高一数学必修一《零点》专题复习

合集下载

人教版高一数学必修一函数零点及二分法

人教版高一数学必修一函数零点及二分法

新高一数学函数零点及二分法一、耕地播种1、回顾:一元二次方程x2-2x+3=0与二次函数y=x2-2x+3=0之间的关系。

总结L1:下列函数的图象中没有零点的是()3、零点的判定(零点存在性定理):. L2:判断下列函数在给定的区间上是否存在零点:(1)f(x)=(x+2)(x-1),x ∈[-1,2]; (2)f(x)=x 2-x+2, x ∈R; (3)f(x)=(x-2)2, x ∈[-1,5].L3:函数f(x)=lnx-x2的零点所在的大致区间是( )A 、(1,2)B 、(2,3)C 、(3,4)D 、(e ,3) 4、二分法求方程的近似解(1)蓦然回首判断方程:ax 2+bx+c=0(a ≠0,a 、b 、c 为常数)一个解x 的范围是( )A 、3<x<3.23B 、3.23<x<3.24C 、3.24<x<3.25D 、3.25<x<3.26 (2)二分法:对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法。

(3)二分法求函数f(x)零点近似值的步骤:注意L1:若函数f(x)=x 3+x 2-2x-2的一个零点附近的函数值的参考数据如下表:那么方程x 3+x 2-2x-2=0的一个近似根(精确度0.1)为 . L2:用二分法求函数f(x)=x 3-x-1在区间[1,1.5]内的一个零点(精确到0.01). L3:求方程x 2=2x+1的一个近似解(精确度0.1).二、收获硕果1、下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的图号是( )2、已知函数f(x)的图象是连续不断的,且有如下对应值表:函数f(x)在哪几个区间内有零点?为什么?3、用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解(精确度0.1).4、求方程2x3+3x-3=0的一个近似解(精确度0.1).5、利用二分法,求函数f(x)=x3+x2-2x-2在区间[1,2]内的零点的近似值(精确度0.1).。

高中一年级数学函数零点

高中一年级数学函数零点

高中一年级数学函数零点1、一次函数的零点一次函数的零点即为函数的根,也可以称之为x的零点,可以直接由函数的一次单调性性质判断。

函数y=f(x)在区间(a,b)上单调递增时,可以推断出其在[a,b]上无根;函数f(x)在区间[a,b]上单调递减时,可以推断出其在[a,b]上无根;此时若f(a)、f(b)有符号相反,表示在[a,b]区间有一个零点,即根。

2、二次函数的零点二次函数y=f(x),其零点可以直接由函数的二次单调性性质解决。

函数y=f(x)在区间[a,b]上单调递增时,可推断出其在该区间内有两个零点。

若f(a)、f(b)均为正数即表示区间[a,b]内无根;若f(a)和f(b)均为负数即表示区间[a,b]内有两个零点;若f(a)和f(b)有符号相反,表示区间[a,b]内有一个零点。

3、多项式的零点多项式的零点可以用牛顿法和求根公式求解,如牛顿法:牛顿法是基于牛顿迭代公式的一种求根法,只要给定初值和函数值连续可导,能利用牛顿法求解方程的根,多项式的零点就是多项式的根的求解。

如果一个多项式的次数未知,则可采用数值求根方法,如牛顿法,。

4、一元二次不等式的零点一元二次不等式的零点可由不等式的根的求解来求得。

一元二次不等式的零点可以分为以下三种情况:1)当不等式转化为一元二次函数后,没有实数根;2)当不等式转化为一元二次函数后,只有一个实数根;3)当不等式转化为一元二次函数后,有两个实数根。

5、三次函数的零点三次函数y=f(x)的零点可以由三次单调性来求得。

函数y=f(x)在区间[a,b]上单调递增或者递减时,可以判断出函数在[a,b]上无根;函数y=f(x)在区间[a,b]上单调性改变一次时,可以判断出函数在[a,b]上有一个根;函数y=f(x)在区间[a,b]上单调性改变两次时,可以判断出函数在[a,b]上有两个根。

6、可导函数的零点可导函数的零点可由可导性的性质求得。

可导函数的零点可以这样想:在一个函数上,它的任一点,当其处于可导区域,即点斜率存在且连续时,可知此点应该是函数的驻点,即此点处函数图像的斜率均为0,便可以确定此点为函数的零点。

