场地北侧安有间隔相等的7根栅栏,其中4根栅栏处与南侧的两角分别固定了高度相同的木杆a ,b ,c ,d ,e ,f .这些木杆顶部的相同位置都有钻孔,绳子穿过木杆上的孔可以被固定.小梧想用绳子在南侧的两条木杆e ,f 和北侧的一条木杆上连出一个三角形,以晾晒蜡染布.小梧担心手中绳子的总长度不够,那么他在北侧木杆中应优先选择 A .aB .bC .cD .d二、填空题(本大题有8小题,每小题4分,共32分) 9.不等式2x -4≤0的解集为___________.10.一个不透明盒子中装有1个红球、2个黄球,这些球除颜色外无其他差别.从该盒子中随机摸出1个球,请写出概率为13的事件:_________________________________.11.小桐花45元在文具店购买了一些水笔和笔记本,这两种文具的单价分别为7元/支、5元/本.设小桐购买了x 支水笔和y 本笔记本,根据已知信息,可列出方程:______________________. 12.如图4,在矩形ABCD 中,对角线AC ,BD 交于点O ,AB =1,∠BOC =120°,则AC 的长为____________________________. 13.如图5,AP 平分∠MAN ,PB ⊥AM 于点B ,点C 在射线AN 上,且AC <AB .若PB =3,PC =5,AC =7,则AB 的长为__________.14.根据电子平台“班级书屋”上发布的读书笔记的数量(单位:篇),某班计划选出全体成员都有较高积极性的“读书明星小组”.班委对本班4个小组(每个小组人数相同)的每位成员上学期发布的读书笔记的数量进行统计,结果如表一所示.根据表一,最适合当选为该班“读书明星小组”的是___________.表一15.在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 的坐标分别为(m ,m ),(m ,m -5),则点C 的坐标为______________________.(用含m 的式子表示) 16.已知二次函数y =-x 2+2ax +a +1,若对于-1<x <a 范围内的任意自变量x ,都有y >a +1,则a 的取值范围是______________________. 三、解答题(本大题有9小题,共86分) 17.(本题满分8分)计算:(-2023)0+|1-2|+(-3)2.18.(本题满分8分)如图6,四边形ABCD 是平行四边形,延长BC 到点E ,使得CE =BC ,连接AE 交CD 于点F .证明:F 是CD 的中点.19.(本题满分8分)先化简,再求值:a 2-2a +1a 2+a ÷(1-2a +1),其中a =3.20.(本题满分8分)如图7,在△ABC 中,AB =AC ,∠B =22.5°.以点C 为圆心,CA 为半径作圆,延长BA 交⊙C 于点D .(1)请在图7中作出点C 关于直线BD 的对称点C 1;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接C 1D ,证明:直线C 1D 与⊙C 相切.某厂在某车间全体员工中随机抽取40名进行生产技能测试,并绘制了这40名员工完成规定操作的用时t(单位:s)的频数分布直方图,如图8所示.(1)根据图8,请估计这40名员工完成规定操作的平均用时;(2)按该厂的评定标准,此次测试中,仅最后一组(55<t≤57)被认定为生产技能不达标.在该车间随机抽取一名员工,估计事件“该员工的生产技能达标”的概率.22.(本题满分10分)某医药企业几年前研制并上市一种新的特效药,销售部门根据该药品过去几年的销售数据、同类特效药的销售数据以及对市场的分析、预估,绘制了该药品年销售量y(单位:万盒)随价格x(单位:元/盒)变化的大致图象(图象由部分双曲线AB与线段BC组成),如图9所示.该药品2021年价格为60元/盒,经国家医保局与该医药企业谈判,将该药纳入医保,2022年价格下调至30元/盒.但在制药成本不变的情况下,当年销售该药品的利润还是与2021年相同.根据已知信息解决下列问题:(1)求2022年该药品的年销售量;(2)该企业2023年将使用新研发的制药技术,使制药成本降低40%.为惠及更多患者,该企业计划在2023年继续下调该药品的价格,并希望当年销售该药品的利润比2022年至少增加2500万元用于制药技术的研发.请你为该企业设定该药品价格的范围,并说明理由.《九章算术》句股章[一五]问“句股容方”描述了关于图形之间关系的问题:知道一个直角三角形较短直角边(“句”)与较长直角边(“股”)的长度,那么,以该三角形的直角顶点为一个顶点、另外三个顶点分别在该三角形三边上的正方形的边长就可以求得.(我们不妨称这个正方形为该直角三角形的“句容正方形”) 其文如下:题:今有句五步,股十二步.问句中容方几何? 答:方三步,十七分步之九.术:并句、股为法,句股相乘为实,实如法而一,得方一步. “题”、“答”、“术”的意思大致如下:问题:一个直角三角形的两直角边的长分别为5和12,它的“句容正方形”的边长是多少? 答案:3917.解法:5×125+12=6017=3917.(1)根据“句股容方”中描述的直角三角形与其“句容正方形”之间的关系,请提出一个数学命题,并证明; (2)应用(1)中的命题解决问题:某市去年举办中小学校园文化展览,举办方在某广场搭建了一个展馆(平面示意图为正方形),并综合考虑参展主题、参展单位等因素将展馆划分为四个展区,规划方案如图10所示.其中,E 是DC 的中点,点H ,G 在BC 边上,HF 垂直平分AE ,垂足为F ,∠BAE =∠AEG .今年,为了让更多人参与,举办方拟在北湖公园的一块菱形场地上搭建展馆.该菱形场地面积为19200 m 2,且两条对角线长度之和为400 m .考虑到展览安全、公园环境等各方面的因素,若举办方希望沿用去年展馆及展区的规划方案,则展馆的建设需满足以下要求:①展馆平面示意图中的A ,B ,C ,D 四个点分别落在菱形场地的四条边上;②展馆主入口BH 的宽度为12 m .去年的规划方案是否可行?请说明理由.点O是直线MN上的定点,等边△ABC的边长为3,顶点A在直线MN上,△ABC从O点出发沿着射线OM方向平移,BC的延长线与射线ON交于点D,且在平移过程中始终有∠BDO=30°,连接OB,OC,OB交AC于点P,如图11所示.(1)以O为圆心,OD为半径作圆,交射线OM于点E,①当点B在⊙O上时,如图12所示,求︵BE的长;②⊙O的半径为r,当△ABC平移距离为2r时,判断点C与⊙O的位置关系,并说明理由;(2)在平移过程中,是否存在OC=OP的情形?若存在,请求出此时点O到直线BC 的距离;若不存在,请说明理由.25.(本题满分14分)我们称抛物线y=ax2+bx+c从左往右上升的这一侧是此抛物线递增的一侧.若一个四边形内不含抛物线y=ax2+bx+c递增一侧的任意部分,则称该四边形是此抛物线的“非递增四边形”.抛物线y=x2-2mx+m (m≥2)的顶点为P,与y轴交于点A,与x轴交于点B(n,0) (n>m),过点A作与x轴平行的直线交抛物线于点M,将△OMB绕点O顺时针旋转90°,点M的对应点是M1,点B的对应点是B1.(1)若点A的坐标为(0,2),求点B1的坐标;(2)若m<3,①求点P与M1的距离;(用含m的式子表示)②将抛物线y=x2-2mx+m向右平移t(t>0)个单位,记平移后的抛物线为抛物线T.证明:当t≥3-m时,以点M,P,M1,Q(2m,m2-2m)为顶点的四边形是抛物线T的“非递增四边形”.2023年厦门市初中毕业班模拟考试参考答案数 学说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共8小题,每题4分,共32分)9. x ≤2. 10. 摸出红球. 11. 7x +5y =45. 12. 2. 13.11.14. 乙. 15.(m +5,m -5)或(m -5,m -5).16.-1<a ≤-12.三、解答题(本大题有10小题,共86分) 17.(本题满分8分)解:原式=1+2-1+9……………………6分 =9+2……………………8分18.(本题满分8分)证明(方法一):∵ 四边形ABCF 是平行四边形, ∴ AD ∥BC ,AD =BC . ……………………2分 ∴ ∠DAF =∠E ,∠D =∠DCE . ……………………3分 ∵ CE =BC ,AD =BC ,∴ AD =CE . ……………………4分 ∴ △ADF ≌△ECF . ……………………6分 ∴ DF =CF . ……………………7分 ∴ F 是CD 的中点. ……………………8分证明(方法二):∵ 四边形ABCF 是平行四边形, ∴ AB ∥CD ,AB =CD . ……………………2分 ∴ ∠DCE =∠B . ……………………3分又∵ ∠E =∠E ,∴ △ECF ~△EBA . ……………………5分 ∴ CF BA =CE BE .……………………6分∵ CE =BC ,∴ BE =2CE . ∴ CF =12BA .∵ AB =CD , ∴ CF =12CD .……………………7分 ∴ F 是CD 的中点.……………………8分19.(本题满分8分)解:原式=a 2-2a +1a 2+a ÷a -1a +1……………………2分 =(a -1)2 a ( a +1) ·a +1a -1 ……………………5分 =a -1a……………………6分当a =3时,原式=3-1 3=3-33……………………8分20.(本题满分8分)解:(1)(本小题满分4分)如图点C 1即为所求. ……………………4分 解法一(利用SSS 作全等三角形):解法二(利用SAS 作全等三角形):解法三(利用ASA 作全等三角形):解法四(利用对称轴垂直平分对应点所连线段):(2)(本小题满分4分)解法一:证明:连接CC1,DC1,CC1交AD于点E,∵AB=AC,∴∠B=∠ACB=22.5°. ……………………5分又∵∠CAD是△ABC的外角,∴∠CAD=2∠B=45°. ……………………6分在⊙C中,CA=CD,∴∠CDA=∠CAD=45°. ……………………7分由(1)得,DA垂直平分CC1.∴DC1=DC,∴在△C1DC中,DE平分∠C1DC.∴∠C1DC=2∠CDA=90°.即C1D⊥CD.D与⊙C相切.……………………8分∴直线C1解法二:证明:连接C1A,C1D,CD.∵AB=AC,∴∠B=∠ACB=22.5°. ……………………5分又∵∠CAD是△ABC的外角,∴∠CAD=2∠B=45°. ……………………6分在⊙C中,CA=CD,∴∠CDA=∠CAD=45°.……………………7分由(1)得,△ACD≌△AC1D.∴∠C1DA=∠CDA=45°.∴∠C1DC=2∠CDA=90°.即C1D⊥CD.D与⊙C相切.……………………8分∴直线C121.(本题满分8分)解:(1)(本小题满分5分)根据图8,这40名员工完成规定操作的平均用时约为48×7+50×4+52×7+54×16+56×640……………………………………3分=52.5 s……………………………………5分(2)(本小题满分3分)P (该员工的生产技能达标)=40-640=3440=1720.…………………………8分答:(1)这40名员工完成规定操作的平均用时约为52.5 s ;(2)在该车间随机抽取.22.(本题满分10分)解:(1)(本小题满分4分)设双曲线AB 的解析式为y =kx(k ≠0).…………………………1分 由图可知:反比例函数图象经过点(28,750) .