数字电路与逻辑设计第1章数字逻辑电路基础知识

合集下载

数字逻辑电路基础知识

数字逻辑电路基础知识

数字逻辑电路基础知识整理1961年美国德克萨斯仪器公司(TI)率先将数字电路的元、器件和连线制作在同一硅片上,制成了集成电路,揭开了集成电路发展的序幕。

一、TTL和CMOS逻辑器件分类逻辑器件的分类方法有很多,下面以逻辑器件的功能、工艺特点和逻辑电平等方法来进行简单描述。

1.1 TTL和CMOS器件的功能分类按功能进行划分,逻辑器件可以大概分为以下几类: 门电路和反相器、选择器、译码器、计数器、寄存器、触发器、锁存器、缓冲驱动器、收发器、总线开关、背板驱动器等。

1:门电路和反相器逻辑门主要有与门74X08、与非门74X0 0、或门74X32、或非门74X02、异或门74X86、反相器74X04等。

2:选择器 选择器主要有2-1、4-1、8-1选择器74X157、74X153、74X151等。

3: 编/译码器编/译码器主要有2/4、3/8和4/16译码器74X139、 74X138、74X154等。

4:计数器计数器主要有同步计数器74 X161和异步计数器74X393等。

5:寄存器寄存器主要有串-并移位寄存器74X164和并-串寄存器74X165等。

6:触发器触发器主要有J-K触发器、带三态的D触发器74X374、不带三态的D触发器74X74、施密特触发器等。

7:锁存器锁存器主要有D型锁存器74X373、寻址锁存器74X25 9等。

8:缓冲驱动器缓冲驱动器主要有带反向的缓冲驱动器74X24 0和不带反向的缓冲驱动器74X244等。

9:收发器收发器主要有寄存器收发器74X543、通用收发器74X245、总线收发器等。

10:总线开关 < br />总线开关主要包括总线交换和通用总线器件等。

11:背板驱动器背板驱动器主要包括TTL或LVTTL电平与GTL/GTL+(GTLP)或BTL之间的电平转换器件。

12:包含特殊功能的逻辑器件A.总线保持功能(Bus hold)由内部反馈电路保持输入端最后的确定状态,防止因输入端浮空的不确定而导致器件振荡自激损坏;输入端无需外接上拉或下拉电阻,节省PCB空间,降低了器件成本开销和功耗。

数字逻辑电路设计-(王毓银)讲义.PPT第一章

数字逻辑电路设计-(王毓银)讲义.PPT第一章
( N )2 an1an2 a1a0 .a1a2 am
an1 2n1 an2 2n2 a1 21 a0 20
a1 21 a2 22 am 2m
n1
ai
1.1.2 数制及其转换
小数部分的转换步骤如下: 将小数部分逐次乘以R,取乘 积的整数部分作为R进制的各有关数位,乘积的小数部分 继续乘以R,直至最后乘积为0或达到一定的精度为止。
例4:求(0.3125)10 =(
)2
解: 0.3125 × 2 = 0.625 ……整数为0 b-1
0.625 × 2 = 1.25 ……整数为1 b-2
3基数r为2k各进制之间的互相转换由于3位二进制数构成1位八进制数4位二进制数构成1位十六进制数以二进制数为桥梁即可方便地完成基数r为2k各进制之间的互相转换
西安邮电学院“校级优秀课程”
数字电路与逻辑设计
第一章 绪 论
第一章 绪 论
目的与要求:
1、正确理解一些有关数字电路的基本概念; 2、常用数制数的表示以及它们之间的转换; 3、掌握数字系统中常用的几种BCD码。
1.1.2 数制及其转换
例6:将十进制小数(0.39)10 转换成八进制数, 要求精度达到0.1% 。
解:要求精度达到0.1% ,因为1/83 < 1/1000 < 1/84, 所以需要精确到八进制小数4位。 0.39 × 8 = 3.12 ……整数为3 b-1=3 0.12 × 8 = 0.96 ……整数为0 b-2=0 0.96 × 8 = 7.68 ……整数为7 b-3=7 0.68 × 8 = 5.44 ……整数为5 b-4=5 所以(0.39)10 =(0.3075)8

数字电路(第一章逻辑代数基础)