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

高一数学必修一《零点》专题复习

高一数学必修一《零点》专题复习

7.已知x0是函数f(x)=2x+1的一个零点,若x1∈(1,x),x2∈(x,+∞),则f(x1)f(x2)_______0.(填9.已知函数f(x)=⎨,若方程f(x)=x+a有且只有两个不等实根,则实数a的取值范围是()1A.函数f(x)在区间(0,)内有零点B.函数f(x)在区间1,8上无零点DB.⎛-∞,15⎫C.⎛15,+∞⎫⎪D. ,2⎪⎝2⎭⎝14⎭⎝14⎭学习必备欢迎下载高一数学必修一《零点》专题复习1、方程2x+x-6=0的实数解的个数有_______个.2.函数f(x)=ln x-2x的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+?)3.已知定义在R上的函数f(x)的图像是连续不断的,且有如下部分对应值表:x123456f(x)136.13515.552-3.9210.88-52.488-232.064可以看出函数至少有个零点.6.设方程2-x=lg x的两个根为x,x,则()12A.x x<0B.x x=1C.x x>1D.0<x x<1121212121-x“>”,“=”或“<”).8、若方程log x+x=3的解所在的区间是(k,k+1),则整数k=3⎧2-x-1(x≤0)⎩f(x-1)(x>0)A.(-∞,0]B.[0,1]C.(-∞,1)D.[1,+∞)10、若函数y=f(x)在定义域内单调,且用二分法探究知道f(x)在定义域内的零点同时在(0,8),(0,4),(0,2),(0,1)内,那么下列命题中正确的是()[)211C.函数f(x)在区间(0,)或(,1)内有零点.函数f(x)可能在区间(0,1)上有多个零点2211.关于x的方程2x+x=7的解所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.R若一元二次方程3x2-5x+a=0的一根大于-2且小于0,另一根大于1而小于3,则实数a取值范围()A.(-12,0)⎪⎛1⎫学习必备欢迎下载13.若关于x的方程5x=a+3有根,则实数a的取值范围是.114.若关于x的方程x2-ax+1=0在x∈(,3)上有实数根,则实数a的取值范围是215、函数f(x)=ln|x-1|-x+3的零点个数为16.已知函数f(x)=(a+1)x2+4ax-3.当a>0时,若方程f(x)=0有一根大于1,一根小于1,则a的取值范围是;17.二次函数f(x)=ax2+bx(a≠0),满足f(x+1)为偶函数,且方程f(x)=x有相等实根。

高一数学必修一零点专题复习

高一数学必修一零点专题复习

高一数学必修一?零点?专题复习1、方程062=-+x x 的实数解的个数有_______个.2. 函数2ln f x x x 的零点所在的大致区间是 〔 〕A.1,2B.2,3C. 3,4D.,e 3.定义在R 上的函数f(x)的图像是连续不断的,且有如下局部对应值表: x1 2 3 4 5 6 f(x)可以看出函数至少有 个零点.6.设方程 x x lg 2=-的两个根为21,x x ,那么 〔 〕A. 021<x x B .121=x x C .121>x x D. 1021<<x xx 0是函数1()21x f x x=+-的一个零点,假设10(1,)x x ∈,20(,)x x ∈+∞,那么12()()f x f x _______0.〔填“>〞,“=〞或“<〞〕.8、假设方程3log 3=+x x 的解所在的区间是(), 1k k +,那么整数k =9.函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩,假设方程()f x x a =+有且只有两个不等实根,那么实数a 的取值范围是〔 〕A .(,0]-∞B .[0,1]C .(,1)-∞D .[1,)+∞10、假设函数()y f x =在定义域内单调,且用二分法探究知道()f x 在定义域内的零点同时在(0,8),(0,4),(0,2),(0,1)内,那么以下命题中正确的选项是〔 〕A .函数()f x 在区间1(0,)2内有零点 B .函数()f x 在区间[)1,8上无零点C .函数()f x 在区间1(0,)2或1(,1)2内有零点 D .函数()f x 可能在区间(0,1)上有多个零点 11.关于x 的方程27+=x x 的解所在的区间是〔 〕 A.0(,1)B.(1, 2)C.(2, 3)D.(3, 4) 12. R 假设一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,那么实数a 取值范围 〔 〕A .()12,0-B .15,14⎛⎫-∞ ⎪⎝⎭C .15,14⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭13.假设关于x 的方程35+=a x 有根,那么实数a 的取值范围是 .14. 假设关于x 的方程210x ax -+=在1(,3)2x ∈上有实数根,那么实数a 的取值范围是15、函数()ln |1|3f x x x =--+的零点个数为16.函数2()(1)43f x a x ax =++-.当0a >时,假设方程()0f x =有一根大于1,一根小于1,那么a 的取值范围是 ;17.二次函数2()(0)f x ax bx a =+≠,满足(1)f x +为偶函数,且方程()f x x =有相等实根。