…………………………2分可得k =28×750=21000. 所以y =21000x ( 0<x ≤30) .所以当x =30时,y =2100030=700.…………………………4分(2)(本小题满分6分)解法一:设2021年的制药成本为a 元/盒,由图象可知,价格为60元/盒时,该药品的年销售量为100万盒. 因为2022年销售该药品的利润与2021年相同, 可得700(30-a )=100(60-a ) .…………………………5分化简得7(30-a )=60-a . 解得a =25.…………………………6分因为2023年继续下调该药品的价格,所以2023年该药品的价格x ≤30,则年销售量为21000x 万盒.………………7分依题意得21000x [x -25×(1-40%)]≥700×(30-25)+2500.……………………8分化简得21x≤1.因为x >0,根据不等式的性质,不等式两边同乘以正数x ,可得x ≥21. ……9分 所以21≤x <30.答:(1)2022年该药品的年销售量是700万盒;(2)该药品价格x 满足21≤x <30元/盒. 【说明,结合本题考查目标,第(2)题结论为21≤x ≤30亦可】…………………………10分解法二:设2021年的制药成本为a 元/盒,由图象可知,价格为60元/盒时,该药品的年销售量为100万盒. 因为2022年销售该药品的利润与2021年相同, 可得700(30-a )=100(60-a ) .…………………………5分化简得7(30-a )=60-a . 解得a =25.…………………………6分因为2023年继续下调该药品的价格,所以2023年该药品的价格x ≤30,则年销售量为21000x 万盒.………………7分依题意得21000x [x -25×(1-40%)]≥700×(30-25)+2500. …………………………8分化简得21x ≤1.令m =21x ,因为21>0,所以当x >0时,m 随x 的增大而减小. 又因为当m =1时,x =21, 所以当m ≤1时,x ≥21.…………………………9分 所以21≤x <30.答:(1)2022年该药品的年销售量是700万盒;(2)该药品价格x 满足21≤x ≤30元/盒. 【说明,结合本题考查目标,第(2)题结论为21≤x ≤30亦可】…………………………10分23.(本题满分10分)解:(1)(本小题满分5分) 解法一:命题:如果直角三角形的两条直角边长分别为a ,b ,那么该直角三角形的“句容正方形”边长是aba +b.……………………2分已知:如图,在Rt △ABC 中,∠C =90°,BC =a ,AC =b .四边形DECF 是正方形,且点D ,E ,F 分别在边AB , BC ,AC 上.求证:DE =aba +b . ……………………………………3分证明:∵ 四边形ABCD 是正方形,FE DCB AFE DCB A∴ DE //AC ,DE =EC .∴ △BED ∽△BCA . ……………………………………4分 ∴ DE AC =BE BC .∴ DE b =a -DE a .∴ DE =ab a +b.……………………………………5分解法二:命题:如果直角三角形的两条直角边长分别为a ,b ,那么该直角三角形的“句容正方形”边长是aba +b . ………………………………2分已知:如图,在Rt △ABC 中,∠C =90°,BC =a ,AC =b .四边形DECF 是正方形,且点D ,E ,F 分别在边AB , BC ,AC 上.求证:DE =aba +b . ……………………………………3分证明:连接CD .∵ 四边形ABCD 是正方形,∴ ∠DEC =∠DFC =90°,DE =DF .∴ S △ABC =S △BCD +S △ACD =12a ·DE +12b ·DF =12(a +b )·DE .…………4分∵ ∠C =90°, ∴ S △ABC =12ab .∴ 12(a +b )·DE =12ab . ∴ DE =ab a +b.……………………………………5分(2)(本小题满分5分)解法一:去年的规划方案可行.理由如下:设菱形场地的两条对角线长分别为2a 米,2b 米,由题意得⎩⎪⎨⎪⎧12·2a ·2b =192002a +2b =400,化简得⎩⎨⎧ab =9600a +b =200.如图①,若正方形ABCD 的四个顶点分别在菱形的四条边上,且DC ⊥OQ ,点E 在线段OQ 上, 则DE 是Rt △POQ 的“句容正方形”的边长.由(1)得DE =a +bab =48米. …………………………7分如图②,∵ E 是DC 的中点,DQP O ABCE 图①∴ DC =2DE =96米.∵ 四边形ABCD 是正方形,∴ AD =AB =DC =96米,∠D =∠DAB =∠ABC =90°.∴ ∠1+∠2=90°,且在Rt △ADE 中, AE =AD 2+DE 2 =485米. ∴ sin ∠1=DE AE =55,tan ∠1=DE AD =12.∵ F 是AE 的中点, ∴ AF =12AE =245米.延长AB ,FH 交于点M . ∵ FH ⊥AE ,∴ ∠AFM =90°. ∴ ∠M +∠2=90°. ∴ ∠M =∠1. ∴ sin M =sin ∠1=55,tan M =tan ∠1=12. ∴ 在Rt △AFM 中,sin M =AF AM =55. ∴ AM =120米. ∴ BM =AM -AB =24米. ∵ ∠ABC =90°, ∴ ∠MBH =90°.∴ 在Rt △MBH 中, tan M =BH BM =12.∴ BH =12BM =12米.所以去年的规划方案可行. ………………………………………………10分解法二:去年的规划方案可行.理由如下: 如图①,设DE =x , ∵ E 是DC 的中点, ∴ DC =2DE =2x .∵ 四边形ABCD 是正方形,∴ AD =AB =DC =2x ,∠D =∠DAB =∠ABC =90°. ∴ ∠1+∠2=90°,且在Rt △ADE 中, AE =AD 2+DE 2 =5x . ∴ sin ∠1=DE AE =55,tan ∠1=DE AD =12.∵ F 是AE 的中点, ∴ AF =12AE =52x .延长AB ,FH 交于点M . ∵ FH ⊥AE ,∴ ∠AFM =90°.21M H GFA BCDE图①21MH GFA B CDE图②∴ 在Rt △AFM 中,∠M +∠2=90°. ∴ ∠M =∠1. ∴ sin M =sin ∠1=55,tan M =tan ∠1=12. ∴ 在Rt △AFM 中,sin M =AF AM =55. ∴ AM =52x .∵ ∠ABC =90°, ∴ ∠MBH =90°.∴ 在Rt △MBH 中, tan M =BH BM =12.∵ BH =12米, ∴ BM =24米. ∵ AM -AB =BM , ∴ 52x -2x =24 ∴ x =48,即DE =48米. ………………………………8分 设菱形场地的两条对角线长分别为2a 米,2b 米, 由题意得⎩⎪⎨⎪⎧12·2a ·2b =192002a +2b =400,化简得⎩⎨⎧ab =9600a +b =200.如图②,若正方形ABCD 的四个顶点分别在菱形的四条边上,且DC ⊥OQ ,点E 在线段OQ 上,则DE 是Rt △POQ 的“句容正方形”的边长. 由(1)得DE =a +bab=48米.所以去年的规划方案可行.…………………………10分24.(本题满分12分)解:(1)①(本小题满分4分) ∵ 点B 在⊙O 上, ∴ OB =OD .∴ ∠OBD =∠ODB =30°. ∴ ∠AOB =60°.……………………1分∵ △ABC 是等边三角形, ∴ ∠ABC =60°. ∵ ∠OBD =30°,∴ 在△ABD 中,∠BAD =90°.……………………2分∵ 在Rt △AOB 中,sin ∠AOB =AB BO,DQP O ABCE 图②∴ BO =AB sin ∠AOB =3sin60°=2.……………………3分 ∴ ︵BE l =60π×2180=23π.……………………4分②(本小题满分4分)点C 在⊙O 上.理由如下: ……………………5分过点O 作OH ⊥BC 于H ,由(1)得,在Rt △BAD 中,∠BDO =30°,tan ∠BDO =ABAD. ∴ AD =AB tan ∠BDO =3tan30°=3,BD =2AB =23.∴ CD =BD -BC =3. ∴ AD =OA +OD =3. ∵ OA =2r ,OD =r , ∴ 3r =3,r =1,即OD =1.∵ 在Rt △ODH 中,∠BDO =30°,cos ∠BDO =HDOD ,∴ HD =OD ·cos ∠BDO =cos30°=32. ………………7分 ∵ CD =3, ∴ HD =CH =12CD .∵ OH ⊥BC , ∴ OC =OD . ∴ 点C 在⊙O 上.……………………8分(2)(本小题满分4分)解法一:存在OC =OP 的情形,理由如下:过点O 作OH ⊥BC 于H ,过点A 作AG ⊥BC 于G ,交BO 于点E ,连接EC . 若存在OC =OP ,则∠OPC =∠OCP , ∵ △ABC 是等边三角形, ∴ ∠BAC =∠ACB =60°.∴ ∠OPC =∠APB =180°-∠BAC -∠1=120°-∠1. ∴ ∠OCP =180°-∠ACB -∠2=120°-∠2. ∴ ∠1=∠2. ∵ AG ⊥BC ,∴ ∠3=12∠BAC =30°,BG =CG .321E OHGPNMDCB AHABCDOMNP∵ ∠1=∠2,AB =CD =3,∠3=∠ODC =30°, ∴ △ABE ≌△DCO . …………………………10分∴ BE =CO . 又∵ BE =CE , ∴ CE =CO .设∠EBG =α,则∠ECB =∠EBG =α. ∴ ∠OEC =∠COP =2α.∵ ∠1=∠ABC -∠EBG =60°-α, ∴ ∠OPC =∠OCP =120°-∠1=60°+α.∴ 在△OPC 中,2(60°+α)+2α=180°. ………………11分 ∴ α=15° . ∴ ∠1=45°=∠2.∴ 在Rt △OHC 中,∠OCH =45°. ∴ CH =OH .∵ 在Rt △ODH 中,∠ODH =30°, ∴ OH =12OD =12r =CH .∴ HD =32r . ∵ CH +HD =CD , ∴ 12r +32r =3. 解得r =3-3.此时AO =AD -r =3,OH =12r =3-32.∴ 当平移距离AO 为3时,OC =OP ,此时点O 到直线BC 的距离为 3-32.………………………………12分解法二:存在OC =OP 的情形,理由如下: 过点O 作OH ⊥BC 于H .若存在OC =OP ,则∠OPC =∠OCP , ∵ △ABC 是等边三角形, ∴ ∠BAC =∠ACB =60°.∴ ∠OPC =∠APB =180°-∠BAC -∠1=120°-∠1. ∴ ∠OCP =180°-∠ACB -∠2=120°-∠2.321E OHGPNMDCB A∵ ∠BAO =∠CHO =90°, ∴ △BAO ∽△CHO . ………………………………10分∴ OA AB =OH CH.∵ 在Rt △ODH 中,∠ODH =30°, ∴ OH =12OD =12r .∴ HD =32r . ∴ CH =CD -HD =3-32r . 