数字电路(第一章逻辑代数基础)
数字电路技术基础
东南大学计算机系
电话: 025-3792757 Email:qqliu@
刘其奇
1
第一章 逻辑代数基础
1-1 概述
1-1-1 数字量和模拟量
自然界中物理量分为两大类:
数字量:它们的变化在时间上和数量上都是离散的; 在时间上不连续。
模拟量:它们的变化在时间上或数值上是连续的。 数字信号:表示数字量的信号,是在两个稳定状态之 间作阶跃式变化的信号。 脉冲:是一个突然变化的电压或电流信号。
11
有权码
常用BCD码 十进制数
0 1 2 3 4 5 6 7 8 9
无权码
8421BCD
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
5421BCD
0000 0001 0010 0011 0100 1000 1001 1010 1011 1100
22
2)变量常量关系定律
0、 1律:A • 1 = A; (2 )
A • 0 = 0;(1)
A + 1 = 1; (11) A + 0 = A(12) ;
互补律:A • A = 0; ) A + A = 1;(14) (4
3)逻辑代数的特殊定律
重叠律:A • A = A; ) A + A = A; (13) (3
Y = A + A BC( A + BC + D) + BC = A + ( A + BC)( A + BC + D) + BC = A + A ( A + BC + D) + BC( A + BC + D) + BC = A + BC

数字电路与逻辑设计微课版(第一章数字电路与逻辑设计基础)教案

数字电路与逻辑设计微课版(第一章数字电路与逻辑设计基础)教案

第一章数字电路与逻辑设计基础本章的主要知识点包括数制及其转换、二进制的算术运算、BCD码和可靠性编码等。

1.参考学时2学时(总学时32课时,课时为48课时可分配4学时)。

2.教学目标(能力要求)●系统梳理半导体与微电子技术发展的历史,激发学生专业热情,结合我国计算机发展面临的卡脖子现状,鼓励学生积极投身信息成业自主可控;●学生可解释数字系统的概念、类型及研究方法;●学生能阐述数制的基本特点,可在不同数制之间进行数字的转换;●学生能理解带符号二进制数的代码表示,能将真值和原码、反码、补码的进行转换;●学生能熟记几种常用的编码(8421码、2421码、5421码、余三码),说明有权码和无权码的区别,能阐述不同编码的特点和特性;●学生能阐述奇偶校验码和格雷码的工作原理与主要特征,并能利用相关原理进行二进制和格雷码的转换,能根据信息码生成校验码,并能根据信息码和校验码辨别数据是否可靠。

3.教学重点●BCD码●奇偶校验码●格雷码4.教学难点●理解不同BCD码的编码方案及相关特征●理解可靠性编码方案、验证的原理以及使用方法。

5.教学主要内容(1)课程概述(15分钟)➢科技革命促生互联网时代➢半导体与微电子技术发展历程➢课程性质、内容与学习方法(2)芯片与数字电路(20分钟)➢数字信号和模拟信号➢数字逻辑电路的特点➢数字逻辑电路的分类➢数字逻辑电路的研究方法(3)数制及其转换(5分钟)➢进位计数值的概念和基本要素➢二进制和十进制的相互转换➢二进制和八进制数的相互转换➢二进制和十六进制数的相互转换(4)二进制数的算术运算(5分钟)➢无符号二进制数的算术运算➢带符号二进制数的机器码表示➢带符号二进制数的算术运算(5)BCD码(20分钟)➢有权码和无权码的区别➢8421码的编码规律及和十进制数的转换➢2421码的编码规律及和十进制数的转换➢5421码的编码规律及和十进制数的转换➢余三码的编码规律及和十进制数的转换(6)奇偶校验码(15分钟)➢奇校验和偶校验的概念➢奇校验和偶校验校验位的生成方法和校验方法➢奇校验和偶校验的特点(7)格雷码(10分钟)➢格雷码的特点和用途➢格雷码和二进制数的相互转换6.教学过程与方法(1)课程概述(15分钟)➢科技革命促生互联网时代以习总书记的讲话作为整个课程的导入,说明科技发展是强国必有之路,穿插不同国家崛起的历史,结合第一次工业革命、第二次工业革命,推出目前进入的互联网时代,结合中美贸易战事件,引导学生积极投身国产IT生态的建设。

