2018年厦门市九年级数学质量检测试卷(含答案)
2018年厦门市九年级下数学质检试题及答案(word版)
2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.m(m-2). 12.12. 13. 2. 14.900x+30=600x.15.4001.16.100°<∠BAC<180°.三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x-2+1=x.…………………………4分2x-x=2-1.…………………………6分x=1.…………………………8分18.(本题满分8分)解法一:如图1∵AB∥CD,∴∠ACD=∠EAB=72°.…………………………3分∵CB平分∠ACD,图1FEA B C D∴ ∠BCD =12∠ACD =36°.…………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°.…………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD .…………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD .…………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB ,∴ ∠ABC =12∠EAB =36°.…………………………8分19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2),把(0,2),(-3,4)分别代入表达式,得 ⎩⎪⎨⎪⎧b =2,-3k +b =4.可得⎩⎨⎧b =2,k =-23.…………………………7分l图2.A所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形, ∴ AB ∥DC ,AB =DC .…………………………2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵AB ∥DC ,∴ ∠ABC =∠DCE .…………………………5分 ∴ ∠ABC =∠DEC .…………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD .…………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分=34%.…………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. (7)分解得m =3.…………………………8分图3EABCD22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD是矩形,∴∠ABC=90°,AC=2AO=25.………………………2分∵在Rt△ACB中,∴BC=AC2-AB2………………………3分=4.………………………4分(2)(本小题满分6分)解:如图4∵四边形ABCD是矩形,∴∠DCB=90°,BD=2OD,AC=2OC,AC=BD.∴OD=OC=12 BD.∵ ∠DBC=30°,∴在Rt△BCD中,∠BDC=90°-30°=60°,CD=12 BD.∵ CE=CD,∴CE=12BD.………………………6分图4OAB CDE∵ OE =22BD , ∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分 ∴ ∠DCE =∠23.(本题满分11(1)解:因为当m =6又因为n =1,所以C (1,1)(2)解:如图5所以A (m ,6m ),所以D (m ,0),分设直线DE 的表达式为y =kx +b ,(k ≠0),把D (m ,0),E (0,6n )分别代入表达式,可得y =-6mn x +6n. (7)分B C A D E图5因为点C 在直线DE 上, 所以把C (n ,6m )代入y =-6mnx +6n,化简得m =2n . 把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分 因为n >0, 所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分) 解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分 ∴ ∠ADP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分 ∵ ∠ANC =∠PND , 又∵ 在△ANC 和△PND 中, ∠NCA =180°-∠CAN -∠ANC ,图6A lC BD P O ·图7AlC BDP N∠NDP =180°-∠CPN -∠PND , ∴ ∠NCA =∠NDP .…………………2分 ∵ PC ⊥AB , ∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD . 又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP .…………………7分 ∴ME BC =AE PC. ∵ OE ⊥AB ,图8lA M EC BD PO ·又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径. ∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径. 也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分 ∴ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP , ∵ AE =x =2, ∴ AC =BC =PC =4.图8lA M EC BD PO ·∵ PC ⊥AB , ∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°. 同理可得∠CPB =45°. ∴ ∠APB =90°.即AP ⊥PB .…………………10分 又∵ ∠PCA =90°, ∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分 25.(本题满分14分) (1)(本小题满分7分) ①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3. 把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得 ⎩⎪⎨⎪⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎪⎨⎪⎧a =1,b =-2.所以a =1,b =-2.…………………………3分 ②(本小题满分4分) 解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分 设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3. 整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t , 所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得 t =a -b +t -1,t -n =9a +3b +t -1.因为t>t-n,所以a-b+t-1>9a+3b+t-1.可得2a+b<0.即2a+(a-1)<0.解得a<1 3.所以0<a<1 3.当a<0时,由t>t-n,可知:【若A,B在对称轴的异侧,当-1≤x≤3时,图象的最高点是抛物线的顶点而不是点A;若A,B在对称轴的左侧,因为当x≤-b2a时,y随x的增大而增大,所以当-1≤x≤3时,点A为该函数图象最低点;若A,B在对称轴的右侧,因为当x≥-b2a时,y随x的增大而减小,所以当-1≤x≤3时,若点A为该函数图象最高点,则】-b2a≤-1.即-a-12a≤-1.解得a≥-1.所以-1≤a<0.………………………13分综上,0<a<13或-1≤a<0.………………………14分。
【初中市质检试卷】2018—2019学年(上)厦门市九年级质量检测数学试卷及答案
2018—2019学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s与时间t的函数关系如图4中的部分抛物线所示(其中P是该抛物线的顶点),则下列说法正确的是A.小球滑行6秒停止B.小球滑行12秒停止C.小球滑行6秒回到起点D.小球滑行12秒回到起点8.在平面直角坐标系xOy中,已知A(2,0),B(1,-1),将线段OA绕点O逆时针旋转,设旋转角为α(0°<α<135°).记点A的对应点为A1,若点A1与点B的距离为6,则α为A.30°B.45°C.60°D.90°9.点C,D在线段AB上,若点C是线段AD的中点,2BD>AD,则下列结论正确的是A.CD<AD-BDB.AB>2BDC.BD>ADD.BC>AD10.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0).当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值为y1,y2,且y1=y2.设该函数图象的对称轴是x=m,则m的取值范围是A.0<m<1B.1<m≤2C.2<m<4D.0<m<4二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为奇数的概率是 .12.已知x=2是方程x2+ax-2=0的根,则a=.13.如图5,已知AB是⊙O的直径,AB=2,C,D是圆周上的点,且∠CDB=30°,则BC的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A:“完全三角形是直角三角形”.若命题B是命题A的逆命题,请写出命题B:;并写出一个例子(该例子能判断命题B是错误的): .15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O , 交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分)已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P 在对角线AC上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录. (1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且 售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.表一表二24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ ,(1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP +2∠OPN =90°,探究直线.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.图10图112018—2019学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根 x =-b ±b 2-4ac 2a=3±52. ……………………………6分即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1)……………………………5分 =2x +1……………………………6分 当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x=2时,y=2.所以(2−1)2+n=2.解得n=1.所以二次函数的解析式为:y=(x−1)2+1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E即为所求.…………………3分(2)(本小题满分5分)解法一:解:连接EB,EC,由(1)得,EB=EC.∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.∴△ABE≌△DCE. …………………6分E DC BAl∴ AE =ED =12AD =3. …………………7分在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .∵ 四边形ABCD 是矩形, ∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2. ∴ EB =5. …………………8分21.(本题满分8分) 证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2. 