又∵ OA =AD -r =3-r , ∴ 3-r 3=12r 3-32r①. ………………………………11分 化简得3-r =r2-r.解得r 1=3+3,r 2=3-3. 经检验,r 1,r 2都是方程①的解. ∵ OA =3-r ≥0, ∴ r ≤3. ∴ r =3-3.此时AO =AD -r =3,OH =12r =3-32.∴ 当平移距离AO 为3时,OC =OP ,此时点O 到直线BC 的距离为 3-32.………………………………12分25.(本题满分14分)解:(1)(本小题满分4分) 因为点A 的坐标为(0,2) , 所以m =2. …………………………2分 所以此时抛物线的解析式为y =x 2-4x +2. 令x 2-4x +2=0,解得x =2±2.因为抛物线与x 轴交于点B (n ,0),且n >2,所以n =2+2. ………………………………3分 所以B (2+2,0) .因为将△OMB 绕点O 顺时针旋转90°,点B 的对应点是B 1,ABCDMNPHO 12所以OB =OB 1且点B 1在y 轴的负半轴上.所以B 1 (0,-2-2). ………………………………4分(2)①(本小题满分4分)由y =x 2-2mx +m 得y =(x -m )2+m -m 2, …………………………5分 所以抛物线的对称轴为x =m ,顶点P (m ,m -m 2). 因为AM ∥x 轴且点M 在抛物线上, 所以y A =y M .所以点A 与M 关于直线x =m 对称, 所以M (2m ,m ), …………………………6分 所以AO =m ,AM =2m .如图,过点M 1作y 轴的垂线,垂足为C .因为将△OMB 绕点O 顺时针旋转90°,点M 的对应点是M 1, 所以∠MOM 1=90°,OM =OM 1. 因为∠OCM 1=90°,∠OAM =90°,所以∠AOM +∠AMO =90°,∠COM 1+∠AOM =90°. 所以∠AMO =∠COM 1. 所以△AOM ≌△CM 1O .所以CM 1=AO =m ,OC =AM =2m . ……………………7分因为点M 1在第四象限,所以M 1(m ,-2m ). 因为x P =x M 1,所以PM 1=y P -y M 1=(m -m 2)-(-2m )=3m -m 2.因为2≤m <3,所以3m -m 2=m (3-m )>0.所以P 与M 1的距离PM 1=3m -m 2. ……………………………8分②(本小题满分6分)因为Q (2m ,m 2-2m ),M (2m ,m ),M 1(m ,-2m ),P (m ,m -m 2), 所以y M -y Q =m -(m 2-2m ) =3m -m 2=m (3-m )>0. 所以点M 在点Q 的上方.所以PM 1∥MQ ∥y 轴,PM 1=MQ =3m -m 2.所以四边形PM 1QM 是平行四边形,且边M 1Q 在边MP 的下方. …………………10分 设直线M 1Q 的函数解析式为y =kx +d ,将M 1(m ,-2m ),Q (2m ,m 2-2m )分别代入y =kx +d 中得⎩⎨⎧km +d =-2m 2km +d =m 2-2m ,解得⎩⎨⎧k =m d =-m 2-2m. 所以M 1Q 的函数解析式为y =mx -m 2-2m . ………………………11分 当t =3-m 时,抛物线记为T 1,解析式为y =(x -3)2+m -m 2,此时顶点为(3,m -m 2). 将x =3代入y =mx -m 2-2m 中,得y =m -m 2. 所以抛物线T 1的顶点在直线M 1Q 上.因为抛物线T 1在x <3时,从左向右下降;x >3时,从左向右上升,所以要证点四边形MPM1Q是抛物线T1的“非递增四边形”,只需证当3<x<2m时,抛物线T1不在四边形MPM1Q内.因为mx-m2-2m-[(x-3)2+m-m2]=(x-3)(m+3-x).因为m<3,所以2m<m+3.又因为3<x<2m,所以(x-3)(m+3-x)>0.所以当t=3-m时,抛物线T1始终在M1Q的下方,因此四边形MPM1Q是抛物线T1的“非递增四边形”.……………………………………12分当t>3-m时,设点H(x1,y1)为抛物线T上升部分的任意一点,则在抛物线T1的上升部分必定存在点H的平移对应点H1,设H1(x1-p,y1),其中p>0. 过点H作x轴的垂线交抛物线T1于点G(x1,y2),则H1(x1-p,y1),G(x1,y2)都在抛物线T1的上升部分,即x1-p>3,x1>3.因为对于抛物线T1,当x>3时,y随x增大而增大,又因为x1-p<x1,所以y1<y2.所以当t>3-m时,抛物线T的上升部分,始终在抛物线T1上升部分的下方,则始终在线段M1Q的下方.综上所述,当t≥3-m时,四边形MPM1Q是抛物线T的“非递增四边形”.………………………………………………14分。

厦门市2020—2021学年第一学期高一年级质量检测数学试题附答案

厦门市2020—2021学年第一学期高一年级质量检测数学试题附答案

厦门市2020—2021学年第一学期高一年级质量检测数学试题满分:150分考试时间:120分钟考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}3A x N x =∈<,则() A. 0A ∉B.1A -∈C. {}0A ⊆D.{}1A -⊆2. 设命题p :0x ∃>,x x e ≥,则p 的否定为() A. 0x ∀≤,x x e ≥ B. 0x ∀>,x x e ≥ C. 0x ∀≤,e x x <D. 0x ∀>,e x x <3. 已知0.62a =, 1.82b =,0.6log 1.8c =,则() A. c a b <<B. a b c <<C. b a c <<D.c b a <<4. 已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=() A. 45-B.35C.35D.455. 长征五号遥五运载火箭创下了我国运载火箭的最快速度,2020年11月24日,它成功将嫦娥五号探测器送入预定轨道在不考虑空气阻力的条件下,火箭的最大速度v (单位:/km s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是2000ln 1M v m ⎛⎫=+⎪⎝⎭.若火箭的最大速度为11.2/km s ,则燃料质量与火箭质量(除燃料外)的比值约为(参考数据:0.0056 1.0056e ≈)() A. 1.0056B. 0.5028C. 0.0056D. 0.00286. 若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为() A. (],2-∞B. (],1-∞C. [)1,+∞D. [)2,+∞7. 在ABC 中,cos 2A =-,1tan 3B =,则()tan A B -=()A. 2-B. 12-C.12D. 28. 某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是()A. 甲B. 乙C. 甲、乙一样D. 无法确定二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5外,选对但不全的得3分,有选错的得0分.9. 已知()tan 3sin θθπ=-,则cos θ=() A. 1-B. 13-C.13D. 110. 使得“a b >”成立的充分不必要条件可以是()A. 1a b >-B.11a b< C.> D.10.30.3a b -<11. 关于x 的一元二次不等式220x x a --≤的解集中有且仅有5个整数,则实数a 的值可以是() A. 2B. 4C. 6D. 812. 已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则()A. ()f x 的值域为()1,-+∞B. 当0a ≤时,()()21f x f x >+C. 当0a >时,存在非零实数0x ,满足()()000f x f x -+=D. 函数()()g x f x a =+可能有三个零点三、填空题:本题共4小题,每小题5分,共20分.13. 已知幂函数()y f x =的图像过点(2,2),则(4)f =_______.14. 已知某扇形的圆心角为3π,半径为3,则该扇形的弧长为______.15. 某班有50名学生,其中参加关爱老人活动的学生有40名,参加洁净家园活动的学生有32名,则同时参加两项活动的学生最多有______名;最少有______名.16. 2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos0.815π≈)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知函数()2f x x bx c =++,且()()2g x f x x =+为偶函数,再从条件①、条件②、条件③中选择一个作为已知,求()f x 的解析式.条件①:函数()f x 在区间[]22-,上的最大值为5; 条件②:函数()0f x ≤的解集为{}1;条件③:方程()0f x =有两根1x ,2x ,且221210x x +=.18. 已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x 的解析式;(2)将()f x 的图象上所有的点横坐标缩短到原来的12,纵坐标不变,得到函数()g x 的图象求方程()12g x =在[]0,π的实数解. 19. 已知函数()112xf x =+.(1)判断()f x 的单调性并用定义证明; (2)若()1log 23a f >,求实数a 的取值范围. 20. 已知函数()23sin cos cos f x x x x m =++的最小值为3-. (1)求m 的值及()f x 的单调递减区间; (2)()0,x π∀∈,sin 06a x f x π⎛⎫++< ⎪⎝⎭,求实数a 的取值范围. 21. 人类已经进入大数据时代,数据量从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别,国际数据公司(IDC )统计2016-2019年全球年产生的数据量如下:研究发现,从2016年起,可选择函数()()1tf t a p =+来近似刻画全球年产生数据量随时间变化的规律.其中a 表示2016年的数据量,p 表示2017-2019年年增长率的平均值.(第t 年增长率=(第t 年数据量÷第()1t -年数据量)-1,*t N ∈)(1)分别计算2017-2019各年的年增长率,并求()f t .(精确到0.01).(2)已知2020年中国的数据总量约占全球数据总量的20%,成为数据量最大、数据类型最丰富的国家之一.近年来中国的数据总量年均增长率约为50%,按照这样的增长速度,估计到哪一年,我国的数据量将达到全球数据总量的30%?参考数据:lg 20.301≈,lg30.477≈,lg1.320.121≈22. 已知函数()()11xf x a a x=-> (1)若()f x 在[]1,2上的最大值为72,求a 的值;(2)若0x 为()f x 的零点,求证:()02000log 220xa x x x a -+-<.厦门市2020—2021学年第一学期高一年级质量检测数学试题(答案)满分:150分考试时间:120分钟考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}3A x N x =∈<,则() A. 0A ∉B.1A -∈C. {}0A ⊆D.