高中数学必修一函数零点知识点总结

高中数学必修一函数零点知识点总结

高中数学必修一函数零点知识点总结函数零点是指函数图像与x轴交点的横坐标,也就是函数使得y=0的x值。

函数零点是函数的重要特征之一,对于数学问题的解决有着重要的意义。

本文将会对于高中数学必修一中的函数零点知识点进行总结和归纳,目的是帮助大家更好的理解和掌握这一知识点。

一、函数零点的基本概念在高中数学必修一中,我们首先需要了解函数和零点的基本概念。

1.函数函数是一种映射关系,通常用f(x)表示。

f(x)代表的是自变量x 经过一个映射后得到的因变量y。

2.零点零点是指函数图像与x轴交点的横坐标,即函数使得y=0的x 值。

二、函数零点的求解方法了解了基本的概念后,下一步就是了解函数零点的求解方法。

通常用以下几种方法进行求解:1.图像法用函数的图像上的交点来确定零点的大致位置。

这是一种较为直观的方法,但是可能存在误差。

2.代数法代数法是计算函数表达式的零点。

对于一次函数,可以通过解一元一次方程的方法求解零点;对于高次函数,可以使用因式分解再使用一元高次方程求解零点。

3.牛顿迭代法牛顿迭代法是利用导数求得函数的切线,再求得切线与x轴的交点,作为函数零点的估算值,通过反复迭代不断无限接近真实的零点。

三、函数零点的意义函数零点的意义不仅仅是代表交点的横坐标,而且它还有许多重要的实际意义。

1.解方程函数零点可以帮助我们解出方程,对于很多实际问题,都可以通过建立函数模型,然后求出函数的零点来解决问题。

2.最优解函数的零点常常代表着一些最优解。

例如,在一段时间内销售收入为0的时间点可能是关键节点,需要重点关注。

3.寻找某些性质在研究函数性质的过程中,函数的零点也具有重要的作用。

比如,函数在零点处是否有极大值或者极小值等。

四、函数零点的应用函数零点在实际应用中也有着广泛的应用。

1.物理学应用物理学中的许多问题都可以通过建立函数模型求解。

例如,简谐运动的周期、波浪的速度等等,都需要求解函数的零点。

2.经济学应用函数零点可以帮助我们优化经济模型,例如,一些变量的收益和成本之间的平衡点可以通过函数零点来寻找。

word完整版数学必修一零点题型总结,文档

word完整版数学必修一零点题型总结,文档

第三章 第一节 函数与方程一、函数的零点1、实例:填表函数 f(x)图像 与 x 轴交点 零点 方程 f(x)=0 方程的根f(x)=2x-1f(x)=x 2-4x+5 f(x)= x2-4x+4 f(x)= x2-5x+62、函数零点的定义: ____________________________ 叫做函数的零点 (注意: ________________________ )题型一 求函数的零点1.y =x -2 的图象与 x 轴的交点坐标及其零点分别是 ()A .2;2B .(2,0); 2C .- 2;- 2D .(- 2,0);- 2.函数f(x) =x 2+4x + a 没有零点,则实数 a 的取值范围是 () 2A .a<4B . a>4C .a ≤4D . a ≥4 3.函数 f(x)2+2ax + c(a ≠ 0)的一个零点是- 3,则它的另一个零点是 ()=axA .- 1B .1C .- 2D .24.函数f(x) =x 2- ax -b 的两个零点是 2 和 3,求函数 g(x)=bx 2- ax -1 的零点.5、求以下函数的零点(1) f ( x) 27 x1( 2) f ( x) 2 log 3 ( x 1)9二、零点定理1、方程的根与函数零点的关系: 方程 f(x)=0 的根 函数 f(x) 的零点函数与 x 轴交点的横坐标2、零点定理:如 果 函 数 y f ( x) 在 区 间 [ a, b] 上 的 图 象 是 连 续 不 间 断 的 一 条 曲 线 , 并 且 有f (a) f (b) 0 那么函数 y f (x) 在区间 (a, b) 内有零点,即存在c (a,b) ,使得f ( c) 0 ,这个 c也就是方程 f ( x) 0 的实数根。

问题 1:去掉“连续不停”能够吗?问题 2 :假如函数yf (x) 在区间 [ a,b] 上的图象是连续不中断的一条曲线,而且有f (a) f (b) 0那么函数 yf ( x) 在区间 (a, b) 内有一个零点,对不对?问题 3 :假如函数y f (x) 在区间 [ a,b] 上的图象是连续不中断的一条曲线,而且有f (a) f (b)0那么函数 yf (x) 在区间 ( a,b) 上无零点,对不对?题型二、判断区间内有无零点1.函数 y = f(x)在区间 (- 2,2)上的图象是连续的, 且方程 f(x) =0 在 (- 2,2)上仅有一个实根 0, 则 f(- 1)· f(1)的值 () A .大于 0B .小于 0C .等于 0D .没法确立2. 函数 f ( x) ln x2)的零点所在的大概区间是(xA .( 1, 2)B .( 2, 3)C . (1,1) 和( 3, 4)D . (e,)e3.设函数 f(x)=2 x-x 2-2x ,则在以下区间中 不存在 零点的是()...A. ( -3 , 0)B.( 0, 3)C. ( 3, 6)D.( 6, 9)4、方程 2 x 1 x 5 在以下哪个区间内必定有根?( )A 、( 0, 1)B 、( 1, 2)C 、( 2, 3)D 、( 3, 4)5、依据表格中的数据,能够判断方程e xx 2 0 的一个根所在的区间为 ()x10 12 3e x1x2 123 45A . ( 1,0)B . (0,1)C . (1,2)D . (2,3)三、判断零点的个数方法①:转变为判断方程f(x)=0 的根的个数,解方程1例:函数 f(x)=xx的零点有 ______个方法②:从图像判断零点个数例 1:已知函数 f(x) 为 R 上奇函数,且在(0, +)上有 1003 个零点,则 f(x) 在 R 上的零点的总个数为 ______3 ,x 3例 2:已知函数 f ( x)xlog 3 x,0x 3(1)方程 f(x)=0 有几个根?(2)方程 f(x)=1 有几个根?(3)方程 f(x)=k 有几个根?(4)方程 f(x)=-x 有几个跟?总结:怎样利用图像判断 f(x)=g(x) 有几个根?题型三 判断零点个数(方程根的个数)1、函数 f (x )x 2 2x 3, x 0的零点有 _______个lnx x 0x 3,( x 1)e x的零点个数为(2、 f ( x)2x 3,( x, 则函数 g( x) f ( x))x 2 1)A . 1B . 2C .3D . 43、方程 lnx+2x-6=0 有几个根?334、若函数 f ( x), x,若方程 f(x)=k 有两个不一样实根,务实数 k 的取值范围 xlog 3 x,0 x 35、已知函数 x, xm 取值范围f ( x )2,若 g(x)=f(x)-m 有三个不一样零点,务实数x x, x 0四、二分法求零点的近似值二分法求函数f(x) 零点近似值的步骤:题型四二分法1、用二分法求方程x3-x-4=0 在区间[1,3]内的实根,应计算f(___),下一个有根的区间是____2、用二分法求f(x)= 3x -x-4=0 的一个零点,参照数据以下:据此数据,可得方程3x x 40 的一个近似解为_______3、综合练习1、已知函数 f(x)=ax 2-2x+1(a≥0)(1)议论 f(x) 在 [0,2] 上的单一性(2)若 a>1,求 f(x) 在[0,2] 上的最大最小值(3)若 f(x) 在区间( 0,2)上只有一个零点,求 a 的范围1 2、定义在 R 上的偶函数 y=f(x) 在 (-∞, 0]上递加,函数 f(x) 的一个零点为-2,1求知足 f(log 9x)≥0 的 x 的取值会合.。