设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ n πr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分FEDCBAl即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F , ∵ 点P 到边AD 的距离为m . ∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系.EF则由(1)得P (m ,n ). 若点P 在△DAB 的内部, 点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧. 由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部, 则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .· PEFM即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分 因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60. 所以x ≤54.5. ……………………9分 因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中,∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分 ∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ .PQ又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ . ∴∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分) (1)①(本小题满分3分)解:如图即为所求…………………………3分②(本小题满分4分)解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0). 设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2.可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2,分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ . 由①,②,③可得a =12+p .所以F (0,p +2).又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分 解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2,因为B (p ,q ),C (p +4,q )在抛物线m 上,所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上, 可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2. 当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a . 因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2.可得N (p +2,0),F (0, p +2). …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。
2018年福建省厦门市中考数学试卷(含答案)
福建省厦门市2018年中考数学试卷一、选择题<本大题共7小题,每小题3分,共21分)1.<3分)(2018年福建厦门)sin30°的值是<)A .B .C .D .1分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选A .点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.<3分)(2018年福建厦门)4的算术平方根是<)A .16B .2C .﹣2D .±2考点:算术平方根.分析:根据算术平方根定义求出即可.解答:解:4的算术平方根是2,故选B .点评:本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.3.<3分)(2018年福建厦门)3x 2可以表示为<)A .9xB .x 2?x 2?x 2C .3x?3xD .x 2+x 2+x2考点:单项式乘单项式;合并同类项;同底数幂的乘法.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:3x 2可以表示为x 2+x 2+x 2,故选D点评:此题考查了单项式乘以单项式,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.<3分)(2018年福建厦门)已知直线AB ,CB ,l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l ,垂足也为B ,则符合题意的图形可以是<)b5E2RGbCAPA .B .C .D .考点:垂线.分析:根据题意画出图形即可.解答:解:根据题意可得图形,故选:C .点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.p1EanqFDPw5.<3分)(2018年福建厦门)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是<)DXDiTa9E3dA.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.RTCrpUDGiT 6.<3分)(2018年福建厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于<)5PCzVD7HxAA.∠EDB B.∠BED C.∠AFB D.2∠ABF考点:全等三角形的判定与性质.分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解答:解:在△ABC和△DEB中,,∴△ABC≌△DEB <SSS),∴∠ACB=∠DEB.∵∠AFB是△BCF的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.7.<3分)(2018年福建厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是<)jLBHrnAILgA.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13xHAQX74J0X考点:中位数;算术平均数.分析:根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.LDAYtRyKfE解答:解:∵原来的平均数是13岁,∴13×23=299<岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选D.点评:此题考查了中位数和平均数,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.Zzz6ZB2Ltk二、填空题<本大题共10小题,每小题4分,共40分)8.<4分)(2018年福建厦门)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是.dvzfvkwMI1考点:几何概率.分析:根据概率公式,求出红色区域的面积与总面积的比即可解答.解答:解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,∴飞镖落在黄色区域的概率是;故答案为:.点评:本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.rqyn14ZNXI9.<4分)(2018年福建厦门)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.<4分)(2018年福建厦门)四边形的内角和是360°.考点:多边形内角与外角.专题:计算题.分析:根据n边形的内角和是<n﹣2)?180°,代入公式就可以求出内角和.解答:解:<4﹣2)?180°=360°.故答案为360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.11.<4分)(2018年福建厦门)在平面直角坐标系中,已知点O<0,0),A<1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是<3,0),A 1的坐标是<4,3).EmxvxOtOco考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:解:∵点O<0,0),A<1,3),线段OA 向右平移3个单位,∴点O 1的坐标是<3,0),A 1的坐标是<4,3).故答案为:<3,0),<4,3).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.SixE2yXPq512.<4分)(2018年福建厦门)已知一组数据:6,6,6,6,6,6,则这组数据的方差为.【注:计算方差的公式是S 2=[<x 1﹣)2+<x 2﹣)2+…+<x n ﹣)2]】考点:方差.分析:根据题意得出这组数据的平均数是6,再根据方差S 2=[<x 1﹣)2+<x 2﹣)2+…+<x n ﹣)2],列式计算即可.6ewMyirQFL解答:解:∵这组数据的平均数是6,∴这组数据的方差=[6×<6﹣6)2]=0.故答案为:0.点评:本题考查了方差:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2=[<x 1﹣)2+<x 2﹣)2+…+<x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.kavU42VRUs13.<4分)(2018年福建厦门)方程x+5=<x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x 系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.y6v3ALoS8914.<4分)(2018年福建厦门)如图,在等腰梯形ABCD 中,AD ∥BC ,若AD=2,BC=8,梯形的高是3,则∠B 的度数是45°.M2ub6vSTnP考点:等腰梯形的性质.分析:首先过点A 作AE ⊥BC 交BC 于E ,过点D 作DF ⊥BC 交BC 于F ,易得四边形AEFD 是长方形,易证得△ABE 是等腰直角三角形,即可得∠B 的度数.0YujCfmUCw解答:解:过点A 作AE ⊥BC 交BC 于E ,过点D 作DF ⊥BC 交BC 于F ,∵AD ∥BC ,∴四边形AEFD 是长方形,∴EF=AD=2,∵四边形ABCD 是等腰梯形,∴BE=<8﹣2)÷2=3,∵梯形的高是3,∴△ABE 是等腰直角三角形,∴∠B=45°.故答案为:45°.点评:此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.eUts8ZQVRd15.<4分)(2018年福建厦门)设a=192×918,b=8882﹣302,c=10532﹣7472,则数a ,b ,c 按从小到大的顺序排列,结果是a<c<b.sQsAEJkW5T考点:因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的这个数就大.GMsIasNXkA解答:解:a=192×918=361×918,b=8882﹣302=<888﹣30)<888+30)=858×918,c=10532﹣7472=<1053+747)<1053﹣747)=1800×306=600×918,TIrRGchYzg 所以a <c <b .故答案为:a <c <b .点评:本题主要考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.16.<4分)(2018年福建厦门)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产15个零件.7EqZcWLZNX考点:分式方程的应用.分析:设一个工人每小时生产零件x 个,则机器一个小时生产零件12x 个,根据这台机器生产60个零件比8个工人生产这些零件少用2小时,列方程求解,继而可求得机器每小时生产的零件.lzq7IGf02E解答:解:设一个工人每小时生产零件x 个,则机器一个小时生产零件12x 个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.zvpgeqJ1hk17.<4分)(2018年福建厦门)如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是<2,4).NrpoJac3v1考点:正多边形和圆;两条直线相交或平行问题.