数字逻辑-1

数字逻辑-1
0 -1 -2 ... -126 -127 -128
n=8
0111 1111 0111 1110
... 0000 0010 0000 0001 0000 0000 1111 1111 1111 1110
... 1000 0010 1000 0001 1000 0000
十六进制
7F 7E … 02 01 00 FF FE … 82 81 80
★ 基本知识; ★ 半导体的导电特性; ★ 晶体二极管; ★ 晶体三极管; ★ 逻辑门电路;逻辑代数基础 ★ 触发器;
数字系统中处理 的是数字信号, 当数字系统要 与模拟信号发 生联系时,必 须经过模/数 (A/D)转换和 数/模(D/A)转 换电路,对信 号类型进行变
换。
数字信号
A/D 模拟信号
• 触发器二次翻转问题
• 引起触发器空翻原因是 在CP信号持续期间,若 输入信号R、S端连续发 生变化,触发器输出状 态也出现对应连续变化, 结果导致触发器不能有 效进行数据记录。
主从式JK触发器
JK触发器解决了双输入受限问题,并且也开拓出触发器一种新的 计数用途,并企图通过使用CP边沿模式来解决空翻现象。但它并没 有真正解决因输入信号多次变化引起的触发器误动作问题。
• 数字计算机就是一种最常见的数字系统。
脉冲信号
• 信号的产生(以开关电路为例) • 常见的脉冲波形 • 脉冲信号的参数
如何产生理想的脉冲信号
逻辑代数基础
析取联结词与正“或”门电路
字系统中的析取联 结词是“可兼或” 的表示
或门
或运算可以表示为F = A + B或F = A∨B
合取联结词与正“与”门电路
真值为:
N1 +N2=1000

数字电路逻辑基本知识

数字电路逻辑基本知识
电路的设计维修维护灵活方便随着集成电路技术的高速发展数字逻辑电路的集成度越来越高集成电路块的功能随着小规模集成电路ssi中规模集成电路msi大规模集成电路lsi超大规模集成电路vlsi的发展也从元件级器件级部件级板卡级上升到系统级
数字逻辑
主 讲:代 媛 电 话:87092338
数字逻辑
用数字信号完成对数字量进行算术运算和逻辑运 算的电路称为数字电路,或数字系统。由于它具有逻 辑运算和逻辑处理功能,所以又称数字逻辑电路。现 代的数字电路是由半导体工艺制成的若干数字集成器 件构造而成。逻辑门是数字逻辑电路的基本单元。存 储器是用来存储二值数据的数字电路。
17
1.1 进位计数制
可见,数码处于不同的位置,代表的数值是不同的。这 里102、101、100、 10-1、10-2 称为权或位权,即十进制数中 各位的权是基数 10 的幂,各位数码的值等于该数码与权的 乘积。
因此, 435.86 4 102 4 101 5100 8 101 6 102
数字集成器件所用的材料以硅材料为主,在高速电路中 ,也使用化合物半导体材料,例如砷化镓等。
5
数字逻辑
逻辑门是数字电路中一种重要的逻辑单元电路 。 TTL逻辑门电路问世较早,其工艺经过不断改进,至今 仍为主要的基本逻辑器件之一。随着CMOS工艺的发展 ,TTL的主导地位受到了动摇,有被CMOS器件所取代的 趋势。
令小数部分 (a2 21 a3 22 am 2m1) F1
34
则上式可写成
1.2 数制转换
2( N )10 a1 F1
现代计算机通常都是标准的数字系统,数字系统 内部处理的是离散元素,并且采用称为信号的物理量 表示,一般为电压和电流,因而现实社会中的各种信 息在数字系统内部呈现出不同的形式 。