高一数学必修1第二章方程的根与函数零点

高一数学必修1第二章方程的根与函数零点

(2)log am b n=nm log a b;(3)log a b·log b a=1;(4)log a b·log b c·log c d=log a d.7.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).8.对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过定点过定点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0当x>1时,y>0当0<x<1时,y>0当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数9.反函数对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.例1如图所示,曲线是对数函数y=log a x的图象,已知a取3,43,35,110,则相应于c1,c2,c3,c4的a值依次为()A.3,43,35,110 B.3,43,110,35C.43,3,35,110 D.43,3,110,35解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错.要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A.⎝⎛⎭⎫-14,0 B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫14,12 D.⎝⎛⎭⎫12,34 答案 C解析 ∵f ⎝⎛⎭⎫14=4e -2<0, f (12)=e -1>0,∴f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0, ∴零点在⎝⎛⎭⎫14,12上.规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象.2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点. 跟踪演练2 函数f (x )=e x +x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点, 又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x |log 0.5x |-1=0, 可得|log 0.5x |=⎝⎛⎭⎫12x.设g (x )=|log 0.5x |,h (x )=⎝⎛⎭⎫12x ,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点. 1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝⎛⎭⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x 的零点所在的大致区间是( )A .(6,7)B .(7,8)C.(8,9) D.(9,10)答案 D解析因为f(9)=lg 9-1<0,f(10)=lg 10-910=1-910>0,所以f(9)·f(10)<0,所以y=lg x-9x在区间(9,10)上有零点,故选D.4.方程2x-x2=0的解的个数是()A.1 B.2 C.3 D.4答案 C解析在同一坐标系画出函数y=2x,及y=x2的图象,可看出两图象有三个交点,故2x-x2=0的解的个数为3. 5.函数f(x)=x2-2x+a有两个不同零点,则实数a的范围是________.答案(-∞,1)解析由题意可知,方程x2-2x+a=0有两个不同解,故Δ=4-4a>0,即a<1.【新方法、新技巧练习与巩固】一、基础达标1.下列图象表示的函数中没有零点的是()答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是()A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是()x -1012 3e x0.371 2.727.3920.09x+21234 5A.(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案 C解析 由上表可知f (1)=2.72-3<0, f (2)=7.39-4>0,∴f (1)·f (2)<0,∴f (x )在区间(1,2)上存在零点. 4.函数f (x )=ln x +2x -6的零点所在的区间为( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 答案 B解析 f (1)=ln 1+2-6=-4<0, f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,所以f (2)·f (3)<0,则函数f (x )的零点所在的区间为(2,3). 5.方程log 3x +x =3的解所在的区间为( ) A .(0,2) B .(1,2) C .(2,3) D .(3,4) 答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1, a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0, f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点. 由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点,故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3, ∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1, ∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,。

数学高一专题------零点及其二分法求解

数学高一专题------零点及其二分法求解

数学高一专题零点及其二分法求解零点:函数图像与横轴的交点的横坐标称为这个函数的零点。

1.判断函数零点所在区间的常用方法(1)利用零点存在性定理,使用该定理的首要条件是函数在某一闭区间上的图像是连续的。

(2)数形结合法:画出函数的图像,用估算确定区间。

2.判断函数零点个数的常用方法(1)解方程法:(2)利用零点存在性定理:(3)数形结合法:二分法求解函数值:考点一:函数与方程1.函数f(x)=-x2+4x-4在区间[1,3]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点2. 函数f(x)=2x+x3-2在区间(0,2)内的零点个数是()A.0 B.1C.2 D.33.函数f(x)的图像如图所示,则函数f(x)的变号零点个数为()A.1 B.2 C.3 D.44.用二分法求函数f(x)=x3+5的零点可以取的初始区间是()A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]5.函数y =f (x )在区间[a ,b ]上的图像是不间断的,并且f (a )·f (b )<0,则这个函数在该区间上( )A .只有一个零点B .有二个零点C .不一定有零点D .至少有一个零点6. 若函数y =mx 2+x -2没有零点,则实数m 的取值范围是________.变式练习1.函数y =ln(x +1)与y =1x的图像交点的横坐标所在区间为 ( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.函数f (x )=x 3-x 2-x +1在[0,2]上 ( )A .有3个零点B .有2个零点C .有1个零点D .没有零点 3.对于函数n mx x x f ++=2)(,若0)(>a f ,0)(>b f ,则函数)(x f 在区间(a ,b )内( )A .一定有零点B .一点没有零点C .可能有两个零点D .至多有一个零点4.若函数)(x f y =是偶函数,定义域}0|{≠∈x x 且,且)(x f 在),0(+∞上是减函数,0)2(=f ,则函数)(x f 的零点有( )A .惟一一个B .两个C .至少两个D .无法判断5.已知函数f (2x )=3x 2+1,则f (x +5)有________个零点.6.求证:方程5x 2-7x -1=0的根一个在区间(-1,0)上,另一个在区间(1,2)上.考点二:二分法求零点求函数f (x )=x 3-x -1在区间[1,1.5]内的一个零点(精确到0.1)变式练习1.若函数f (x )=x 3+x 2-2x -2的一个零点附近的函数值的参考数据如下表:求方程x 3+x 2-2x -22.用二分法求方程0212-0.9 x x 的实数解,精确到0.1.课后练习1.函数f (x )在区间(0,2)内有零点,则( )A .f (0)>0,f (2)<0B .f (0)·f (2)<0C .在区间(0,2)内,存在x 1,x 2使f (x 1)·f (x 2)<0D .以上说法都不正确2.函数f (x )=x 2+2x +b 的图像与两条坐标轴共有两个交点,那么函数y =f (x )的零点个数是() A .0 B .1C .2D .1或23.设函数f (x )=log 3x +2x -a 在区间(1,2)内有零点,则实数a 的取值范围是( )A .(-1,-log 32)B .(0,log 32)C .(log 32,1)D .(1,log 34)4.方程2x -x -2=0在实数范围内的解的个数是________.5.函数y =(12)x 与函数y =lg x 的图像的交点的横坐标是________.(精确到0.1)6.方程4x 2-6x -1=0位于区间(-1,2)内的解有____________个.7.当a 取何值时,方程ax 2-2x +1=0的一个根在(0,1)上,另一个根在(1,2)上.。