分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解读式,进而求出横坐标为2时,其纵坐标即可得出答案.1nowfTG4KI解答:解:连接AE,DF,∵正六边形ABCDEF的边长为2,延长BA,EF交于点O,∴可得:△AOF是等边三角形,则AO=FO=FA=2,∵以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,∠EOA=60°,EO=FO+EF=4,∴∠EAO=90°,∠OEA=30°,故AE=4cos30°=6,∴F<,3),D<4,6),设直线DF的解读式为:y=kx+b,则,解得:,故直线DF的解读式为:y=x+2,当x=2时,y=2×+2=4,∴直线DF与直线AE的交点坐标是:<2,4).故答案为:2,4.点评:此题主要考查了正多边形和圆以及待定系数法求一次函数解读式等知识,得出F,D点坐标是解题关键.三、解答题<共13小题,共89分)18.<7分)(2018年福建厦门)计算:<﹣1)×<﹣3)+<﹣)0﹣<8﹣2)考点:实数的运算;零指数幂.分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3+1﹣6=﹣2.点评:本题考查的是实数的运算,熟知0指数幂的运算法则是解答此题的关键.19.<7分)(2018年福建厦门)在平面直角坐标系中,已知点A<﹣3,1),B<﹣1,0),C<﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.fjnFLDa5Zo考点:作图-轴对称变换.分析:根据关于y轴对称点的性质得出A,B,C关于y轴对称点的坐标,进而得出答案.解答:解:如图所示:△DEF与△ABC关于y轴对称的图形.点评:此题主要考查了轴对称变换,得出对应点坐标是解题关键.20.<7分)(2018年福建厦门)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.tfnNhnE6e5考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球的号码都是1的情况,再利用概率公式即可求得答案.HbmVN777sL解答:解:画树状图得:∵共有6种等可能的结果,这两个小球的号码都是1的只有1种情况,∴这两个小球的号码都是1的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.V7l4jRB8Hs21.<6分)(2018年福建厦门)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.83lcPA59W9考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得的值.解答:解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴==.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.22.<6分)(2018年福建厦门)先化简下式,再求值:<﹣x 2+3﹣7x)+<5x﹣7+2x2),其中x=+1.mZkklkzaaP考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式的求值,可得答案.解答:解;原式=x2﹣2x﹣4=<x﹣1)2﹣5,把x=+1代入原式,=<+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.23.<6分)(2018年福建厦门)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.<6分)(2018年福建厦门)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.AVktR43bpw考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论.ORjBnOwcEd解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN<AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.25.<6分)(2018年福建厦门)已知A<x1,y1),B<x2,y2)是反比例函数y=图象上的两点,且x1﹣x2=﹣2,x1?x2=3,y1﹣y2=﹣,当﹣3<x<﹣1时,求y的取值范围.2MiJTy0dTT考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=,y2=,利用y1﹣y2=﹣,得到﹣=﹣,再通分得?k=﹣,然后把x1﹣x2=﹣2,x1?x2=3代入可计算出k=﹣2,则反比例函数解读式为y=﹣,再分别计算出自变量为﹣3和﹣1所对应的函数值,然后根据反比例函数的性质得到当﹣3<x<﹣1时,y的取值范围.gIiSpiue7A解答:解:把A<x1,y1),B<x2,y2)代入y=得y1=,y2=,∵y1﹣y2=﹣,∴﹣=﹣,∴?k=﹣,∵x1﹣x2=﹣2,x1?x2=3,∴k=﹣,解得k=﹣2,∴反比例函数解读式为y=﹣,当x=﹣3时,y=;当x=﹣1时,y=2,∴当﹣3<x<﹣1时,y的取值范围为<y<2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=<k为常数,k≠0)的图象是双曲线,图象上的点<x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.uEh0U1Yfmh26.<6分)(2018年福建厦门)A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队<有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A 队的积分至少要几分才能保证一定出线?请说明理由.IAg9qLsgBX[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].考点:推理与论证.分析:根据题意每队都进行3场比赛,本组进行6场比赛,根据规则每场比赛,两队得分的和是3分或2分,据此对A队的胜负情况进行讨论,从而确定.WwghWvVhPE解答:解:每队都进行3场比赛,本组进行6场比赛.若A队两胜一平,则积7分.因此其它队的积分不可能是9分,依据规则,不可能有球队积8分,每场比赛,两队得分的和是3分或2分.6场比赛两队的得分之和最少是12分,最多是18分,∴最多只有两个队得7分.所以积7分保证一定出线.若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.点评:本题考查了正确进行推理论证,在本题中正确确定A队可能的得分情况是关键.27.<6分)(2018年福建厦门)已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.asfpsfpi4k考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.ooeyYZTjj1解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.BkeGuInkxI28.<6分)(2018年福建厦门)当m,n是正实数,且满足m+n=mn时,就称点P<m,)为“完美点”,已知点A<0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B 在线段AM上,若MC=,AM=4,求△MBC的面积.PgdO0sRlMo考点:一次函数综合题.分析:由m+n=mn变式为=m﹣1,可知P<m,m﹣1),所以在直线y=x﹣1上,点A<0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B<3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.3cdXwckm15解答:解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P<m,m﹣1),即“完美点”P在直线y=x﹣1上,∵点A<0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B<3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,h8c52WOngM∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B<3,2),A<0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM?BC=.点评:本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.v4bdyGious29.<10分)(2018年福建厦门)已知A,B,C,D是⊙O上的四个点.<1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;<2)如图2,若AC ⊥BD ,垂足为E ,AB=2,DC=4,求⊙O 的半径.考点:垂径定理;勾股定理;圆周角定理.分析:<1)根据题意不难证明四边形ABCD 是正方形,结论可以得到证明;<2)作直径DE ,连接CE 、BE .根据直径所对的圆周角是直角,得∠DCE=∠DBE=90°,则BE ∥AC ,根据平行弦所夹的弧相等,得弧CE=弧AB ,则CE=AB .根据勾股定理即可求解.J0bm4qMpJ9解答:解:<1)∵∠ADC=∠BCD=90°,∴AC 、BD 是⊙O 的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD 是矩形,∵AD=CD ,∴四边形ABCD 是正方形,∴AC ⊥BD ;<2)作直径DE ,连接CE 、BE .∵DE 是直径,∴∠DCE=∠DBE=90°,∴EB ⊥DB ,又∵AC ⊥BD ,∴BE ∥AC ,∴弧CE=弧AB ,∴CE=AB .根据勾股定理,得CE 2+DC 2=AB 2+DC 2=DE 2=20,∴DE=,∴OD=,即⊙O 的半径为.点评:此题综合运用了圆周角定理的推论、垂径定理的推论、等弧对等弦以及勾股定理.学会作辅助线是解题的关键.XVauA9grYP30.<10分)(2018年福建厦门)如图,已知c <0,抛物线y=x 2+bx+c 与x 轴交于A<x 1,0),B<x 2,0)两点<x 2>x 1),与y 轴交于点C .bR9C6TJscw<1)若x 2=1,BC=,求函数y=x 2+bx+c 的最小值;<2)过点A作AP⊥BC,垂足为P<点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解读式,并直接写出自变量的取值范围.pN9LBDdtrd考点:二次函数综合题.分析:<1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解读式,转化成顶点式即可.DJ8T7nHuGT<2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b ﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.QF81D7bvUA解答:解:<1)∵x2=1,BC=,∴OC==2,∴C<0,﹣2),把B<1,0),C<0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解读式为:y=x2+x+﹣2.转化为y=<x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.<2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=?OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解读式为:y=x2+bx+c,其顶点坐标为<﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x 2,∴顶点的纵坐标随横坐标变化的函数解读式为:y=﹣x2﹣4x﹣4<x>﹣).点评:本题考查了勾股定理、待定系数法求解读式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2017—2018学年(上)厦门市九年级质量检测数学试题及参考答案