{}1A -⊆【答案】C2. 设命题p :0x ∃>,x x e ≥,则p 的否定为() A. 0x ∀≤,x x e ≥ B. 0x ∀>,x x e ≥ C. 0x ∀≤,e x x < D. 0x ∀>,e x x <【答案】D3. 已知0.62a =, 1.82b =,0.6log 1.8c =,则() A. c a b <<B. a b c <<C. b a c <<D.c b a <<【答案】A4. 已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=() A. 45-B.35C.35D.45【答案】B5. 长征五号遥五运载火箭创下了我国运载火箭的最快速度,2020年11月24日,它成功将嫦娥五号探测器送入预定轨道在不考虑空气阻力的条件下,火箭的最大速度v (单位:/km s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是2000ln 1Mv m ⎛⎫=+⎪⎝⎭.若火箭的最大速度为11.2/km s ,则燃料质量与火箭质量(除燃料外)的比值约为(参考数据:0.0056 1.0056e ≈)() A. 1.0056 B. 0.5028C. 0.0056D. 0.0028【答案】C6. 若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为() A. (],2-∞ B. (],1-∞C. [)1,+∞D. [)2,+∞【答案】B7. 在ABC 中,cos A =1tan 3B =,则()tan A B -=()A. 2-B. 12-C.12D. 2【答案】A8. 某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是()A. 甲B. 乙C. 甲、乙一样D. 无法确定【答案】B二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5外,选对但不全的得3分,有选错的得0分.9. 已知()tan 3sin θθπ=-,则cos θ=() A. 1- B. 13-C.13D. 1【答案】ABD10. 使得“a b >”成立的充分不必要条件可以是()A. 1a b >-B. 11a b< C.> D.10.30.3a b -<【答案】CD11. 关于x 的一元二次不等式220x x a --≤的解集中有且仅有5个整数,则实数a 的值可以是() A. 2 B. 4C. 6D. 8【答案】BC12. 已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则()A. ()f x 的值域为()1,-+∞B. 当0a ≤时,()()21f x f x >+C. 当0a >时,存在非零实数0x ,满足()()000f x f x -+=D. 函数()()g x f x a =+可能有三个零点 【答案】BC三、填空题:本题共4小题,每小题5分,共20分.13. 已知幂函数()y f x =的图像过点(2,2),则(4)f =_______. 【答案】214. 已知某扇形的圆心角为3π,半径为3,则该扇形的弧长为______.【答案】π15. 某班有50名学生,其中参加关爱老人活动的学生有40名,参加洁净家园活动的学生有32名,则同时参加两项活动的学生最多有______名;最少有______名. 【答案】 (1). 32 (2). 2216. 2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos0.815π≈)【答案】13四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知函数()2f x x bx c =++,且()()2g x f x x =+为偶函数,再从条件①、条件②、条件③中选择一个作为已知,求()f x 的解析式.条件①:函数()f x 在区间[]22-,上的最大值为5; 条件②:函数()0f x ≤的解集为{}1;条件③:方程()0f x =有两根1x ,2x ,且221210x x +=.【答案】答案见解析18. 已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x 的解析式;(2)将()f x 的图象上所有的点横坐标缩短到原来的12,纵坐标不变,得到函数()g x 的图象求方程()12g x =在[]0,π的实数解.【答案】(1)()sin 6f x x π⎛⎫=+ ⎪⎝⎭;(2)0或3π或π 19. 已知函数()112xf x =+. (1)判断()f x 的单调性并用定义证明; (2)若()1log 23a f >,求实数a 的取值范围. 【答案】(1)函数是R 上的减函数,证明见解析;(2)01a <<或2a >.20. 已知函数()2cos cos f x x x x m =++的最小值为3-. (1)求m 的值及()f x 的单调递减区间; (2)()0,x π∀∈,sin 06a x f x π⎛⎫++< ⎪⎝⎭,求实数a 的取值范围.【答案】(1)52m =-,单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)(,-∞. 21. 人类已经进入大数据时代,数据量从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别,国际数据公司(IDC )统计2016-2019年全球年产生的数据量如下:研究发现,从2016年起,可选择函数()()1tf t a p =+来近似刻画全球年产生数据量随时间变化规律.其中a 表示2016年的数据量,p 表示2017-2019年年增长率的平均值.(第t 年增长率=(第t 年数据量÷第()1t -年数据量)-1,*t N ∈)(1)分别计算2017-2019各年的年增长率,并求()f t .(精确到0.01).(2)已知2020年中国的数据总量约占全球数据总量的20%,成为数据量最大、数据类型最丰富的国家之一.近年来中国的数据总量年均增长率约为50%,按照这样的增长速度,估计到哪一年,我国的数据量将达到全球数据总量的30%?参考数据:lg 20.301≈,lg30.477≈,lg1.320.121≈【答案】(1)2017的增长率为0.44,2018的增长率为0.27,2019的增长率为0.24,()18 1.32t f t ⨯=;(2)估计到2024年,我国的数据量将达到全球数据总量的30%.22. 已知函数()()11xf x a a x=-> (1)若()f x 在[]1,2上的最大值为72,求a 的值; (2)若0x 为()f x 的零点,求证:()02000log 220xa x x x a -+-<. 【答案】(1)2;(2)详见解析.。

福建省厦门市初中总复习教学质量检测数学考试卷 (解析版)(初三)中考模拟.doc

福建省厦门市初中总复习教学质量检测数学考试卷 (解析版)(初三)中考模拟.doc

福建省厦门市初中总复习教学质量检测数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】4 的绝对值可表示为( )A. -4B. |4|C. D.【答案】B【解析】绝对值用” | |”来表示,4 的绝对值就是在4的两侧加上” | |”,即 .故选:B【题文】若∠A 与∠B 互为余角,则∠A+∠B=( )A. 180°B. 120°C. 90°D. 60°【答案】C【解析】两角度数之和为90°,就说明这两个角互为余角, ∠A 与∠B 互为余角,即∠A +∠B=90°.故选C【题文】把a2-4a多项式分解因式,结果正确的是()A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4【答案】A.【解析】试题分析: a2-4a=a(a-4),故选A.考点:因式分解-提公因式法.【题文】如图,D,E 分别是△ABC 的边BA,BC 延长线上的点,连接DC. 若∠B=25°,∠ACB=50°,则下列角中度数为75°的是( )A. ∠ACDB. ∠CADC. ∠DCED. ∠BDC【答案】B【解析】∵∠B=25°,∠ACB=50°,评卷人得分∴∠CAD=25°+50°=75°故选:B【题文】我们规定一个物体向右运动为正,向左运动为负.如果该物体向左连续运动两次,每次运动3 米,那么下列算式中,可以表示这两次运动结果的是( )A. (-3)2B. (-3)-(-3)C. 2×3D. 2×(-3)【答案】D【解析】物体向左运动3 米为负3米,,记作-3米,两次运动的最后结果是(-3)+(-3)=2×(-3).故选:D【题文】下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是( )A. B. C. D.【答案】D【解析】由角的平分线上的点到角的两边的距离相等可知:GE⊥OM,GF⊥ON.故选:D【题文】如图,矩形ABCD两对角线相交于点O,∠AOB=60°,AB=2,则AD的长是()A.2 B.4 C. D.【答案】C【解析】试题分析:根据矩形的对角线的性质知OA=OC=OD=OB,根据∠AOB=60°,可知OA=2,因此BD=4,根据勾股定理可求AD==2.故选C考点:矩形【题文】在6,7,8,8,9 这组数据中,去掉一个数后,余下数据的中位数不变,且方差减小,则去掉的数是( )A. 6B. 7C. 8D. 9【答案】A【解析】不去数的话,中位数是8。

福建省厦门市2023-2024学年高二下学期期末质量检测数学试题(含答案)

福建省厦门市2023-2024学年高二下学期期末质量检测数学试题(含答案)