高一数学必修一函数零点试题及解析

高一数学必修一函数零点试题及解析

高一数学必修一函数零点试题及解析一、选择题(每小题5分,共30分)1.函数f (x )=lg x -1x的零点所在的区间是( )A .(3,4)B .(2,3)C .(1,2)D .(0,1) 答案:B解析:∵函数f (x )=lg x -1x,∴f (2)=lg2-12=lg2-lg1012<0,f (3)=lg3-13=lg3-lg1013>0,∴f (2)f (3)<0由零点的存在性定理可知:零点所在的区间为(2,3),故选B. 2.如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +2x +a 的零点所在区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(2,3) 答案:C解析:解:由函数f (x )=x 2+ax +b 的部分图象得0<b <1,f (1)=0,从而-2<a <-1,而g (x )=ln x +2x +a 在定义域内单调递增,产品用时30 min,组装第A件产品用时15 min,那么c和A的值分别是________.答案:60,16解析:因为组装第A 件产品用时15 min ,所以cA=15 ①;所以必有4<A ,且c4=c2=30 ②,联立①②解得c =60,A =16. 8.设函数y =x3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),若x 0所在的区间是(n ,n +1)(n ∈Z ),则n =________.答案:1解析:画出函数y =x3和y =⎝ ⎛⎭⎪⎫12x -2的图象,如图所示.由函数图象,知1<x 0<2,所以n =1.9.若关于x 的方程|x |x -2=kx 有三个不等实数根,则实数k 的取值范围是________.答案:⎝⎛⎭⎪⎫0,12解析:由题意可知k ≠0, ∵|x |x -2=kx ,∴kx 2-2kx =|x |. 当x ≥0时,kx 2-2kx =x , 解得x =0或x =2k +1k,∴2k +1k >0,∴k >0或k <-12;当x <0时,kx 2-2kx =-x ,解:设函数f (x )=2x +x -4, ∵f (1)=-1<0,f (2)=2>0,f (x )在区间(1,2)上单调递增,∴f (x )在区间(1,2)内有唯一的零点,则方程2x +x -4=0在区间(1,2)内有唯一一个实数解. 取区间(1,2)作为起始区间,用二分法逐次计算如下:区间 中点的值 中点的函数值 区间长度 (1,2) 1.5 0.33 1 (1,1.5) 1.25 -0.37 0.5 (1.25,1.5)1.375-0.0310.25由上表可知,区间(1.25,1.5)的长度为0.25<0.3. ∴方程的实数解为1.375.能力提升12.(5分)若容器A 有m 升水,将水慢慢注入容器B ,t 分钟后A 中剩余水量y 符合指数函数y =m e -at (e 为自然对数的底).假设经过5分钟时,容器A 和容器B 水量相等,且又过n 分钟容器A 中水只有m8,则n 的值为( ) A .7 B .8 C .9 D .10 答案:D解析:⎩⎪⎨⎪⎧m ·e -5a =12m ,m ·e-a5+n=m8,温馨提示:最好仔细阅读后才下载使用,万分感谢!。

数学必修一函数的零点知识点

数学必修一函数的零点知识点

数学必修一函数的零点知识点数学必修一函数的零点知识点1、函数零点的概念:对于函数))((D__fy,把使0)(_f成立的实数_叫做函数))((D__fy的零点。

2、函数零点的意义:函数)(_fy的零点就是方程0)(_f 实数根,亦即函数)(_fy的图象与_轴交点的横坐标。

即:方程0)(_f有实数根函数)(_fy的图象与_轴有交点函数)(_fy有零点.3、函数零点的求法:代数法)求方程0)(_f的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数)(_fy的图象联络起来,并利用函数的性质找出零点.有理数命名由来“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。