2017—2018学年(上)厦门市九年级质量检测数 学(试卷满分:150分考试时间:120分钟)班级 姓名 座位号一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列算式中,计算结果是负数的是( )A .(2)7-+B .|1|-C .3(2)⨯-D .2(1)- 2.对于一元二次方程2210x x -+=,根的判别式24b ac -中的b 表示的数是( ) A .2- B .2 C .1- D .1 3.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点, 连接AE ,OE ,则下列角中是△AEO 的外角的是( ) A .∠AEB B .∠AOD C .∠OEC D .∠EOC 4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB = 60°,则AB 的长是( )A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是( ) A .11 B .10.5C .10D .6 6.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是( ) A .年平均下降率为80% ,符合题意 B .年平均下降率为18% ,符合题意 C .年平均下降率为1.8% ,不符合题意 D .年平均下降率为180% ,不符合题意 7.已知某二次函数,当1x <时,y 随x 的增大而减小;当1x >时,y 随x 的增大而增大,则该二次函数的解析式可以是( )A .22(1)y x =+B .22(1)y x =-C .22(1)y x =-+D .22(1)y x =--8.如图3,已知A ,B ,C ,D 是圆上的点,AD BC =,AC ,BD 交于点E , 则下列结论正确的是( ) A .AB = AD B .BE = CD C .AC = BD D .BE = AD9.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( ) A .2.9 B .3 C .3.1 D .3.1410.点(,)M n n -在第二象限,过点M 的直线y kx b =+(01)k <<分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是A .((1),0)k n -B .3((),0)2k n +C .(2)(,0)k nk+D .((1),0)k n +E ODC B A图1 图2学生数正确速拧个数 A B D CE图3二、填空题(本大题有6小题,每小题4分,共24分)11.已知1x =是方程20x a -=的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若1()4P =摸出红球,则盒子里有 个红球. 13.如图4,已知AB = 3,AC = 1,∠D = 90°,△DEC 与△ABC关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若12345x x x x x <<<<,则该函数图象的开口方向是 .15m ,若直线l 过点A ,则m 与OA 的大小关系是 . 16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 . 三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解方程241x x -=. 18.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上,AB ∥DE ,AB = DE ,AD = CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A .(1)在图中再确定该函数图象上的一个点B 并画出;(2)若(1,3)P ,(0,2)A ,求该函数的解析式.20.(本题满分8分)如图7,在四边形ABCD 中,AB = BC ,∠ABC = 60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.x x 1 x 2 x 3 x 4 x 5 y 3- 54- 0 2 1- 图4A BC D E图5F A BC D E A · ·P图6 F A B C D E图721.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公则需一次性移植多少棵树苗较为合适?请说明理由.22.(本题满分10分)已知直线1:l y kx b =+经过点1(,0)2A -与点(2,5)B .(1)求直线l 1与y 轴的交点坐标;(2)若点(,2)C a a +与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC = CD = CE 时,求DE 的长. 23.(本题满分11分)阅读下列材料:我们可以通过下列步骤估计方程2220x x +-=的根所在的范围.第一步:画出函数222y x x =+-的图象,发现函数图象是一条连续不断的曲线,且与x 轴的一个交点的横坐标在0,1之间.第二步:因为当0x =时,20y =-<;当1x =时,10y =>,所以可确定方程2220x x +-=的一个根x 1所在的范围是101x <<.第三步:通过取0和1的平均数缩小x 1所在的范围:取01122x +==,因为当12x =时,0y <,又因为当1x =时,0y >,所以1112x <<. (1)请仿照第二步,通过运算,验证方程2220x x +-=的另一个根x 2所在的范围是221x -<<-;(2)在221x -<<-的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至2m x n <<,使得14n m -≤.24.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上. (1)如图8,MA = 6,MB = 8,∠NOB = 60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,已知点A 在抛物线2y x bx c =++(0)b >上,且(1,1)A -,(1)若4b c -=,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (01)k <<,都存在b ,使得OC k OB =⋅.”是否正确?若正确,请证明;若不正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,1)-,点A 的对应点A 1为(1,21)m b --.当32m ≥-时,求平移后抛物线的顶点所能达到的最高点的坐标.图8 图9CO2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15. m≤OA.16. 252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得图1F ABCDEA··P·Ba +3=2.解得a =-1. ……………… 7分所以函数的解析式为y =-(x -1)2+3. ……………… 8分20.(本题满分8分) 解:如图3,连接AF . ………………3分将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分21.(本题满分8分) 解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时,成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分) 解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分 ∵ AC =CE , ∴ AF =EF又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,F A B C DE图3图4 A O xy C F D E所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. (4)分 (2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,图5D∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分方法二:如图7,连接MO ,OP ,NO ,BN . ∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°. ∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分25.(本题满分14分)图7·Q(1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)解: 方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度. 由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分 因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分11 / 11 所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b . 即顶点为(b 2,-b 24-2+b ). ………………12分 设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大. 因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716).………………14分。
17-18厦门市九年级下数学质检试题
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是图1E DC B A图2 ABCA .B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点 8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3): (1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 . 14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处,设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .图4B图3三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数. 19.(本题满分8分) 如图6,平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p 的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD 中,对角线AC ,BD 交于点O , (1)AB =2,AO =5,求BC 的长;l图6图7A B CD O A D E图5F EA B C D(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD , 求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且图9 A l C B DP 图10 l A M E C B D P1S△AOB=2n-2 t,当-1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.。
2018年厦门初三质检数学试卷+答案
………………1 分
又因为 b-c=4,可得 b=1,c=-3.
………………3 分
(2)(本小题满分 4 分)
解:由 b+c=-2,得 c=-2-b.
对于 y=x2+bx+c,
当 x=0 时,y=c=-2-b.
抛物线的对称轴为直线 x=-b2.
所以 B(0,-2-b),C(-b2,0). 因为 b>0,
由平移前的抛物线 y=x2+bx+c,可得
y=(x+b2)2-b42+c,即 y=(x+b2)2-b42-2-b.
因为平移后 A(1,-1)的对应点为 A1(1-m,2b-1) 可知,抛物线向左平移 m 个单位长度,向上平移 2b 个单位长度.
则平移后的抛物线解析式为 y=(x+b2+m)2-b42-2-b+2b.
解:如图 4,把 C(a,a+2)代入 y=2x+1,可得 a=1. ……………… 6 分
则点 C 的坐标为(1,3).
x C
∵ AC=CD=CE,
yD
又∵ 点 D 在直线 AC 上,
y
∴ 点 E 在以线段 AD 为直径的圆上.
B
∴ ∠DEA=90°.
……………… 8 分
过点 C 作 CF⊥x 轴于点 F,
(1)(本小题满分 5 分) 解:如图 5,∵ AB 是半圆 O 的直径,
M N
∴ ∠M=90°.
………………1 分
在 Rt△AMB 中,AB= MA2+MB2 ………………2 分
∴ AB=10.
∴ OB=5.
………………3 分
A
O
B
图5
∵ OB=ON,
又∵ ∠NOB=60°,
∴ △NOB 是等边三角形.