厦门市2023-2024学年高二下学期期末质量检测数学试题满分:150分 考试时间:120分钟考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号,姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列中,,,则( )A. B. C.1D.42.用1,2,3,4,5可以排成数字不重复的三位数的个数为( )A. B. C. D.3.若,,则( )A. B. C. D.4.函数的图象大致是( )A. B. C. D.5.等边三角形的一个顶点位于原点,另外两个顶点在抛物线上,则这个等边三角形的边长为( )A.2B. C.4D.6.在四面体中,,,,,则与所成角的余弦值为( )A.{}n a 266a a +=52a =3a =4-1-35C 35A 35531()3P A =2()3P B A =()P AB =1929497931()f x x x=-22y x =ABCD BC BD ⊥3ABC ABD π∠=∠=2BA BD ==3BC =AD BC 127.展开式中各项系数之和为64,则该展开式中的系数是( )A. B. C.60D.2408.在棱长为2的正方体中,E ,F ,G 分别是棱,,的中点,过作平面,使得,则点到平面的距离是()二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线与圆:有公共点,则可以是( )A.1B.2C.3D.410.对于变量和变量,经过随机抽样获得成对样本数据,,2,3,…,10,且,样本数据对应的散点大致分布在一条直线附近.利用最小二乘法求得经验回归方程:,分析发现样本数据对应的散点远离经验回归直线,将其剔除后得到新的经验回归直线,则( )A.变量与变量具有正相关关系B.剔除后,变量与变量的样本相关系数变小C.新的经验回归直线经过点D.若新的经验回归直线经过点,则其方程为11.已知函数,,则( )A.在上单调递增B.当时,有且只有一个极值点C.若有两个极值点,则D.若有两个极值点,,则三、填空题:本题共3小题,每小题5分,共15分.12.已知,分别为双曲线:的左、右焦点,为右支上一点,且,则的面积为______.(21)n x y -+23x y 240-60-1111ABCD A B C D -BC 1BB 1DD FG α1//A E αA α40x y +-=O 222x y r +=r x y (),i i x y 1i = 2.2x =ˆ 1.80.04yx =+(4,4.9)x y x y (2,3.64)(3,5.9)ˆ20.1yx =-()ea xf x x x -=+a ∈R ()f x (,1)-∞2a =()f x ()f x 2a >()f x 1x 2x 123x x +>1F 2F Γ2213y x -=P Γ23PF =12PF F △13.把5张座位编号为1,2,3,4,5的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法共有______种.(用数字作答)14.某一地区某种疾病的患病率为,患者对一种试验反应是阳性的概率为0.9,正常人对这种试验反应是阳性的概率为0.1.该地区现有3人的试验反应均是阳性,则这3人中恰有1人患该疾病的概率是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)设为正项等比数列的前项和,,.(1)求数列的通项公式;(2)数列满足,,求的前项和.16.(15分)为了解喜爱篮球运动是否与性别有关,某班级兴趣小组调查了全班50位同学,得到如下数据:篮球运动性别喜欢不喜欢合计男生25女生10合计2050(1)完成上述列联表,根据小概率值的独立性检验,能否认为喜欢篮球运动与性别有关联?(2)该班级要从甲、乙两人中选派1人参加篮球挑战赛.比赛设置5个挑战项目,参赛人员随机抽取3个项目进行挑战.已知甲只能挑战成功其中3个项目,乙每个项目挑战成功的概率均为,甲、乙两人挑战每个项目成功与否均互不影响.请根据挑战成功次数的期望和方差,分析派谁去参加挑战赛更合适.附:,其中.0.100.050.010.0012.7063.8416.63510.82817.(15分)已知函数在处的切线方程为.(1)求b ,k ;(2)若的极大值为0,求的取值范围.18.(17分)已知动点与定点的距离和到定直线的距离的比是常数,记的轨迹为.10%n S {}n a n 21332S a a =+416a ={}n a {}n b 11b =1222log log n nn n b a b a ++={}n b n n T 22⨯0.001α=3522()()()()()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α2()22ln()f x x ax x b =--+0x =y kx =()f x a M (2,0)F M 8x =12M E(1)求的方程;(2)过原点的直线交于A ,B 两点,过作直线的垂线交于点(异于点),直线与轴,轴分别交于点P ,Q .设直线,的斜率分别为,.(ⅰ)证明:为定值;(ⅱ)求四边形面积的最大值.19.(17分)设随机变量的概率密度函数为(当为离散型随机变量时,为的概率),其中为未知参数,极大似然法是求未知参数的一种方法.在次随机试验中,随机变量的观测值分别为,,…,,定义为似然函数.若时,取得最大值,则称为参数的极大似然估计值.(1)若随机变量的分布列为123其中.在3次随机试验中,的观测值分别为1,2,1,求的极大似然估计值.(2)某鱼池中有鱼尾,从中捞取50尾,做好记号后放回鱼塘.现从中随机捞取20尾,观测到做记号的有5尾,求的极大似然估计值.(3)随机变量的概率密度函数为,.若,,…,是的一组观测值,证明:参数的极大似然估计值为.E O E A AB E T A TB x y TA TB 1k 2k 12k k OAPQ X (;)p x θX (;)p x θX x =θθn X 1x 2x n x ()()()12();;;n L p x p x p x θθθθ= ˆθθ=()L θˆθθX X P2θ2(1)θθ-2(1)θ-01θ<<X θˆθ(65)m m ≥m ˆmX ()22(1)22;x p x σσ--=0σ>1x 2x n x X 2σ()2211ˆ1n i i x n σ==-∑厦门市2023-2024学年高二下学期期末质量检测数学参考答案一、选择题:本题共8小题,每小题5分,共40分.1.D2.B3.C4.B5.D6.A7.A8.D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.CD10.AD11.ACD三、填空题:本题共3小题,每小题5分,共15分.12.613.9614.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解:因为是正项等比数列,所以,公比.因为,所以,即,则,得(舍)或又因为,所以,所以的通项公式为.(2)依题意得,当时,,即.因为,所以,当时,符合上式,所以的通项公式为.因为,所以.16.解:(1)列联表如下:篮球运动性别喜欢不喜欢合计男生20525女生101525合计30205038{}n a 10a >0q >21332S a a =+()121332a a a a +=+21112320a q a q a --=22320q q --=12q =-2q =3411816a a q a ===12a ={}n a 2nn a =1222222log log 2log log 22n n n n n n b a nb a n +++===+2n ≥3212112112(1)234134(1)(1)n n b b b n n b b b n n n n --⨯⨯⨯-⋅=⨯⨯⨯==+⨯⨯⨯++ 12(1)n b b n n =+11b =2(1)n b n n =+1n =11b ={}n b 2(1)n b n n =+2112(1)1n b n n n n ⎛⎫==- ⎪++⎝⎭111111112212122334111n n T n n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭零假设为:喜欢篮球运动与性别无关联.根据列联表中的数据,经计算得到:根据小概率值的独立性检验,没有充分证据推断不成立,因此可以认为成立,即认为篮球运动与性别无关联.(2)设甲挑战成功项,可能取值为1,2,3;;.所以的分布列为:123,.设乙挑战成功项,则,所以,,所以,,即甲和乙的水平相当,但甲发挥更稳定,所以派甲去参加挑战赛更合适.17.解:(1),切点为,所以,所以,.(2)由(1)得,定义域为,.①当时,,所以当时,,单调递减;当时,,单调递增;所以有极小值,无极大值,不符合題意;0H 2250(2015105)258.33310.828302025253χ⨯⨯-⨯==≈<⨯⨯⨯0.001α=0H 0H X X 2123353(1)10C C P X C ===1223353(2)5C C P X C ===33351(3)10C P X C ===X X P310351103319()123105105E X =⨯+⨯+⨯=2229393919()1235105551025D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Y 3~3,5Y B ⎛⎫⎪⎝⎭39()355E Y =⨯=3318()315525D Y ⎛⎫=⨯⨯-=⎪⎝⎭()()E X E Y =()()D X D Y <2()22f x ax x b'=--+(0,(0))f 2(0)22ln 0k f b b k ⎧'==-⎪⎨⎪-=⋅⎩1b =0k =2()22ln(1)f x x ax x =--+(1,)-+∞22(1(1))()2211x a x f x ax x x -+'=--=++0a ≤1(1)0a x -+>(1,0)x ∈-()0f x '<()f x (0,)x ∈+∞()0f x '>()f x ()f x②当时,,令,得或.ⅰ)若,则,所以当时,,单调递减;当时,,单调递增;当时,,单调递减;所以有极小值,极大值为,不符合题意;ⅱ)若,则,所以在上单调递减,所以无极值,不符合题意;ⅲ)若,则,所以当时,,单调递减;当时,,单调递增;当时,,单调递减;所以有极小值,极大值为,满足题意.综上所述,.18.解:解法一:(1)设,由题意得:,即.化简得:.所以的方程为.(2)设,,则.(ⅰ)因为T ,A 在椭圆上,所以,,即,,0a >121()1ax x a f x x ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦'=+()0f x '=0x =111x a =->-01a <<110a->(1,0)x ∈-()0f x '<()f x 10,1x a ⎛⎫∈- ⎪⎝⎭()0f x '>()f x 11,x a ⎛⎫∈-+∞⎪⎝⎭()0f x '<()f x ()f x (0)0f =11(0)0f f a ⎛⎫->=⎪⎝⎭1a =22()01x f x x -'=≤+()f x (1,)-+∞()f x 1a >1110a -<-<11,1x a ⎛⎫∈-- ⎪⎝⎭()0f x '<()f x 11,0x a ⎛⎫∈-⎪⎝⎭()0f x '>()f x (0,)x ∈+∞()0f x '<()f x ()f x 11f a ⎛⎫- ⎪⎝⎭(0)0f =1a >(,)M x y ||1|8|2MF x =-8x =-2211612x y +=E 2211612x y +=()00,T x y ()11,A x y ()11,B x y --220011612x y +=221111612x y +=220012116x y ⎛⎫=- ⎪⎝⎭221112116x y ⎛⎫=- ⎪⎝⎭所以所以为定值.(ⅱ)由题意得,直线的斜率一定存在,且不为0.因为,所以,因为,所以.由(ⅰ)得,所以,所以:.令,得,所以,令,得,所以,所以四边形的面积为.因为,所以,当且仅当,时,等号成立.所以,所以四边形.解法二:(1)同解法一(2)(ⅰ)同解法一(ⅱ)由题意得,直线的斜率一定存在,且不为0,设:联立,得,所以.因为,所以.由(ⅰ)得,所以,所以:,即.