事实上,这似乎是一个翻译上的失误。

有理数一词是从西方传来,在英语中是rationalnumber,而rational通常的意义是“理性的”。

中国在近代翻译西方科学著作,根据日语中的翻译方法,以讹传讹,把它译成了“有理数”。

但是,这个词来于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之一样)。

所以这个词的意义也很显豁,就是整数的“比”。

与之相对,“无理数”就是不能准确表示为两个整数之比的数,而并非没有道理。

学习方法在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独聚集在一起,每抄录一遍,那么加深一次印象。

上课的时候,教师讲到这些地方时,应把自己预习时的理解和教师讲的相对照,看自己有没有理解错的地方。

预习可以用“一划、二批、三试、四分”的预习方法。

一划:就是圈划知识要点,根本概念。

二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。

三试:就是尝试性地做一些简单的练习,检验自己预习的效果。

四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。

考点14 函数零点问题【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

考点14 函数零点问题【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

考点14函数零点问题1、确定函数的零点(方程的根)所在的区间确定函数的零点(方程的根)所在的区间时,可以利用函数的零点存在性定理确定零点所在的位置,是零点问题中最常见的一类题型,其要点是要保证函数在某个区间内是连续的,且在这个区间两端点处的函数值为异号,也可以利用数形结合法,通过画函数图象与x 轴的交点来确定.2、函数零点个数的判断方法(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:一种是转化成函数图像与x 轴的交点个数,另一种是转化成两个函数的交点个数。