数字逻辑与电路设计

数字逻辑与电路设计

数字逻辑与电路设计数字逻辑与电路设计是计算机科学与工程领域中的重要基础学科,它涉及到计算机中数字信号的处理与传输,以及数字电路的设计与实现。

在如今信息技术高速发展的时代,数字逻辑与电路设计的知识变得尤为重要。

本文将介绍数字逻辑与电路设计的基本概念、应用领域以及设计流程。

一、数字逻辑的基本概念数字逻辑是计算机中用来处理和运算二进制信号的逻辑系统。

它以0和1来表示逻辑状态,通过与、或、非等逻辑门实现逻辑运算。

这些逻辑门可以组合成复杂的逻辑电路,实现各种数字运算、逻辑运算和控制功能。

数字逻辑中的基本元素包括逻辑门、触发器、计数器等。

逻辑门用来进行逻辑运算,包括与门、或门、非门等;触发器用来存储和传输数据,包括D触发器、JK触发器等;计数器用来计数和产生时序信号。

二、数字电路的应用领域数字电路广泛应用于计算机、通信、控制等领域,它是现代电子设备中的核心组成部分。

以下是数字电路在不同领域的几个典型应用:1. 计算机:数字电路在计算机中起到控制和运算的作用。

计算机的中央处理器、存储器、输入输出接口等都是由数字电路组成的。

2. 通信:数字电路在通信系统中负责信号的编码、解码和传输。

例如调制解调器、数字信号处理器等都是数字电路的应用。

3. 控制:数字电路用于各种自动控制系统。

例如数字控制器、工业自动化设备等都需要数字电路进行控制。

4. 显示:数字电路在显示技术中起到关键作用。

例如数码管、液晶显示屏等都是数字电路驱动的。

三、数字电路的设计流程数字电路的设计包括设计规格、逻辑设计、电路设计和验证等步骤。

下面是一个典型的数字电路设计流程:1. 设计规格:明确设计的需求和规范,包括功能要求、性能要求等。

2. 逻辑设计:根据设计规格,利用逻辑门和触发器等基本元件进行逻辑电路的设计。

可以使用逻辑图、真值表、状态转换图等进行描述和分析。

3. 电路设计:在逻辑设计的基础上,将逻辑电路转换为电路图。

选择适当的电子元件,进行连线和布局等。

第一章.数字逻辑电路基础知识

第一章.数字逻辑电路基础知识
A 0 1 Z 1 0
A
Z
Z=A A Z
实际中存在的逻辑关系虽然多种多样,但归结 起来,就是上述三种基本的逻辑关系,任何复杂 的逻辑关系可看成是这些基本逻辑关系的组合。
B Z
E
真值表
A 0 0 1 1 B 0 1 0 1 Z 0 1 1 1
逻辑符号 曾用符号
A B Z
逻辑表达式
Z A B
Z=A∨B 完成“或”运算功能的电路叫“或”门
3.“非”(反)逻辑-----实现 的电路叫非门(或反相器
定义:如果条件具备了,结果 便不会发生;而条件不具备时结果 一定发生。因为“非”逻辑要求对 应的逻辑函数是“非”函数,也叫 “反”函数 或“补”函数
数字集成电路发展非常迅速-----伴
随着计算机技术的发展: • 2.中规模集成电路
(MSI) 1966年出现, 在一块硅片上包含 • 1.小规模集成电 100-1000个元件或10路(SSI) 1960 100个逻辑门。如 : 集成记时器,寄存器, 年出现,在一块硅 译码器。 片上包含10-100 • TTL:Transister个元件或1-10个逻 Transister Logic 辑门。如 逻辑门 • SSI:Small Scale 和触发器。 Integration • MSI:Mdeium Scale Integration)
f(t)
t 模拟信号
f(t)
Ts 2Ts 3Ts
t
抽样信号
f(KT)
数字信号T 2T 3T
t
二.数字电路的特点:
模拟电路的特点:主要是研究微弱信号的放 大以及各种形式信号的产生,变换和反馈等。
数字电路的特点:
1 基本工作信号是二进制的数字信号,只 有0,1两个状态,反映在电路上就是低电平 和高电平两个状态。(0,1不代表数量的大 小,只代表状态 ) 2 易实现:利用三极管的导通(饱和)和 截止两个状态。-----(展开:基本单元是 连续的,从电路结构介绍数字和模拟电路的 区别)

第一章 数字逻辑电路基础知识

第一章    数字逻辑电路基础知识
=(11.625)D
(DFC.8)H =13×162+15×161+12×20+8×16-1 =(3580 .5)D
二. 二进制数←→十六进制数
因为24=16,所以四位二进制数正好能表示一位十六进制数的16个数码。反过
来一位十六进制数能表示四位二进制数。
例如:
(3AF.2)H 1111.0010=(001110101111.0010)B 2
第一章 数字逻辑电路基础知识
1.1 数字电路的特点 1.2 数制 1.3 数制之间的转换 1.4 二进制代码 1.5 基本逻辑运算
数字电路处理的信号是数字 信号,而数字信号的时间变 量是离散的,这种信号也常 称为离散时间信号。
1.1 数字电路的特点
(1)数字信号常用二进制数来表示。每位数有二个数码,即0和1。将实际中彼此 联系又相互对立的两种状态抽象出来用0和1来表示,称为逻辑0和逻辑1。而且在 电路上,可用电子器件的开关特性来实现,由此形成数字信号,所以数字电路又 可称为数字逻辑电路。
例如: (1995)D=(7CB)H =(11111001011)B
或 1995D =7CBH=11111001011B 对于十进制数可以不写下标或尾符。
1.3 不同进制数之间的转换
一.任意进制数→十进制数: 各位系数乘权值之和(展开式之值)=十进制数。 例如: (1011.1010)B=1×23+1×21+1×20+1×2-1+1×2-3
逻辑运算可以用文字描述,亦可用逻辑表达式描述,还可 以用表格(这种表格称为真值表)和图形( 卡诺图、波形 图)描述。
在逻辑代数中有三个基本逻辑运算,即与、或、非逻辑运 算。
一. 与逻辑运算