令,得,所以,0101120101y y y y k k x x x x -+=⋅-+2201220122220101121121161634x x y y x x x x ⎛⎫⎛⎫--- ⎪ ⎪-⎝⎭⎝⎭===---12k k AB AB TA ⊥11AB k k ⋅=-11AB y k x =111xk y =-1234k k =-12134y k x =TB ()111134y y y x x x +=+0x =14y y =-10,4y Q ⎛⎫- ⎪⎝⎭0y =13x x =1,03x P ⎛⎫⎪⎝⎭OAPQ 1111111152323424OAP OPQ x x y S S S y x y =+=⋅⋅+⋅⋅-=△△221111612x y y +≥11x y ≤1x =1y =S ≤OAPQ AB AB y kx=2211612y kxx y =⎧⎪⎨+=⎪⎩()223448k x +=2124834x k =+AB TA ⊥11k k=-1234k k =-234k k =TB ()1134k y y x x +=+13144y kx kx =-0x =114y kx =-110,4Q kx ⎛⎫- ⎪⎝⎭令,得,所以,所以四边形的面积为,当且仅当,即时,等号成立.所以四边形.19.解:(1)依题意得:,所以.当时,,单调递增;当时,,单调递减;所以时,取得最大值,所以的极大似然估计值为.(2)依题意得:,所以.令,得,令,得,又,所以…所以或200时,取得最大值,所以的极大似然估计值为或200.(3)依题意得:所以令,,y=13xx=1,03xP⎛⎫⎪⎝⎭OAPQ2111112101115232342434OAP OPQkx xS S S kx kx k xk=+=⋅⋅+⋅⋅-==+△△1034kk=≤+34kk=k=OAPQ2256()(1)(2)(1)2(1)22L P X P X P Xθθθθθθθ==⋅=⋅==⋅-⋅=-4545()1012126Lθθθθθ⎛⎫'=-=--⎪⎝⎭56θ<<()0Lθ'>()Lθ516θ<<()0Lθ'<()Lθ56θ=()Lθθ5ˆ6θ=515505020()(5;)mmC CL m p mC-==(1)(49)(19)()(64)(1)L m m mL m m m+--=-+(1)1()L mL m+>65199m≤<(1)1()L mL m+<199m>(199)(200)L L=(65)(66)(199)(200)(201)(202)L L L L L L<<<=>>>199m=()L m mˆ199m=()()()()222212;;;nL p x p x p xσσσσ=()()()()22221222221111112222e enniinxx x xσσσσ=------∑==⋅()()222211ln ln(2)ln1222niin nL xσπσσ==----∑()211()ln(2)ln1222niin nF t t xtπ==----∑0t>则,令,得.当时,,单调递增;当时,,单调递减;所以当时,取到最大值.即时,取得最大值,即取得最大值.所以参数的极大似然估计值为.()()22221111()11222nn i i i i n n F t x t x t tt n ==⎛⎫'=-+-=--- ⎪⎝⎭∑∑()0F t '=()2111ni i t x n ==-∑()21101n i i t x n =<<-∑()0F t '>()F t ()2111n i i t x n =>-∑()0F t '<()F t ()2111n i i t x n ==-∑()F t ()22111n i i x n σ==-∑()2ln L σ()2L σ2σ()2211ˆ1n i i x n σ==-∑。

2022-2023学年福建省厦门市高二上册期末数学质量检测试题(含解析)

2022-2023学年福建省厦门市高二上册期末数学质量检测试题(含解析)

2022-2023学年福建省厦门市高二上册期末数学质量检测试题一、单选题1.在数列{}n a 中,732,1a a ==,若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =()A .43B .32C .23D .34【正确答案】A【分析】利用等差中项求解即可.【详解】解:由1n a ⎧⎫⎨⎬⎩⎭为等差数列得53721113122a a a =+=+=,解得543a =.故选:A2.已知空间向量()2,3,4a =-,()4,,b m n =- ,,R m n ∈,若//a b r r ,则m n -=()A .2B .2-C .14D .14-【正确答案】C【分析】利用空间向量平行的性质即可.【详解】因为空间向量()2,3,4a =-,()4,,b m n =- ,,R m n ∈,如果//a b r r ,则a b λr r =,所以2434m n λλλ=-⎧⎪-=⎨⎪=⎩,解得1268m n λ⎧=-⎪⎪=⎨⎪=-⎪⎩,所以6(8)14m n -=--=,故选:C.3.两个正数3)A .2B .2-C .2±D .12±【正确答案】C根据等比中项的定义,即求出结果.【详解】设它们等比中项为G ,则2(34G ==,所以2G =±.故选:C本题主要考查等比中项公式的应用,属于基础题.4.在双曲线中,虚轴长为6,且双曲线与椭圆221616x y +=有公共焦点,则双曲线的方程是()A .22196x y -=B .22169x y -=C .22196y x -=D .22169y x -=【正确答案】B【分析】将椭圆方程化成标准方程求出其焦点坐标,再根据双曲线虚轴长度为6,即可求得双曲线的标准方程.【详解】椭圆221616x y +=的标准方程为22116x y +=;易得椭圆焦点坐标为(),又因为双曲线与椭圆有公共焦点,所以双曲线的焦点在x 轴上,且c =,由双曲线虚轴长为6可知3b =,所以2226a c b =-=;所以,双曲线的标准方程为22169x y -=.故选:B.5.已知抛物线220y x =的焦点F 与双曲线()222210,0x y a b a b-=>>的一个焦点重合,且点F 到双曲线的渐近线的距离为4,则双曲线的方程为()A .2214116x y -=B .2214125x y -=C .221916x y -=D .221169x y -=【正确答案】C【分析】由题易得(5,0)F ,知5c =,双曲线焦点在x 轴上,渐近线方程为by x a=±,又由点F 到双曲线的渐近线的距离为4,得4b =,即可解决.【详解】由题知,抛物线220y x =开口向右,10p =,所以焦点为(5,0)F ,因为焦点F 与双曲线()222210,0x y a b a b-=>>的一个焦点重合,所以5c =,且双曲线焦点在x 轴上,渐近线方程为by x a=±,即0bx ay ±=,因为点F 到双曲线的渐近线的距离为44b ==,所以4,3b a ==,所以双曲线的方程为221916x y -=,故选:C6.在等差数列{}n a 中,若681072a a a ++=,则10122a a -的值为()A .6B .16C .24D .60【正确答案】C【分析】根据等差数列下标和的性质即可求8a 的值,根据通项公式计算即可得出结果.【详解】由等差数列的性质:68108837224a a a a a ++==⇒=,而()()1012111822911724a a a d a d a d a -=+-+=+==.故选:C.本题考查了等差数列的性质,考查计算能力,属于简单题.7.在数列{}n a 中,113a =,()111*n n a n N a +=-∈,则前2022项和的值为()A .112-B .6836-C .3373-D .3373【正确答案】C【分析】根据题意得到该数列周期,根据20226743=⨯进行转化即可求和.【详解】因为()111*n na n N a +=-∈,所以113a =,22a =-,332a =,413a =,52a =-,…,所以该数列的周期是3,又因为12316a a a ++=-,20226743=⨯,所以2022133767463S ⎛⎫=⨯-=- ⎪⎝⎭.故选:C8.如图,在直三棱柱111ABC A B C -中,ABC 是等边三角形,1AA AB =,D ,E ,F 分别是棱1AA ,1BB ,BC 的中点,则异面直线DF 与1C E 所成角的余弦值是()ABCD【正确答案】A【分析】建立空间直角坐标系,利用向量法求得异面直线DF 与1C E 所成角的余弦值.【详解】设1,O O 分别是11,AC A C 的中点,连接111,,OO OB O B ,则11//OO AA ,由于ABC 是等边三角形,所以OB AC ⊥,根据直三棱柱的性质可知,平面11ACC A ⊥平面ABC ,且交线为AC ,OB ⊂平面ABC ,所以OB ⊥平面11ACC A ,由于1OO ⊂平面11ACC A ,所以1OB OO ⊥.根据根据直三棱柱的性质可知,1AA ⊥平面ABC ,所以1OO ⊥平面ABC ,,AC OB ⊂平面ABC ,所以11,OO AC OO OB ⊥⊥,由此以O 为原点,建立空间直角坐标系如下图所示,设12AB AC BC AA ====,则()())110,1,1,,0,0,1,2,22D F C E⎛⎫- ⎪ ⎪⎝⎭,所以)13,,1,1,122DF C E ⎫=-=--⎪⎪⎝⎭,设异面直线DF 与1C E 所成角为θ,则11cos10DF C EDF C Eθ⋅=⋅.故选:A9.唐代诗人李欣的是《古从军行》开头两句说“百日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的数学故事“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y+≤,若将军从()2,0A出发,河岸线所在直线方程40x y+-=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为()AB.1-C.D1【正确答案】B【分析】利用点关于直线对称点的求解方法可求得点A关于直线4x y+=的对称点()4,2A',将问题转化为点A'和圆上的点连线的最小值的求解,利用点A'和圆心之间的距离减圆的半径可得结果.【详解】设点A关于直线4x y+=的对称点为(),A a b',则AAbka2'=-,AA'的中点为2,22a b+⎛⎫⎪⎝⎭,122422baa b⎧=⎪⎪-∴⎨+⎪+=⎪⎩,解得:4a=,2b=,要使从点A到军营总路程最短,即为点A'到军营最短的距离,即为点A'和圆上的点连线的最小值,∴从点A到军营最短总路程为点A'和圆心之间的距离减圆的半径,∴“将军饮马”4161251+-=-.故选:B.10.已知点A 是抛物线24y x =与双曲线()222103x y b b-=>的一个交点,若抛物线的焦点为F ,且4AF =,则点A 到双曲线两条渐近线的距离之和为()A .6B .4C .23D .2【正确答案】A【分析】求出A 的坐标,代入双曲线方程求出b ,然后求解双曲线的渐近线方程.【详解】解:抛物线24y x =的焦点为F ,且4AF =,可得()1,0F ,则(3,23A ±,点A 是抛物线24y x =与双曲线()222103x y b b-=>一个交点,3a =可得291213b-=,解得:6b ,则渐近线方程为:2y =±,不妨令(3,3A ,则点A 到这两条渐近线的距离之和为:322332232633d -+=.故选:A .本题考查抛物线和双曲线的简单性质的应用,考查计算能力.二、填空题11.若抛物线2x ay =经过点()2,1-,则其准线方程是___________.【正确答案】1y =【分析】把已知点坐标代入求得a 后可得准线方程.【详解】由抛物线2x ay =经过点()2,1-,则4a =-,即4a =-,又抛物线的焦点在y 轴负半轴,故准线方程为1y =.故1y =.12.已知倾斜角为α的直线l 经过抛物线24y x =的焦点F 交抛物线于A 、B 两点,并且4AF BF =,则sin α=______.