如判断()()()f x h x g x =-型函数的零点个数问题时,可采用数形结合的方法.转化为两个函数()h x 和()g x 的图象的交点个数问题,先画出两个函数的图象,看其交点个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.3、已知函数零点所在区间求参数的取值范围根据函数零点所在的区间求解参数的关键是结合条件给出参数的限制条件,此时应分三步:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式;③解不等式,即得参数的取值范围.在求解时,注意函数图象的应用.4、已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4、已知函数零点的个数求参数或参数的取值范围一般情况下,常利用数形结合法,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两函数图象的交点问题,画出函数的图象以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.考点一确定零点所在的区间1.(2022·河南濮阳·高一期末(文))函数()25xf x =-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,42.(2022·山西·长治市第四中学校高一期末)函数()lg 3f x x x =+-的零点所在区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.(2022·广东梅州·高一期末)已知实数b 满足23b =,则函数()2x f x x b =+-的零点所在的区间是()A .()1,0-B .()0,1C .()1,2D .()2,34.(2022·贵州遵义·高一期末)方程2430x x +-=的解所在的区间为()A .10,4⎛⎫ ⎪⎝⎭B .11,43⎛⎫ ⎪⎝⎭C .11,32⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭5.(2022·云南德宏·高一期末)方程lg 2x x +=的解所在的区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)6.(2022·江苏南京·高一期末)设函数()25x f x x =+-在区间(k ,k +1)(Z k ∈)内有零点,则k 的值为()A .-1B .0C .1D .27.(2022·内蒙古·阿拉善盟第一中学高一期末)已知函数()ln 26f x x x =+-的零点位于区间()1,m m -(m ∈Z )内,则1327log +=m m ()A .1B .2C 3log 2+D .48.(2022·湖南·新邵县教研室高一期末)已知(),()f x g x 均为[1,3]-上连续不断的曲线,根据下表能判断方程()()f x g x =有实数解的区间是()x 1-0123()f x 0.677- 3.011 5.432 5.9807.651()g x 0.530- 3.4514.8905.2416.892(2,3)(1,2)(0,1)D .(1,0)-9.(2022·广东汕头·高一期末)[]x 表示不超过x 的最大整数,例如,[]11=,[]3.54-=-,[]2.12=.若0x 是函数()ln 26f x x x =+-的零点,则[]0x =()A .1B .2C .3D .4考点二判断函数零点个数(一)解方程法10.(2022·北京顺义·高一期末)函数||e 2x y =-的零点个数为()A .0个B .1个C .2个D .3个11.(2022·四川绵阳·高一期末)设函数()()()()22,0,lg ,0,x x x f x x x ⎧--≥⎪=⎨-<⎪⎩则函数()f x 的零点个数为()A .1B .2C .3D .412.(2022·福建三明·高一期末)函数221,0lg 23,0x x x y x x x ⎧+-=⎨+->⎩ 的零点个数为___.13.(2022·湖南衡阳·高一期末)已知函数()4,0e 3,0+<⎧=⎨+≥⎩x x x f x a x .(1)若()f x 在R 上单调递增,求a 的取值范围;(2)讨论函数()()3g x f x =-的零点个数.(二)零点存在性定理法14.(2022·北京朝阳·高一期末)已知奇函数()f x 的定义域为R ,其图象是一条连续不断的曲线.若(2)(1)0f f -=≠,则函数()f x 在区间(2,2)-内的零点个数至少为()A .1B .2C .3D .4(三)数形结合法15.(2022·广东深圳·高一期末)已知函数()1,02,0x f x x x x ⎧>⎪=⎨⎪+≤⎩,则方程()30xf x -=的解的个数是()A .0B .1C .2D .316.(2022·云南玉溪·高一期末)函数()22ln f x x x x =--的零点个数为()A .1个B .2个C .3个D .4个17.(2022·河南信阳·高一期末)已知函数()f x 是定义在R 上的偶函数,且(4)()f x f x +=,当[0,2]x ∈时,()22x f x =-,则()f x 在区间(0,8)上零点的个数为()A .2B .3C .4D .518.(2022·湖南邵阳·高一期末)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()2y f x x =-的零点个数是______.19.(2022·重庆九龙坡·高一期末)若函数()()R y f x x =∈满足()()11f x f x +=-,且[]1,1x ∈-时,()21f x x =-,已知函数()lg ,0e ,0x x x g x x ⎧>=⎨<⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为__________.20.(2022·四川攀枝花·高一期末)已知函数()21,22,21x x f x x x ⎧-≤⎪=⎨>⎪-⎩,则方程()1f f x ⎡⎤=⎣⎦的实数根的个数为()A .7B .5C .3D .221.(2022·辽宁沈阳·高一期末)已知函数()()1,1ln 1,1x x f x x x -+≤⎧=⎨->⎩,则函数()()2g x f f x ⎡⎤⎣⎦=-的零点个数为()A .3B .4C .2D .122.(2022·黑龙江·大庆中学高一期末)已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是()A .4B .5C .6D .723.【多选】(2022·湖南·湘潭一中高一期末)设函数()22log ,02,0⎧>⎪=⎨--≤⎪⎩x x f x x x x 则下列命题正确的是()A .当0m <时,方程()()f f x m =有1个实数解B .当0m =时,方程()()f f x m =有7个实数解C .当01m <≤时,方程()()f f x m =有8个实数解D .当1m >时,方程()()f f x m =有6个实数解考点三根据零点所在的区间求参数的取值范围24.(2022·天津南开·高一期末)已知函数f (x )=ax -3(a >0,且a ≠1),f (x 0)=0,若x 0∈(0,1),则实数a 的取值范围是()A .(0,1)B .(1,2)C .(2,3)D .(3,+∞)25.(2022·江苏省如皋中学高一期末)设k 为实数,函数()22x f x x k =+-在[]0,1上有零点,则实数k 的取值范围为________.26.(2022·广西玉林·高一期末)若函数3()2x f x x a =++的零点所在的区间为(0,1),则实数a 的取值范围是()A .[3,1]--B .[2,1]--C .(3,1)--D .(2,1)--考点四根据函数零点的个数求参数的取值范围27.(2022·江西·高一期末)已知函数()231,11,1x x f x x x +≤⎧=⎨->⎩,若方程()f x t =恰有两个不等的实根,则实数t 的取值范围是()A .(),0∞-B .(]0,4C .[)0,∞+D .()4,+∞28.(2022·北京市怀柔区教科研中心高一期末)已知函数2,0()11,0x x f x x x -⎧<⎪=⎨+-≥⎪⎩,若函数()0f x m -=有三个零点,则实数m 的取值范围是()A .(1]2,B .(1)2,C .(01),D .[1,)+∞29.(2022·贵州铜仁·高一期末)已知函数f (x )=21xm --有两不同的零点12,x x ,则12x x +的取值范围是()A .(−∞,0)B .(0,+∞)C .(−1,0)D .(0,1)30.(2022·全国·益阳平高学校高一期末)已知函数()22,02,x x f x x x x -<⎧=⎨-+≥⎩若关于x 的方程()12f x x m =+恰有三个不相等的实数解,则m 的取值范围是()A .30,4⎡⎤⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .90,16⎡⎤⎢⎣⎦D .90,16⎛⎫ ⎪⎝⎭31.【多选】(2022·河北秦皇岛·高一期末)已知函数函数()y f x a=-有四个不同的零点1x ,2x ,3x ,4x ,且1234x x x x <<<,则()A .a 的取值范围是()0,1B .21x x -的取值范围是()0,1C .344x x +=D .1234222x x x x +=+32.(2022·江西·临川一中高一期末)已知函数()12log ,0410,4x x f x x x⎧<≤⎪⎪=⎨⎪>⎪⎩,若方程()f x a =有三个实数根1x ,2x ,3x ,且123x x x <<,则下列结论不正确的为()A .121=x x B .312x x x 的取值范围为[)5,+∞C .a 的取值范围为50,2⎛⎫⎪⎝⎭D .