数字电路与系统设计实验

数字电路与系统设计实验
这包括实验方案的正确性、可行性如何? 可否进一步优化?有哪些收获体会?有哪 些经验教训?有哪些建议?等。
第二章 实验基本仪器
数字系统设计实验所需设备有: 直流稳压电源,示波器,基于CPLD的 数字电路实验系统,万用表,信号源, 计算机。
一、直流稳压电源
二、示波器
示波器是一种用来测量电信号波形的 电子仪器。用示波器能够观察电信号 波形,测量电信号的电压大小,周期 信号的频率和周期大小。双踪示波器 能够同时观察两路电信号波形。
能块相对集中地排列器件 3.布线顺序 VCC,GND,输入/输出,控制线 4. 仪器检测(电源,示波器,信号源) 5.实验 测试、调试与记录
6.撰写实验总结报告
(1)实验内容 (2)实验目的 (3)实验设备 (4)实验方法与手段 (5)实验原理图 (6)实验现象(结果)记录分析 (7)实验结论与体会
(((四三一)))、、、实实验实验目验的提内示容
•• 11..注测1意试.掌被T握T测LT器T器L件、件H7的CT4引和L脚HS7C器0和件4引的一脚传个输1特非4性门分。的别传接输地特和 十性5。V2。.掌握万用表的使用方法。
•• •
(2连为输23特二.接 被 入)..性将测测、123到 测 电。实试 试...被 非 压六六六验验HH反反反测 门 值所CC台相相相T器用非 的 。上器器器器件器门输4件777件7的入.444774输电LHH4KH入压SCCHΩC00T端。电C4400,旋位T片片44转R器0片T一电LR4的个T位一L输非的器个出门电改非端的压变门电传输非的压输出门传作特端的输性。
四、数字电路测试及故障查找、排除
1.数字电路测试
数字电路静态测试指的是给定数字电路若干组静态输 入值,测定数字电路的输出值是否正确。

数字电路知识点汇总

数字电路知识点汇总

数字电路知识点汇总第1章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与16进制数的转换二、基本逻辑门电路第2章逻辑代数表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。

一、逻辑代数的基本公式和常用公式1)常量与变量的关系A+0=A与A=⋅1AA+1=1与0⋅A0=A⋅=0AA+=1与A2)与普通代数相运算规律a.交换律:A+B=B+AA⋅⋅=ABBb.结合律:(A+B)+C=A+(B+C)⋅A⋅B⋅⋅=(C)C()ABc.分配律:)⋅=+A⋅B(CA⋅⋅BA C+A+=+)B⋅)(C)()CABA3)逻辑函数的特殊规律a.同一律:A+A+Ab.摩根定律:BBA+=A⋅A+,BBA⋅=b.关于否定的性质A=A二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则例如:C⋅+A⊕⊕⋅BACB可令L=CB⊕则上式变成L⋅=C+AA⋅L⊕⊕=LA⊕BA三、逻辑函数的:——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式1)合并项法:利用A+1A=⋅B⋅,将二项合并为一项,合并时可消去=+A=A或ABA一个变量例如:L=B+BA=(C+)=ACACBBCA2)吸收法利用公式AA⋅可以是⋅+,消去多余的积项,根据代入规则BABA=任何一个复杂的逻辑式例如化简函数L=EAB++DAB解:先用摩根定理展开:AB=BA+再用吸收法L=E+AB+ADB=E B D A B A +++ =)()(E B B D A A +++ =)1()1(E B B D A A +++ =B A +3)消去法利用B A B A A +=+ 消去多余的因子 例如,化简函数L=ABC E B A B A B A +++ 解: L=ABC E B A B A B A +++ =)()(ABC B A E B A B A +++=)()(BC B A E B B A +++=))(())((C B B B A B B C B A +++++ =)()(C B A C B A +++ =AC B A C A B A +++ =C B A B A ++4)配项法利用公式C A B A BC C A B A ⋅+⋅=+⋅+⋅将某一项乘以(A A +),即乘以1,然后将其折成几项,再与其它项合并。

(完整版)《数字电子技术》知识点

(完整版)《数字电子技术》知识点

《数字电子技术》知识点第1章 数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 之间进行相互转换。

举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= (100101.01)2= ( 25.4)16= (00110111.00100101)8421BCD 4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变 1, 1变零;要求:熟练应用上述逻辑运算。