………………9 分
最新-厦门市九年级下数学质检试题及答案
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 图1E DC B A图2 ABCB. 每人分7本,则剩余9本C .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD , E AB图4B图3CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式.20.(本题满分8分)如图7,在□ABCD中,E是BC延长线上的一点,且DE=AB,连接AE,BD,证明AE=BD.21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.l图6图7E AB CD图8OAB CDE23.(本题满分11分)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.图9 A l C B DP 图10 l A M E C B D P2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD , ∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB , 图1FE ABC D∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分) (1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得⎩⎨⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分 l图2.A图3EA B C D=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD , ∴ 在△OCE 中,OE 2=12BD 2.图4OABCDE又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90∵ OD =OC ,∴ ∠OCD =∠∴ ∠DCE =∠23.(本题满分11分)(1)(本小题满分解:因为当m =6又因为n =1, 所以C (1,1)(2)(本小题满分解:如图5所以A (m ,6m ),B 所以D (m ,0),E 设直线DE 把D (m ,0),E (.………………………7分因为点C 在直线所以把C (n ,6m )代入把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分 Al C BDPB C A D E图5即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分O ·图7Al C BDPN图8l AM EC BD PO ·∴ ME BC =AE PC.∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . l AMEC BD PO ·∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB ,∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,∴ 0<x <4.又∵ -12<0, ∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ AE =x =2,∴ AC =BC =PC =4.∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠P AC =∠APC =45°.同理可得∠CPB =45°.∴ ∠APB =90°.即AP ⊥PB . …………………10分又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13. 所以0<a <13. 当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a≤-1. 即-a -12a≤-1. 解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。
2018年厦门市初中总复习教学质量检测数学试题及答案
2018年厦门市初中总复习教学质量检测数学试题及答案2018年厦门市初中总复习教学质量检测数学试题一、选择题(共40分)1.计算21+-,结果正确的是A .1B .1-C .2-D .3- 2.抛物线y=ax 2+2x +c 的对称轴是A .a x 1-=B .a x 2-=C .a x 1=D .a x 2= 3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE的同位角是A .∠AB .∠BC .∠BCD D .∠D 4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查5.若967×85=P ,则967×84的值可表示为A .1-pB .85-pC .967-pD .p 84856.如图2在△ACB 中,∠C=90°,∠A=37°,AC=4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .2.4B .3.0C .3.2D .5.07.在同一条直线上依次有A 、B 、C 、D 四个点,若AB BC CD =-,则下列结论正确的是C A B ED 图1 ABC图2A .B 是线段AC 的中 B .B 是线段AD 的中点C .C 是线段BD 的中点 D .C 是线段AD 的中点8.把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学可列不等式9x +7<11 x ,则横线的信息可以是A .每人分7本,则可多分9个人B .每人分7本,则剩余9本C .每人分9本,则剩余7本D .其中一个人分7本,则其他同学每人可分9本9.已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述.下列正确的是A .因为a >b +c ,所以a >b ,c >0B .因为a >b +c ,c <0,所以a >bC .因为a >b ,a >b +c ,所以c<0D .因为a >b ,c<0 ,所以a >b +c10.我国古代数学家刘徽发展了“重差术”,用于测量不可到达的物体的高度,比如,通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA方向走到M 处,测得山顶P 、竹竿顶端B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 到N 处,测得山顶P 、竹竿顶端D 及N 在一条直线上;(3)设竹竿与AM 、CN 的长分别为l 、a 1、a 2,可得公式: 水平线湖泊BD P三、解答题(共86分)17.(8分)解方程:x x =+-1)1(218.(8分)如图5,直线EF 分别与AB 、CD 交于点A 、C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB=72°,求∠ABC 的度数.19.(8分)如图6,在平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且过点(-3,4),求直线l 的表达式.20.(8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE=AB ,连接AE 、BD ,证明AE=BD . ABC 图5D E F 图6l O xy21.(8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅.2017年该市的有关数据如下表所示:项目交通工具交通工具使用燃料交通工具维修市内公共交通城市间交通占交通消费的比例22% 13% 5% P26%相对上一年价格的涨幅1.5% m% 2% 0.5% 1%(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(10分)如图8,在矩形ABCD 中,对角线AC 、BD 交于点O .(1)若AB=2,AO=5,求BC 的长;(2)若∠DBC=30°,CE=CD ,∠DCE<90°,OE=22BD , 求∠DCE 的度数.23.(11分)已知点A ,B 在反比例函数xy 6(x >0)的图象上,且横坐标分别为m 、n ,过点A 向y 轴作垂线段,过点B 向x 轴作垂线段,两条垂线段交于AB CD EO 图8点C.过点A、B分别作AD⊥x轴于D,BE⊥y 轴于E.(1)若m=6,n=1,求点C的坐标;(2)若3m,当点C在直线DE上时,求n的值.n)2(=-24.(11分)已知AB=8,直线l 与AB 平行,且距离为4.P 是l 上的动点,过点P 作PC ⊥AB 交线段AB于点C ,点C 不与A 、B 重合.过A 、C 、P 三点的圆与直线PB 交于点D .(1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.图9 A B C D P l A B C BE DP l25.(14分)已知二次函数12-++=t bx ax y ,0<t . (1)当2-=t 时,①若二次函数图象经过点(1,-4),(-1,0),求a ,b 的值;②若12=-b a ,对于任意不为零的实数a ,是否存在一条直线y=kx +p (k ≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由;(2)若点A (-1,t ),B(m ,n t -)(m >0,n >0)是函数图象上的两点,且S △AOB =t n 221-, 当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号1 2 34 5 6 78 9 10选项A AB DC BD C D B二、填空题(本大题共6小题,每题4分,共24分)11. m(m-2). 12. 12. 13. 2.14.900x+30=600x.15. 4001. 16.100°<∠BAC<180°.三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x-2+1=x.…………………………4分2x-x=2-1.…………………………6分x=1.…………………………8分18.(本题满分8分)解法一:如图1∵AB∥CD,∴∠ACD=∠EAB=72° (3)分∵CB平分∠ACD,∴∠BCD=12∠ACD=36°. …………………………5分∵AB∥CD,∴∠ABC=∠BCD=36°. …………………………8分解法二:如图1∵AB∥CD,∴∠ABC=∠BCD.…………………………3分∵CB平分∠ACD,∴∠ACB=∠BCD.…………………………5分∴∠ABC=∠ACB.∵∠ABC+∠ACB=∠EAB,∴∠ABC=12∠EAB=36°. …………………………8分19.(本题满分8分)图1FEA BC Dl图2.A(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得 ⎩⎪⎨⎪⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分 所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB ,∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分A D∵AB∥DC,∴∠ABC=∠DCE.…………………………5分∴∠ABC=∠DEC.…………………………6分又∵AB=DE,BE=EB,∴△ABE≌△DEB.…………………………7分∴AE=BD. (8)分21.(本题满分8分)(1)(本小题满分3分)解:p=1-(22%+13%+5%+26%)…………………………2分=34%.…………………………3分(2)(本小题满分5分)解:由题意得22%×1.5%+13%×m%+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%.…………………7分解得m=3.…………………………8分22.(本题满分10分)(1)(本小题满分4分) 解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2………………………3分=4.………………………4分(2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD .∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°,CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD ,图4O AB CD E∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分 ∴ ∠DCE =∠OCE -∠OCD =30°.…………………10分23.(本题满分11分)(1)(本小题满分4分)解:因为当m =6时,y =66=1,又因为n =1,所以C (1,1).…………………4分 (2)(本小题满分7分)解:如图5,因为点A ,B 的横坐标分别为m ,n ,所以A (m ,6m ),B (n ,6n)(m >0,n >0),所以D (m ,0),E (0,6n ),C (n ,6m).………………………6分设直线DE 的表达式为y =kx +b ,(k ≠0),图5把D (m ,0),E (0,6n)分别代入表达式,可得y =-6mnx +6n.………………………7分因为点C 在直线DE 上,所以把C (n ,6m )代入y =-6mn x +6n,化简得m =2n .把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB ,∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,图6A l C BDPlP连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分 ∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD .∵ ︵CD =︵CD ,lAMEC BD P O ·∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD . 又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC .∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x . 由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线.∴OE=12 PC.∵ l∥AB,PC ⊥AB,∴PC=4.∴OE=2.∴当ME=2时,点M与圆心O重合.…………………10分即AD为直径.也即点D与点P重合.也即此时圆与直线PB有唯一交点.所以此时直线PB与该圆相切. (11)分解法二:当ME的长度最大时,直线PB与该圆相切.理由如下:如图8,设圆心为O,连接OC,OD.∵ OE⊥AB,又∵ OA=OC,∴AE=EC.设AE=x,则CB=8-2x.∵ ︵CD=︵CD,∴∠CAD=12∠COD,∠CPD=12∠COD.图8lAME C BDPO·∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB ,∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,∴ 0<x <4.