【正确答案】45##0.8【分析】根据抛物线的定义,结合正弦函数的定义进行求解即可.【详解】若角α为锐角,如图,设A 、B 两点在准线上的射影分别为C 、D .过B 作BM AC ⊥于.M 则有AC AF =,BD BF=设44AF BF m ==,则3.5AM m AB m ==.由勾股定理可知:4BM m=则4sin sin 5BM MAB AB α=∠==.若角α为钝角,由对称性可知4sin 5α=,故45.13.在1和100之间插入n 个正数,使这()2+n 个数成等比数列,则插入的这n 个正数的积为_____.【正确答案】10n【分析】结合等比数列的性质直接求解即可.【详解】由题意得,等比数列由2n +项,且121,100n a a +==.根据等比数列性质有()22212212...10n n n n a a a a a ++++==,所以插入的这n 个正数的积为10n .故答案为:10n14.已知直线1y x =+与圆C :22230x y y ++-=交于A 、B 两点,则ABC 的面积为______.【正确答案】2【分析】用已知直线方程和圆方程联立,可以求出交点,再分析三角形的形状,即可求出三角形的面积.【详解】由圆C 方程:22230x y y ++-=可得:()2214x y ++=;即圆心C 的坐标为(0,-1),半径r =2;联立方程()22114y x x y =+⎧⎪⎨++=⎪⎩得交点()()0,1,2,1A B --,如下图:可知BC x ∥轴,∴ABC 是以C ∠为直角的直角三角形,211222ABCS BC AC r ===,故2.15.在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1(BB P 不与B 重合)上,直线OP 与平面1A BD 所成的角为α,则sin α的最大值是______.【正确答案】3【分析】建立空间直角坐标系,利用空间向量的坐标运算计算直线与平面成角正弦值sin α,根据sin α的表达式判断最大值即可.【详解】解:如图建系,不妨设正方体的棱长2AB =,1(0A ,0,2),(2B ,0,0),(0D ,2,0),1(2A B =,0,2)-,(2BD =- ,2,0),设平面1A BD 的法向量为(),,m x y z = ,所以102202200A B m x z z x x y y x BD m ⎧⋅=-==⎧⎧⎪⇒⇒⎨⎨⎨-+==⋅=⎩⎩⎪⎩,令1x =,所以()1,1,1m = ,又(1O ,1,0),设(2P ,0,)t ,则(0t ∈,2],所以(1OP =,1-,)t ,故2212sin 323231m OP t m OP t tα⋅=≤⋅⋅+⋅+ ,当2t =时,等号成立,所以sin α23.故23.16.已知正项等比数列{}n a ,其前n 项和为n T ,满足11a =,27T =.若不等式()()2log 112n n T n nλ+-++≥对一切正整数n 恒成立,则实数λ的取值范围为__________.【正确答案】1λ≤【分析】根据题意,求出等比数列{}n a 的通项公式,进而得到该等比数列的前n 项和n T ,把不等式()()2log 112n n T n n λ+-++≥整理成()221n n n λ-+≥+,根据10n +>,分离参数,可得221n n n λ-+≤+对一切正整数n 成立,然后研究22()1n n g n n -+=+的最小值,即可得到答案.【详解】因为11a =,37T =,设等比数列公比为q ,可得2q =,所以122112nn n T -==--.不等式()()2log 112n n T n n λ+-++≥化为()221n n n λ-+≥+,所以221n n n λ-+≤+对一切正整数n 成立,()()()221314241331111n n n n n n n n +-++-+==++-≥=+++,当且仅当411n n +=+,即1n =时等号成立,所以1λ≤.故1λ≤三、解答题17.已知椭圆22221(0)x y a b a b +=>>的右焦点为F,上顶点为B ,离心率为3,且过点F 且与x 轴垂直的直线被椭圆截得的线段长为83.(1)求椭圆的标准方程;(2)直线:l y kx m =+与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x轴于点P .若458MP BF m⋅= ,求直线l 的方程.【正确答案】(1)22194x y+=(2)44y =+【分析】(1)通过通径和离心率联立方程可得;(2)分别计算出,,,M P B F 的坐标,再根据直线与椭圆相切求出,m k 之间的关系式,代入458MP BF m⋅= 可求得,k m ,进而求出直线方程.【详解】(1)(),0F c ,则过F 的垂线为x c =,联立椭圆方程得:22222222221,,c y b c b y b y a b a a+=∴=-∴=±弦长=282,3ba =又ce a ==,联立222a b c=+解之得:3,2,a b c ===所以,椭圆的标准方程为22194x y +=(2)由(1)知())()0,2,,,,0,(0)2BF NP B Fk k N m m ∴=∴>,:,,0NP l y m P ⎛⎫∴+∴ ⎪⎝⎭将直线与椭圆联立()222214936094x y x kx m y kx m ⎧+=⎪⇒++-=⎨⎪=+⎩整理得:()22294189360k x kmx m +++-=相切()()()22222184949360,9 4.km k m m k ∴-+-=∴=+代入()22294189360k x kmx m +++-=解得:9M k x m =-299,k k M m m m ⎛⎫∴-- ⎪⎝⎭()22995,2,,5k k BF MP m m m m ⎛⎫∴=-=-+- ⎪⎝⎭ 222999518525458k k k k m MP BF m m m m m m ⎛⎫⎛⎫∴=-+--=- ⎪ ⎪⎝⎭⎝⋅=⎭解之:51095109,,:4444k m l y x ==∴=+解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.18.已知数列{}n a 中,11a =,22a =,*24()n n a a n +-=∈N ,数列{}n a 的前n 项和为Sn .(1)求{}n a 的通项公式;(2)已知215n n b S n =+,124n n n n n b c b b ++=(i )求数列{}n b 前n 项和Tn ;(ii )证明:当2n ≥时,11346822n k n n k n n c --=++-<-.【正确答案】(1)21,22,n n n a n n -⎧=⎨-⎩为奇数为偶数(2)(i )Tn 4(1)n n =+;(ii )证明见解析【分析】(1)由已知得出数列{}n a 的奇数项构成的数列是首项为1,公差为4的等差数列,偶数项构成的数列是首项为2,公差为4的等差数列.分别求出通项公式,合并可得{}n a 的通项公式;(2)(i )2n S 由奇数项和偶数项分别求和可得,从而得出n b ,由裂项相消法求得和n T ;(ii )求出n c,由不等式的性质放缩为111222n n n n --++≤<(1n =时等号成立),2n ≥时,对这n 个不等式求和,对新不等式两侧一个用错位相减法求得和,另一侧利用此和得出,即可证得不等式成立.【详解】(1)由题意可知,数列{}n a 的奇数项构成的数列是首项为1,公差为4的等差数列,偶数项构成的数列是首项为2,公差为4的等差数列.∴当n 为奇数时,2114(1)4321n k a a k k n -==+-=-=-;当n 为偶数时,224(1)4222n k a a k k n ==+-=-=-21,22,n n n a n n -⎧∴=⎨-⎩为奇数为偶数(2)(i )21321242()()n n n S a a a a a a -=++⋯++++⋯+12122()2(2)n n a a n a a n -++=+24n n =-,211111()444(1)41n b n n n n n n ∴===-+++,12n n T b b b ∴=++⋯+111111(142231n n =-+-+⋯+-+11(1)41n =-+4(1)n n =+;(ii )124n n nn n b c b b ++= ,112(3)44n n n n n n b n n c b b +-++∴==,则2211(1)(2)44n n n n n c --++≤<;111222n n n n --++∴≤<(1n =时等号成立)∴当2n ≥时,11111222nn n k k k k k k k --===++<<∑∑设1122nn k k k S '-=+=∑,1112n n k k k T '-=+=∑11123422122nn k n k k n S '--=++∴==++⋯+∑213422222n n n S +'∴=++⋯+12111(1)121112422334122222221()2n n n n n n n n n S ---+++'∴=-+⋯+=-+=--1482nn n S -+'∴=-;11111111112114281222212n n n n n n k k k n k k k k k n T S ----===-++-+''===-=---∑∑∑11413821222(6n n n n n --++=---=-综上,当2n ≥时,11346822n n n k n n --=++-<-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年厦门市初中总复习教学质量检测数学试题一、选择题(共40分)1.计算21+-,结果正确的是A .1B .1-C .2-D .3- 2.抛物线y=ax 2+2x +c 的对称轴是A .a x 1-= B .a x 2-= C .a x 1= D .ax 2= 3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A .∠AB .∠BC .∠BCD D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=P ,则967×84的值可表示为A .1-pB .85-pC .967-pD .p 84856.如图2在△ACB 中,∠C=90°,∠A=37°,AC=4,则BC 的长约为 (sin37°≈,cos37°≈,tan37°≈A .B .C .D .7.在同一条直线上依次有A 、B 、C 、D 四个点,若AB BC CD =-,则下列结论正确的是 A .B 是线段AC 的中 B .B 是线段AD 的中点 C .C 是线段BD 的中点 D .C 是线段AD 的中点8.把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学可列不等式 9x +7<11 x ,则横线的信息可以是A .每人分7本,则可多分9个人B .每人分7本,则剩余9本C .每人分9本,则剩余7本D .其中一个人分7本,则其他同学每人可分9本 9.已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述.下列正确的是 A .因为a >b +c ,所以a >b ,c >0 B .