5.数字电路逻辑功能的几种表示方法及相互转换。

①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。

②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。

③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。

⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。

⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。

要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。

6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。

这个规则称为反演规则。

②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。

(复旦数字电子课件)第1章 数字逻辑基础

(复旦数字电子课件)第1章 数字逻辑基础

2020/3/5
模拟电子学基础
3
复旦大学电子工程系 陈光梦
集成电路的分类与数字集成电路的特点
➢ 集成电路分类
➢ 模拟集成电路,处理的信号是连续的(模拟信号) ➢ 数字集成电路,处理的信号是离散的(数字信号)
➢ 数字集成电路分类
➢ 逻辑集成电路、存储器、各类ASIC
➢ 数字集成电路特点
➢ 信息表示形式统一、便于计算机处理 ➢ 可靠性高 ➢ 制造工艺成熟、可以大规模集成
例:若 (A D)C AC CD 0 则 AD C (A C)(C D) 1
2020/3/5
模拟电子学基础
32
复旦大学电子工程系 陈光梦
注意点
反演定理:描述原函数和反函数的关系(两个 函数之间的关系)
对偶定理:描述原函数构成的逻辑等式和对偶 函数构成的逻辑等式的关系(两个命题之间的 关系)
反函数
两个逻辑函数互为反函数,是指两个逻辑函数 对于输入变量的任意取值,其输出逻辑值都相 反。下面真值表中 F 和 G 互为反函数。
A
B F(A,B) G(A,B)
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
2020/3/5
模拟电子学基础
20
复旦大学电子工程系 陈光梦
复合逻辑运算
1. 与非 2. 或非 3. 异或 4. 同或
2020/3/5
模拟电子学基础
4
复旦大学电子工程系 陈光梦
数字集成电路的发展
➢ 集成度
➢ SSI(1-10门,逻辑门电路) ➢ MSI(10-100门,计数器、移位寄存器器) ➢ LSI(100-1000门,小型存储器、8位算术逻辑单元) ➢ VLSI(1000-100万门,大型存储器、微处理器) ➢ ULSI(超过100万门,可编程逻辑器件、多功能集成电路)

数字逻辑课件(欧阳星明)第一章

数字逻辑课件(欧阳星明)第一章
22
第一章
基本知识
1.2
数制及其转换
1.2.1 进位计数制 数制是人们对数量计数的一种统计规律。日常生活中 广泛使用的是十进制,而数字系统中使用的是二进制。 一、十进制 十进制中采用了0、1、…、9共十个基本数字符号,进 位规律是“逢十进一”。当用若干个数字符号并在一起表示 一个数时,处在不同位置的数字符号,其值的含意不同。 如 666
本课程的教学目标是使学生了解组成数字计算机和其它数字系统的各种数字电路能熟练地运用基本知识和理论对各类电路进行分析并能根据客观提出的设计要求用合适的集成电路芯片完成各种逻辑部件的设计
Digital logic
数字电路与逻辑设计
专业基础课
1
课程性质与教学目标 课程性质:“数字电路与逻辑设计”是计算机各
生产时间 划 代 主要元器件 第一代 电子管 1946年 晶体管 第二代 1958年 第三代 小规模集成电路 1964年 第四代 中、大规模集成电路 1971年
国 美 美 美 美
家 国 国 国 国
计算机的发展趋势:速度↑、功能↑、可靠性↑、体积 ↓、价格↓、功耗↓。
14
第一章
基本知识
伴随着微电子技术的飞速发展,进一步加速了计算机 的发展与普及,目前广泛使用的微型计算机就是建立在超 大规模集成电路基础之上的。以个人计算机为例, PC 机 CPU芯片80Χ86的集成规模如下表所示。 80Χ 86的集成规模 芯 片 型 号 集 成 度 8 0 8 6 2.9 万个晶体管 8 0 2 8 6 13.5 万个晶体管 8 0 3 8 6 32 万个晶体管 8 0 4 8 6 120 万个晶体管 8 0 5 8 6 320 万个晶体管 ┇ ┇ 在80586CPU中,密集程度如何呢?大约用500个晶体 管串接起来才能绕人的头发丝一周!

数字电子技术教学课件-第01章 数字电路基础知识

数字电子技术教学课件-第01章 数字电路基础知识

2020/7/27
12
1.2 数制及编码
1.2.1 数制 1.2.2 数制转换 1.2.3 编码
2020/7/27
13
1.2.1 数制
数码:由数字符号构成且表示物理量大小的数 字和数字组合。
计数制(简称数制):多位数码中每一位的构 成方法,以及从低位到高位的进制规则。
1. 十进制
数字符号(系数):0、1、2、3、4、5、6、7、8、9 计数规则:逢十进一 基数:10 权:10的幂
(101011100101)2 =(101,011,100,101)2 =(5345)8
2020/7/27
20
(2)二进制与十六进制之间的转换 四位二进制数对应一位十六进制数。
例如: (9A7E)16 =(1001 1010 0111 1110)2
=(1001101001111110)2
(10111010110)2 =(0101 1101 0110)2
逻辑代数的运算公式和基本规则;
逻辑函数的化简方法(代数化简法和卡诺图化 简法) 。
2020/7/27
34
1.3.1 逻辑代数的基本运算
逻辑:一定的因果关系。
逻辑代数是描述客观事物逻辑关系的数学方法,
是进行逻辑分析与综合的数学工具。因为它是英国数
学家乔治·布尔(George Boole)于1847年提出的,所以又
表1-2 几种常用的BCD码
十进制数 8421码 5421码
0
0000
0000
1
0001
0001
2
0010
0010
3
0011
0011
4
0100
0100
5