又∵ -12<0, ∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ AE =x =2,∴ AC =BC =PC =4.∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°.同理可得∠CPB =45°.∴ ∠APB =90°.即AP ⊥PB . …………………10分又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎪⎨⎪⎧a =1,b =-2.所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3. 所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y =kx +p (k ≠0), 把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b=a -1.………………………8分因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t , 所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a>0时,【二次函数图象的顶点为最低点,当-1≤x≤3时,若点A为该函数图象最高点,则y A≥y B】,分别把A(-1,t),B(3,t-n)代入y=ax2+bx+t -1,得t=a-b+t-1,t-n=9a+3b+t-1.因为t>t-n,所以a-b+t-1>9a+3b+t-1.可得2a+b<0.即2a+(a-1)<0.解得a<13.所以0<a<13.当a<0时,由t>t-n,可知:【若A,B在对称轴的异侧,当-1≤x≤3时,图象的最高点是抛物线的顶点而不是点A;若A,B在对称轴的左侧,因为当x≤-b2a时,y随x的增大而增大,所以当-1≤x≤3时,点A为该函数图象最低点;若A,B在对称轴的右侧,因为当x≥-b2a时,y随x的增大而减小,所以当-1≤x≤3时,若点A为该函数图象最高点,则】-b2a≤-1.即-a-12a≤-1.解得a≥-1.所以-1≤a<0.………………………13分综上,0<a<13或-1≤a<0.………………………14分。
2018厦门质检数学
2018年厦门市初中总复习教学质量检测数学试题一、选择题(共40分)1.计算21+-,结果正确的是A .1B .1-C .2-D .3- 2.抛物线y=ax 2+2x +c 的对称轴是A .a x 1-= B .a x 2-= C .a x 1= D .ax 2= 3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A .∠A B .∠B C .∠BCD D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=P ,则967×84的值可表示为 A .1-p B .85-p C .967-p D .p 84856.如图2在△ACB 中,∠C=90°,∠A=37°,AC=4,则BC 的长约为 (sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .2.4B .3.0C .3.2D .5.07.在同一条直线上依次有A 、B 、C 、D 四个点,若AB BC CD =-,则下列结论正确的是 A .B 是线段AC 的中 B .B 是线段AD 的中点 C .C 是线段BD 的中点 D .C 是线段AD 的中点8.把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学可列不等式 9x +7<11 x ,则横线的信息可以是A .每人分7本,则可多分9个人B .每人分7本,则剩余9本C .每人分9本,则剩余7本D .其中一个人分7本,则其他同学每人可分9本9.已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述.下列正确的是 A .因为a >b +c ,所以a >b ,c >0 B .因为a >b +c ,c <0,所以a >b C .因为a >b ,a >b +c ,所以c<0 D .因为a >b ,c<0 ,所以a >b +c10.我国古代数学家刘徽发展了“重差术”,用于测量不可到达的物体的高度,比如,通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶端B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P 、竹竿顶端D 及N 在一条直线上; (3)设竹竿与AM 、CN 的长分别为l 、a 1、a 2,可得公式:PQ =d ·la 2-a 1+l . 则上述公式中,d 表示的是 A .QA 的长 B .AC 的长 C .MN 的长 D .QC 的长 二、填空题(共24分)11.分解因式:=-m m 22________.12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是________. 13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB=45°,C A B ED图1B图2 图3B14.A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg .A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运xkg 化工原料,依题意,可列方程________________. 15.已知22200120001+=+a ,计算:12+a =__________.16.在△ABC 中,AB=AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处,设折痕交AC边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是__________.三、解答题(共86分)17.(8分)解方程:x x =+-1)1(218.(8分)如图5,直线EF 分别与AB 、CD 交于点A 、C ,若AB ∥CD , CB 平分∠ACD ,∠EAB=72°,求∠ABC 的度数.19.(8分)如图6,在平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且过点(-3,4),求直线l 的表达式.20.(8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE=AB ,连接AE 、BD ,证明AE=BD .21.(8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、 城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平(1)(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值. A BC 图5D EF A B C D E 图722.(10分)如图8,在矩形ABCD 中,对角线AC 、BD 交于点O . (1)若AB=2,AO=5,求BC 的长; (2)若∠DBC=30°,CE=CD ,∠DCE<90°,OE=22BD , 求∠DCE 的度数.23.(11分)已知点A ,B 在反比例函数 xy 6=(x >0)的图象上,且横坐标分别为m 、n ,过点A 向y 轴 作垂线段,过点B 向x 轴作垂线段,两条垂线段交于点C .过点A 、B 分别作AD ⊥x 轴于D ,BE ⊥y 轴于E .(1)若m =6,n =1,求点C 的坐标;(2)若3)2(=-n m ,当点C 在直线DE 上时,求n 的值.图824.(11分)已知AB=8,直线l 与AB 平行,且距离为4.P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A 、B 重合.过A 、C 、P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(14分)已知二次函数12-++=t bx ax y ,0<t .(1)当2-=t 时,①若二次函数图象经过点(1,-4),(-1,0),求a ,b 的值;②若12=-b a ,对于任意不为零的实数a ,是否存在一条直线y=kx +p (k ≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由; (2)若点A (-1,t ),B(m ,n t -)(m >0,n >0)是函数图象上的两点,且S △AOB =t n 221-, 当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围. 图9参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分) 解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD ,∴ ∠BCD =12∠ACD =36°. …………………………5分 ∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB ,∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得 ⎩⎨⎧b =2,-3k +b =4.图1F EA BC D l 图2.A可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形, ∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分 =4.………………………4分(2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD .∴ OD =OC =12BD . ∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°,图3E A B CD 图4 OA B CD ECD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD ,∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2, ∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分∴ ∠DCE =∠OCE -∠OCD =30°.…………………10分23.(本题满分11分)(1)(本小题满分4分)解:因为当m =6时,y =66=1,…………………2分 又因为n =1,所以C (1,1).…………………4分 (2)(本小题满分7分) 解:如图5,因为点所以A(m ,6m ),B 所以D (m ,0),E 设直线DE 把D (m ,0),E (07分 因为点C 在直线DE 所以把C (n ,6m )代入把m =2n 代入m (解得n =2±102.………………………因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB ,∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分即AD ⊥PB .又∵ D 为PB 的中点,A l CB DP 图5解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .…………………1分 ∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x . 由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.O ·图7Al C BDPN图8l A M EC BD PO ·∴ OE 为△ACP 的中位线.∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC .可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ AE =x =2,∴ AC =BC =PC =4. ∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°. 同理可得∠CPB =45°. ∴ ∠APB =90°.即AP ⊥PB . …………………10分 又∵ ∠PCA =90°, ∴ AP 为直径.图8l AMEC BD PO ·25.(本题满分14分) (1)(本小题满分7分) ①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3. 把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得 ⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分 ②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3. 所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分 设经过这两点的直线的表达式为y =kx +p (k ≠0), 把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3. 整理可得ax 2+(2a -k -1)x -3-p =0. 可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0. 化简可得4a 2-4a (k -p -2)+(1+k )2>0. 因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0 所以当k -p -2=0时,总有△>0.………………………6分 可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分 (2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分 所以A (-1,t ),B (3,t -n ). 因为n >0,所以t >t -n . 当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1. 因为t >t -n ,所以a -b +t -1>9a +3b +t -1. 可得2a +b <0. 即2a +(a -1)<0.解得a <13.1厦门质检数学试题第11页共4页(彭雪林制作)当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a 时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a 时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a ≤-1.即-a -12a ≤-1.解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。
2018年福建厦门中考数学试卷及答案解析版
2018 年厦门市初中毕业及高中阶段各种学校招生考试
数学
(试卷满分: 150 分考试时间:120 分钟)
准考据号姓名座位号
注意事项:
1.全卷三大题, 26 小题,试卷共 4 页,还有答题卡.
2.答案一律写在答题卡上,不然不可以得分.
3.可直接用 2B 铅笔绘图.