因为a >b +c ,c <0,所以a >b C .因为a >b ,a >b +c ,所以c<0 D .因为a >b ,c<0 ,所以a >b +c10.我国古代数学家刘徽发展了“重差术”,用于测量不可到达的物体的高度,比如,通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶端B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P 、竹竿顶端D 及N 在一条直线上;(3)设竹竿与AM 、CN 的长分别为l 、a 1、a 2,可得公式:C ABED图1B图2图3PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B .AC 的长 C .MN 的长D .QC 的长二、填空题(共24分)11.分解因式:=-m m 22________.12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是________. 13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB=45°,AC=1,则AB 的长为________.14.A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg .A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运xkg 化工原料,依题意,可列方程________________.15.已知22200120001+=+a ,计算:12+a =__________.16.在△ABC 中,AB=AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处,设折痕交AC边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是__________.三、解答题(共86分)17.(8分)解方程:x x =+-1)1(218.(8分)如图5,直线EF 分别与AB 、CD 交于点A 、C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB=72°,求∠ABC 的度数.19.(8分)如图6,在平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且过点(-3,4),求直线l 的表达式.20.(8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,ABC 图5D E FB且DE=AB ,连接AE 、BD ,证明AE=BD .21.(8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平(1)求p 的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为%,求m 的值.22.(10分)如图8,在矩形ABCD 中,对角线AC 、BD 交于点O . (1)若AB=2,AO=5,求BC 的长;(2)若∠DBC=30°,CE=CD ,∠DCE<90°,OE=22BD ,求∠DCE 的度数.23.(11分)已知点A ,B 在反比例函数 xy 6(x >0)的图象上,且横坐标分别为m 、n ,过点A 向y 轴 作垂线段,过点B 向x 轴作垂线段,两条垂线段交于点C .过点A 、B 分别作AD ⊥x 轴于D ,BE ⊥y 轴于E .A B C DE 图7 图8(1)若m =6,n =1,求点C 的坐标;(2)若3)2(=-n m ,当点C 在直线DE 上时,求n 的值.24.(11分)已知AB=8,直线l 与AB 平行,且距离为4.P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A 、B 重合.过A 、C 、P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.图9图1025.(14分)已知二次函数12-++=t bx ax y ,0<t . (1)当2-=t 时,①若二次函数图象经过点(1,-4),(-1,0),求a ,b 的值;②若12=-b a ,对于任意不为零的实数a ,是否存在一条直线y=kx +p (k ≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由; (2)若点A (-1,t ),B(m ,n t -)(m >0,n >0)是函数图象上的两点,且S △AOB =t n 221-, 当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. °<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分图1FE ABC D∵ CB 平分∠ACD ,∴ ∠BCD =12∠ACD =36°. …………………………5分 ∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB ,∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得 ⎩⎨⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分=34%. …………………………3分 (2)(本小题满分5分)l 图2.A图3EA BCD解:由题意得22%×%+13%×m %+5%×2%+34%×%+26%×1%22%+13%+5%+34%+26%=%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD .∴ OD =OC =12BD . ∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°,CD =12BD . ∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD ,∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2, ∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分∴ ∠DCE =∠OCE -∠OCD =30°.…………………10分23.(本题满分11分)(1)(本小题满分4分)解:因为当m =6时,y =66=1,…………………2分 又因为n =1, 所以C (1,1).…………………4分 (2)(本小题满分7分)解:如图5,因为点A ,B 的横坐标分别为m ,n ,图4OABCDE图5所以A (m ,6m ),B (n ,6n )(m >0,n >0),所以D (m ,0),E (0,6n ),C (n ,6m ).………………………6分设直线DE 的表达式为y =kx +b ,(k ≠0),把D (m ,0),E (0,6n )分别代入表达式,可得y =-6mn x +6n .………………………7分 因为点C 在直线DE 上,所以把C (n ,6m )代入y =-6mn x +6n ,化简得m =2n . 把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分解得n =2±102.………………………10分 因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB ,∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .…………………1分∵ ∠ANC =∠PND , 又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC ,∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切.图6A l CB DP O · 图7 A l C BDP N理由如下:如图8,设圆心为O ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD . 又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x . 由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线.∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x .∵ ︵CD =︵CD ,图8l AMEC BD PO · 图8l AMEC BD PO ·∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC .可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ AE =x =2,∴ AC =BC =PC =4. ∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°. 同理可得∠CPB =45°. ∴ ∠APB =90°.即AP ⊥PB . …………………10分 又∵ ∠PCA =90°, ∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分 25.(本题满分14分) (1)(本小题满分7分) ①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3. 把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得 ⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分 ②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3. 所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分 设经过这两点的直线的表达式为y =kx +p (k ≠0), 把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3. 整理可得ax 2+(2a -k -1)x -3-p =0. 可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t .解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13.所以0<a <13.当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a 时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a 时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a ≤-1.即-a -12a ≤-1.解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。

相关文档
最新文档