数电 第1章 数字逻辑电路基础

数电 第1章 数字逻辑电路基础

关系。
A
或逻辑真值表
AB
F=A+ B
E
B
F
或逻辑电路
00
0
01
1
10
1
11
1
A
≥1
B
或门逻辑符号
F=A+B
或门的逻辑功能概括为: 1) 有“1”出“1”; 2) 全“0” 出“0”.
3. 非逻辑运算 定义:假定事件F成立与否同条件A的具备与否有关,
若A具备,则F不成立;若A不具备,则F成立.F和A之间的这 种因果关系称为“非”逻辑关系.
才成立;如果有一个或一个以上条件不具备,则这件事就 不成立。这样的因果关系称为“与”逻辑关系。
AB
E
F
与逻辑电路
与逻辑电路状态表
开关A状态 开关 B状态 灯F状态












若将开关断开和灯的熄灭状态用逻辑量“0”表示;将开关 合上和灯亮的状态用逻辑量“1”表示,则上述状态表可表 示为:
73.5
0111 0011 . 0101
故 (73.5)10 =(01110011.0101)8421BCD码
2. 格雷码(Gray码)
格雷码为无权码,特点为:相邻两个代码之间仅有一位 不同,其余各位均相同.
格雷码和四位二进制码之间的关系:
设四位二进制码为B3B2B1B0,格雷码为R3R2R1R0,
George Boole在1847年提出的,逻辑代数也称布尔代数.
1.3.1 基本逻辑运算
在逻辑代数中,变量常用字母A,B,C,……Y,Z, a,b, c,……x.y.z等表示,变量的取值只能是“0”或“1”.

数字电子技术》知识点

数字电子技术》知识点

《数字电子技术》知识点第1章数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换。

举例1:()10= ( )2= ( )16= ( )8421BCD解:()10= 2= ( 16= 8421BCD4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变1,1变零;要求:熟练应用上述逻辑运算。