一、选择题(本大题有7 小题,每题 3 分,共 21 分 . 每题都有四个选项,其
中有且只有一个选项正确)
1.( 2018 福建厦门,1, 3 分).以下计算正确的选项
是()
A .- 1+ 2=1.
B .-1- 1= 0.C.(- 1)2=- 1.D.- 12= 1.【答案】 A
( 2018 福建厦门, 2, 3 分).已知∠A=60°,则∠A的补角是
A . 160°.
B .120°.
C.60°. D .30°.
【答案】 B
(2018 福建厦门, 3, 3 分).图1是以下一个立体图形的三视图,则这个立体图
形是
A .圆锥.
B .球.
C.圆柱. D .正方体.
主左
视视
图图
俯
视
图
图1
【答案】 C
( 2018 福建厦门, 4,3 分).掷一个质地平均的正方体骰子,当骰子停止后,朝。
厦门九级数学质检试题及答案
2018年5月厦门九年级数学质检试题及答案数学试题 第2页 共34页2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -32.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2a C . x=1a D . x =2a图1ED C B A数学试题 第3页 共34页3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查5.若967×85=p ,则967×84的值可表示为 A . p -1 B . p -85 C .p -967 D . 8584p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4, 则BC的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)图2ABCA. 2.4B.3.0C.3.2 D .5.07. 在同一条直线上依次有A,B,C,D四个点,若CD-BC=AB,则下列结论正确的是A.B是线段AC的中点B.B是线段AD的中点C.C是线段BD的中点D.C是线段AD的中点8.把一些书分给几名同学,若;若每人分11本则不够. 依题意,设有x名同学,可列不等式9x+7<11x,则横线上的信息可以是A.每人分7本,则可多分9个人B. 每人分7本,则剩余9本C.每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是数学试题第4页共34页A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D .因为a>b,c<0,所以a>b+c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A处竖立一根竹竿,沿射线QA方向走到顶P、竹竿顶点B及M(2)将该竹竿竖立在射线QA原方向继续走到N处,测得山顶P,竹竿顶点D及N在一条直线上;(3)设竹竿与AM,CN的长分别为l,a1,a2,可得公式:PQ=d·la2-a1+l.则上述公式中,d表示的是A.QA的长B.AC的长图3数学试题第5页共34页数学试题 第6页 共34页C .MN 的长D .QC 的长二、填空题(本大题有6小题,每小题24分)11.分解因式: m 2-2m = . 12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 . 14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________.15.已知a +1=20002+20012,计算:2a +1= .图4B数学试题 第7页 共34页16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处,设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上.l 图6 图5FEA BC D数学试题 第8页 共34页(1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.图7EABCD数学试题 第9页 共34页(1)求p 的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD 中,对角线AC ,BD图8OAB C DE交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.23.(本题满分11分)已知点A,B在反比例函数y=6x(x>0)的图象上,且横坐标分别为m,n,过点A,B 分别向y轴、x轴作垂线段,两条垂线段交于点C,过点A,B分别作AD⊥x轴于D,作BE⊥y轴于E.(1)若m=6,n=1,求点C的坐标;(2)若m错误!链接无效。
厦门九年级的的数学质检试题及答案.docx
∴∠ACD=∠EAB=72°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分
∵CB平分∠ACD,
1
∴
∠BCD=2∠ACD=36°.
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分
图1
∵
∥ ,
AB CD
∴∠ABC=∠BCD=36°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分解法二:如图1∵AB∥CD,
∴∠ABC=∠BCD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分
1
∴OD=OC=2BD.
∵∠DBC=30°,
∴在Rt△BCD中,∠BDC=90°-30°=60°,
1
CD=2BD.
∵CE=CD,
1
∴CE=2BD.⋯⋯⋯⋯⋯⋯⋯⋯⋯6分
2
∵
OE=2
BD,
∴
2
1
2
在△OCE中,OE=
BD.
2
2
2
1
2
1
2
1
2
又∵
OC+CE=4BD+4BD=2BD,
2
2
2
∴OC+CE=OE.
列正确的是
a>b,a>b+c,c<0的逻辑关系的表述,下
A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>b
C.因为a>b,a>b+c,所以c<0D .因为a>b,c<0,所以a>b+c
10.据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过
下列步骤可测量山的高度
y=-
6
6
.⋯⋯⋯⋯⋯⋯⋯⋯⋯
7分
n
x+
mn
n
因为点C在直线DE上,
6
6
6
所以把C(n, )代入y=-x+ ,化简得m=2n.
2017年度2018年度厦门市九学年下数学质检试题及答案解析
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查图1ED CBA方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查C.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584p6. 如图2,在Rt △ACB 中,∠C =90°,∠A =37°,AC =4, 则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本图2ABC9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A. 因为a >b +c ,所以a >b ,c <0B. 因为a >b +c ,c <0,所以a >bC. 因为a >b ,a >b +c ,所以c <0 D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式:PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A.QA 的长B. AC 的长C.MN 的长D.QC 的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .图4B图313.如图4,已知AB是⊙O的直径,C,D是圆上两点,∠CDB=45°,AC=1,则AB的长为 .14. A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等.设B型机器人每小时搬运x kg化工原料,根据题意,可列方程__________________________.15.已知a+1=20002+20012,计算:2a+1= .16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不与点C重合,则∠BAC的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x-1)+1=x.18.(本题满分8分)如图5,直线EF分别与AB,CD交于点A,C,若AB∥CD,CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)l图5FEA B C D如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.图7EABCD(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22 BD,求∠DCE的度数.23.(本题满分11分)图8OAB CDE已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.图9 AlC BDP 图10lA M EC BD P25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分) 11. m (m -2). 12. 12. 13.2. 14. 900x +30=600x.15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,图1FEABC D.∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD ,∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB ,∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分l图2.A.(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2),把(0,2),(-3,4)分别代入表达式,得⎩⎪⎨⎪⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23.…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形, ∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分 ∴ ∠ABC =∠DEC . …………………………6分图3EAB C D.又∵AB=DE,BE=EB,∴△ABE≌△DEB.…………………………7分∴AE=BD.…………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p=1-(22%+13%+5%+26%)…………………………2分=34%.…………………………3分(2)(本小题满分5分)解:由题意得22%×1.5%+13%×m%+5%×2%+34%×0.5%+26%×1%=22%+13%+5%+34%+26%1.25%.…………………7分解得m=3.…………………………8分.22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形, ∴ ∠ABC =90°,AC =2AO =25.………………………2分∵ 在Rt △ACB 中, ∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分图4OABCDE.∵ OE =22BD ,∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分∴ ∠DCE =∠OCE -∠OCD =30°.…………………10分23.(本题满分11分)(1)(本小题满分解:因为当m =6时,y =66=1,…………………2分又因为n =1,所以C (1,1)(2)(本小题满分解:如图5所以A (m ,6m ),,) B C A E.所以D (m ,0),E (0,6n ),C (n ,6m).………………………6分设直线DE 的表达式为y =kx +b ,(k ≠0),把D (m ,0),E (0,6n )分别代入表达式,可得y =-6mn x +6n.………………………7分因为点C 在直线DE 上, 所以把C (n ,6m)代入y =-6mn x +6n,化简得m =2n . 把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分) 解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分 ∴ ∠ADP =90°. …………………3分 即AD ⊥PB .图6AlC BDP.又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分 ∵ ∠ANC =∠PND , 又∵ 在△ANC 和△PND 中, ∠NCA =180°-∠CAN -∠ANC ,∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB , ∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分O ·图7AlC BDPN.(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD . 又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分 ∴ME BC=AE PC.∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .图8lAMEC BD PO ·.由ME BC =AEPC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP , ∵ ∠PCA =90°, ∴ AP 为直径. ∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径. 也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点..所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD .∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分图8lAMEC BD PO ·.∴ME BC=AE PC.可得ME =-12(x -2)2+2.…………………8分∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP , ∵ AE =x =2, ∴ AC =BC =PC =4. ∵ PC ⊥AB , ∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°. 同理可得∠CPB =45°. ∴ ∠APB =90°.即AP ⊥PB . …………………10分 又∵ ∠PCA =90°, ∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎪⎨⎪⎧a =1,b =-2.所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t , 所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13. 所以0<a <13. 当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ; 若A ,B 在对称轴的左侧,因为当x ≤-b 2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b2a ≤-1. 即-a -12a ≤-1.解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。
2017-2018学年(上)厦门市九年级质量检测数学卷标准答案
2017—2018学年(上)厦门市九年级质量检测 数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法和所列解法不同,可参照评分量表的要求相应评分.题号 1 2 3 4 5 6 7 8 9 10 选项CADAADBCBD二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1. 13. 13. 14.向下. 15. m ≤OA . 16. 252<x ≤368(x 为整数)或253≤x ≤368(x 为整数) 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x 2-4x +4=5. ………………4分(x -2)2=5.由此可得x -2=±5. ………………6分x 1=5+2,x 2=-5+2. ………………8分 18.(本题满分8分)证明:如图1, ∵ AB ∥DE , ∴ ∠BAC =∠EDF . ………………2分 ∵ AD =CF ,∴ AD +DC =CF +DC . 即 AC =DF . ………………4分 又∵ AB =DE ,∴ △ABC ≌△DEF . ………………6分 ∴ ∠BCA =∠EFD .∴ BC ∥EF . ………………8分 19.(本题满分8分) 解:(1)如图2,点B 即为所求. ……………… 3分(2)由二次函数图象顶点为P (1,3),可设分析式为y =a (x -1)2+3. ……………… 6分把A (0,2)代入,得 a +3=2.解得a =-1. ……………… 7分所以函数的分析式为y =-(x -1)2+3. ……………… 8分20.(本题满分8分) 解:如图3,连接AF . ………………3分将△CBE 绕点B 逆时针旋转60°,可和△ABF 重合. …………8分 21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时,图1 F A B C D E FA B C D E图3A · ·P图2 ·B成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分 22.(本题满分10分)(1)(本小题满分5分) 解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得分析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1和y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分∵ AC =CE , ∴ AF =EF又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分图4 A xxO x y C F D E又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分) (1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分 方法二:如图7,连接MO ,OP ,NO ,BN . ∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°.图5NMACNP M图7·Q图6DQMOPNC∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分 25.(本题满分14分) (1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)解: 方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线分析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线分析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度. 由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .则平移后的抛物线分析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分 因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线分析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列算式中,计算结果是负数的是A .(-2)+7B .-1C .3×(-2)D .(-1)22.对于一元二次方程x 2-2x +1=0,根的判别式b 2-4ac 中的b 表示的数是 A .-2 B .2 C .-1 D .13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点,连接AE ,OE ,则下列角中是△AEO 的外角的是 A .∠AEB B .∠AOD C .∠OEC D .∠EOC 4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB =60°, 则︵AB 的长是A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是A .11B .10.5C .10D .66.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是A .年平均下降率为80% ,符合题意B .年平均下降率为18% ,符合题意C .年平均下降率为1.8% ,不符合题意 D.年平均下降率为180% ,不符合题意 7.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该 二次函数的解析式可以是 A .y =2(x +1)2 B .y =2(x -1)2 C .y =-2(x +1)2D .y =-2(x -1)28.如图3,已知A ,B ,C ,D 是圆上的点,︵AD =︵BC ,AC ,BD 交于点E , 则下列结论正确的是A .AB =AD B .BE =CDC .AC =BD D .BE =ADABDC E E ODC B A 图1 图2 学生数正确速拧个数图39.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断 增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是A .2.9B .3C .3.1D .3.14 10.点M (n ,-n )在第二象限,过点M 的直线y =kx +b (0<k <1)分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是 A .((k -1)n ,0) B . ((k +32)n ,0) C . ((k +2)n k ,0) D .((k +1)n ,0)二、填空题(本大题有6小题,每小题4分,共24分)11.已知x =1是方程x 2-a =0的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若 P (摸出红球)=14,则盒子里有 个红球.13.如图4,已知AB =3,AC =1,∠D =90°,△DEC 与△ABC关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若x 1<x 2<x 3<x 4<x 5,则该函数图象的开口方向是 .15.P 是直线l 上的任意一点,点A 在⊙O 上.设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是 .16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.(本题满分8分) 解方程x 2-4x =1.18.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上, AB ∥DE ,AB =DE ,AD =CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A . (1)在图中再确定该函数图象上的一个点B 并画出; (2)若P (1,3),A (0,2),求该函数的解析式.x x 1 x 2 x 3 x 4 x 5y -3 -540 2 -1 图4 A B CD E图5FAB C D EA ··P20.(本题满分8分)如图7,在四边形ABCD 中,AB =BC ,∠ABC =60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.21.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公司进行了统计, 结果如下表所示.现该市实施绿化工程,需移植一批这种树苗,若这批树苗移植后要有28.5万棵成活,则需一次性移植多少棵树苗较为合适?请说明理由.22.(本题满分10分)已知直线l 1:y =kx +b 经过点A (-12,0)与点B (2,5).(1)求直线l 1与y 轴的交点坐标;(2)若点C (a ,a +2)与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC =CD =CE 时,求DE 的长.23.(本题满分11分)阅读下列材料:我们可以通过下列步骤估计方程2x 2+x -2=0的根所在的范围.第一步:画出函数y =2x 2+x -2的图象,发现函数图象是一条连续不断的曲线,且与x 轴的一个交点的横坐标在0,1之间.第二步:因为当x =0时,y =-2<0;当x =1时,y =1>0,所以可确定方程2x 2+x -2=0的一个根x 1所在的范围是0<x 1<1.第三步:通过取0和1的平均数缩小x 1所在的范围:取x =0+12=12,因为当x =12时,y <0,又因为当x =1时,y >0, 所以12<x 1<1.(1)请仿照第二步,通过运算,验证方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1;(2)在-2<x 2<-1的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至m <x 2<n ,使得n -m ≤14.F A B C D E 图724.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上.(1)如图8,MA =6,MB =8,∠NOB =60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,已知点A 在抛物线y =x 2+bx +c (b >0)上,且A (1,-1), (1)若b -c =4,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (0<k <1),都存在b ,使得OC =k ·OB .”是否正确?若正确,请证明;若不 正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A 的对应点A 1为(1-m ,2b -1).当m ≥-32时,求平移后抛物线的顶点所能达到的最高点的坐标.图8 图9 CO2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15. m≤OA.16. 252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得a+3=2.解得a=-1. ………………7分所以函数的解析式为y=-(x-1)2+3. ………………8分图1F ABCDEA··P图2·B20.(本题满分8分) 解:如图3,连接AF . ………………3分将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时, 成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分)解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分∵ AC =CE , ∴ AF =EF又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分F AB C DE图3取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分方法二:如图7,连接MO ,OP ,NO ,BN .图5图6∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°. ∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分25.(本题满分14分) (1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)解:图7方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度. 由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分 因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。