5.数字电路逻辑功能的几种表示方法及相互转换。

①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。

②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。

③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。

⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。

⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。

要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。

6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。

这个规则称为反演规则。

②对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y',Y'称为函Y 的对偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
意一个; 2 i 表示第 i 位的权。m、n 均
为整数, 为小数位上的整数, 为整 数位上的整数。
例1-2 ( 1 0 1 1 0 . 1 1 0 ) 2 = 1 2 4 + 0 2 3 + 1 2 2 + 1 2 1 + 0 2 0 + 1 2 - 1 + 1 2 - 2 + 0 2 - 3 = ( 2 2 . 7 5 ) 1 0
实际上,任意一个十进制数N都可以通过权位展开其 公式形式如下:
式中的任(意NK 一)i 1 0其个表中具示体K任的意表数十示。进第制i 数位N的;基数,它可以是0到9中
1 0 n 其中10表示第 i 的权,每一个数字符号的权
值是基数的为10的不同次幕。
【例1-1】
上面的等式是由十进制数247.76通过 权位展开的形式,称为十进制数的多项 式的表示法。十进制数除了(247.76)
10的形式之外,还可以写成247.76D(D
表示十进制数)的形式。
(二) 二进制(B) 二进制的进位原则是“逢二进一”,二 进制的基数是2,它的数符只有0,1。任 意二进制数N都可以用多项式的写K i 法,其 形式如下:
式中 K i 其中K 称为第i 位基数,且它
只能是“0”和“1”两种状态之中的任
3、易实现性
集成度高,小功耗低是数字电路突出 的优点之一。电路的设计、维修、维护 灵活方便,随着集成电路技术的高速发 展,数字逻辑电路的集成度越来越高,
集成电路块的功能随着小规模集成电( SSI)、中规模集成电路(MSI)、大规 模集成电路(LSI)、超大规模集成电路 (VLSI)的发展也从元件级、器件级、 部件级、板卡级上升到系统级。
数字电路与逻辑设计
主编:陈伏华 王春莲 曾祥彪
第1章 数字逻辑电路基础知识
1.1 数字逻辑电路的概念和特点
1.2
常用数值及其转换
1.3
逻辑关系
1.4
逻辑代数的公式和定律
1.5
逻辑函数的化简法
1.6 具有无关项逻辑函数的化简
1.1 数字系统的概念和特点
一、数字逻辑电路的基本概念
数字电路又名数字系统,用数字信 号完成对数字量进行算术运算和逻辑运 算的电路称为数字电路,或数字系统。 由于它具有逻辑运算和逻辑处理功能, 所以又称数字逻辑电路。数字电路可分 为组合逻辑电路和时序逻辑电路。
时序逻辑电路简称时序电路,它是由最基
本的逻辑门电路加上反馈逻辑回路(输出到输 入)或器件组合而成的电路,与组合电路相比 ,最本质的区别在于时序电路具有记忆功能。 时序电路的特点是:输出不仅取决于当时的输 入值,而且还与电路过去的状态有关。它类似 于含储能元件的电感或电容的电路,如触发器 、锁存器、计数器、移位寄存器、储存器等电 路都是时序电路的典型器件。
电路的设计组成只需采用一些标准的
集成电路块单元连接而成。对于非标准 的特殊电路还可以使用可编程序逻辑阵 列电路,通过编程的方法实现任意的逻 辑功能。
1.2 常用数值及其转换
数制是按照某种进位的原则进行计数 的,称为进位计数制,简称数制。不管以 哪种原则进行计数,其计数和运算都有相 同的规律及特点。在我们的日常生活中最 常用的是十进制,然而在计算机中是无法 识别的,虽然计算机能极快地进行运算, 但其内部并不像人类在实际生活中使用的 十进制,而是使用只包含0和1两个数值的 二进制。当然,人们输入计算机的十进制 被转换成二进制进行计算,计算后的结果 又由二进制转换成十进制,这都由操作系
统自动完成,并不需要人们手工去做,学 习汇编语言,就必须了解二进制(还有八 进制/十六进制)。 数制也称计数制,是用 一组固定的符号和统一的规则来表示数值 的方法。人们通常采用的数制有十进制、 二进制、八进制和十六进制。
1.2.1ห้องสมุดไป่ตู้常用数制的转换
(一)十进制数(D) 十进制计数法是 相对二进制计数法而言的,是我们日常使 用最多的计数方法,如0、1、2、3、4、5 、6、7、8、9共十个数。它的进位原则 是“逢十进一” 它的定义是:“每相邻的两 个计数单位之间的进率都为十”的计数法 则,就叫做“十进制计数法”。
(一)逻辑电路的特点
1、算术/逻辑双功能 数字电路是以二进制逻辑代数为数
学基础,使用二进制数字信号,既能进 行算术运算又能方便地进行逻辑运算( 与、或、非、判断、比较、处理等), 因此极其适合于运算、比较、存储、传 输、控制、决策等应用。
2、简单可靠 可用于基础的数字逻辑电路 的制作,其功能简单可靠且准确性高。
例1-3
2 2 4 . 3 6 8 2 8 2 2 8 1 4 8 0 3 8 1 6 8 2 ( 1 4 8 . 4 6 8 7 5 ) 1 0
每个八进制数如34,除了可以写成 ( 3 4 ) 8 的形式 之外,还可以写成34O(O表示八进制)的形 式。
每个二进制数如10110.110,除了可以写 成的形式之外, 10110.1102还可以写成 10110.11B(B表示二进制)的形式。
二进制数是计算技术和电子技术中广泛采 用的一种数制。二进制数据是用0和1两个 数码来表示的数。二进制在运算过程中遵 循“逢二进一”的运算原则,这使得数制的 运算更加简单,不容易发生错误;在数字 系统中由于二进制数只有“0”和“1”两种状 态,不容易受到其他信号的干扰,二进制 具有运算简单和必须稳定的特点。
数字电路与数字电子技术广泛的应用于电视、
达、通信、电子计算机、自动控制、航天等科 学技术各个领域。
组合逻辑电路简称组合电路,它由最基本
的逻辑门电路组合而成。特点是:输出值只与 当时的输入值有关,即输出由当时的输入值决 定。电路没有记忆功能,输出状态随着输入状 态的变化而变化,类似于电阻性电路,如加法 器、译码器、编码器、数据选择器等都属于此 类。
3.八进制(O)
八进制数的基数是8,一共有8个数码组 成分别是0~7。它的运算进位原则是“ 逢八进一”。任意一个八进制数N都可以 用多项式表示写法如下形式 :
其中 K 称为第 i 位基数,它可以使0到7
中的任意一个数。 8 i 称为第 i 权,m、n
均为整数, 为小数位上的整数,
为整数位上的整数。
相关文档
最新文档