不等式()2f x >的解集为()10,4,54⎛⎫⋃ ⎪⎝⎭33.(2022·内蒙古·赤峰二中高一期末(文))已知()()2ln ,045,1x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若方程()()f x m m =∈R 有四个不同的实数根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()A .(3,4)B .(2,4)C .[0,4)D .[3,4)34.(2022·江苏省天一中学高一期末)已知函数()()lg 1,1,11x x f x xx x ⎧->⎪=⎨<⎪-⎩,()11g x x x =+-,若关于x 的方程()()f g x a =有6个实根,则实数a 的取值范围为______.35.(2022·云南丽江·高一期末)已知函数()()y f x x R =∈是偶函数.当0x ≥时,2()4f x x x =-.(1)求函数()f x 在x R ∈上的解析式;(2)若函数()f x 在区间[,3]a a +上单调,求实数a 的取值范围;(3)已知()|()|h x f x m =-,试讨论()h x 的零点个数,并求对应的m 的取值范围.36.(2022·福建·福州三中高一期末)已知函数()3()log 91xf x kx =++是偶函数.(1)当0x ≥,函数()y f x x a =-+存在零点,求实数a 的取值范围;(2)设函数()3()log 32xh x m m =⋅-,若函数()f x 与()h x 的图象只有一个公共点,求实数m 的取值范围.37.(2022·湖北黄石·高一期末)已知函数()()2log 41xf x kx =++为偶函数.(1)求实数k 的值;(2)解关于m 的不等式()()211f m f m +>-;(3)设()()()2log 20xg x a a a =⋅+≠,若函数()f x 与()g x 图象有2个公共点,求实数a 的取值范围.考点五比较零点的大小关系38.(2022·辽宁·高一期末)已知函数()e 2xf x x =+-,()ln 2g x x x =+-,且()()0f a g b ==,则()g a ____________()f b (填>,<,≥,≤).39.(2022·河南洛阳·高一期末(文))已知函数()3f x x x =+,()3xg x x =+,()3log h x x x =+的零点分别为1x ,2x ,3x ,则1x ,2x ,3x 的大小顺序为()A .231x x x >>B .321x x x >>C .123x x x >>D .312x x x >>40.(2022·湖北·鄂州市鄂城区教学研究室高一期末)已知方程220x x +=、2log 20x x +=、320x x +=的根分别为a ,b ,c ,则a ,b ,c 的大小顺序为().A .a b c>>B .b c a>>C .c a b>>D .b a c>>41.(2022·山东临沂·高一期末)已知函数()lg f x x =+a ,若3b a =,2a c =,则a ,b ,c 的大小关系为()A .a b c<<B .a c b<<C .b a c<<D .b<c<a42.(2022·湖北·华中师大一附中高一期末)已知实数,,a b c 满足a b c >>,函数()111f x x a x b x c=++---有两个零点()1212,x x x x <,则关于函数()f x 的零点12,x x 的下列关系式一定正确的是()A .12x c b x a <<<<B .12c x b a x <<<<C .12c x x b a<<<<D .12c x b x a<<<<43.【多选】(2022·湖北·武汉市第十四中学高一期末)已知实数12,x x 为函数21()(|log (1)2x f x x =--|的两个零点,则下列结论正确的是()A .12(2)(2)(,0)x x --∈-∞B .12(1)(1)(0,1)x x --∈C .12(1)(1)1x x --=D .12(1)(1)(1,)x x --∈+∞考点六求零点的和44.(2022·新疆·乌市一中高一期末)已知函数()()()333,log 1,log xf x xg x xh x x x =+=+=+的零点依次为a ,b ,c ,则a b c ++=________45.(2022·上海·曹杨二中高一期末)已知函数()y f x =的表达式为()2,0log ,0x x f x x x ≤⎧=⎨>⎩,则函数()y f f x =⎡⎤⎣⎦的所有零点之和为______.46.(2022·湖北武汉·高一期末)已知定义域为R 的偶函数()f x 满足()()2f x f x +=,当01x ≤≤时,1()e1xf x -=-,则方程()()211f x x =+在区间[]5,3-上所有的解的和为___________.47.(2022·浙江·杭十四中高一期末)定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]8,10-上所有根的和为()A .0B .8C .16D .3248.(2022·江苏·高一期末)已知函数24,04()=1020,4x x f x x x x x ⎧+<<⎪⎨⎪-+-≥⎩,若存在12340x x x x <<<<,使得1234()()()()f x f x f x f x ===,则1234+++x x x x 的取值范围是___________.49.【多选】(2022·河北唐山·高一期末)已知函数()f x 的定义域为R ,()()4f x f x +=,()()11f x f x +=-,且当[]1,1x ∈-时,()41x f x =-,则以下结论正确的是()A .()20220f =B .()()12G x f x =-在[]2,4-内零点之和为6C .()f x 在区间[]4,5内单调递减D .()f x 在[]2,6内的值域为[]0,350.(2022·河北石家庄·高一期末)已知函数()11,02lg ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在不相等的实数a ,b ,c ,d 满足()()()()f a f b f c f d ===,则+++a b c d 的取值范围为()A .()0,+∞B .812,10⎛⎤- ⎥⎝⎦C .612,10⎛⎤- ⎥⎝⎦D .810,10⎛⎤ ⎥⎝⎦考点七用二分法求方程的近似解51.(2022·山东烟台·高一期末)下列选项中不能用二分法求图中函数零点近似值的是()A .B.C.D .52.(2022·重庆市巫山大昌中学校高一期末)用二分法求方程2log 2x x +=的近似解时,可以取的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)53.(2022·新疆昌吉·高一期末)在用“二分法”求函数()f x 零点近似值时,若第一次所取区间为[]2,6-,则第三次所取区间可能是()A .[]2,1--B .[]1,1-C .[]2,4D .[]5,654.(2022·内蒙古·呼和浩特市教育教学研究中心高一期末)用二分法求方程的近似解,求得函数()329f x x x =+-的部分函数值数据如下:()16f =-,()23f =,()1.5 2.625f =-,()1.750.6406f =-,则方程3290x x +-=的一个近似根x 所在区间为()A .()0.6406,0-B .()1.75,2C .()1.5,1.75D .()1,1.555.(2022·安徽·安庆市教育教学研究室高一期末)在用二分法求方程32100x x +-=在(1,2)上的近似解时,构造函数()3210xf x x =+-,依次计算得()150f =-<,()230f =>,()1.50f <,()1.750f >,()1.6250f <,则该近似解所在的区间是()A .()11.5,B .()1.51.625,C .()1.6251.75,D .()1.752,。

高一数学重点:零点问题的解题方法

高一数学重点:零点问题的解题方法

谈函数与方程(零点问题)的解题方法——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0成立的实数x叫做函数y=f(x) (x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒] 此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点⇔方程f(x)-g(x)=0有实数根⇔函数y=f(x)-g(x)的图象与y =0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点⇔方程f(x)=g(x)有实数根⇔函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.(4)二次函数y=ax2+bx+c (a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( )A.(0,1) B.(1,2)C .(2,3)D .(3,4)【解析】法一:∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y =ln(x +1)与y =1x的图象交点的横坐标所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f (x )=ln(x +1)-1x的零点,∵f (x )在(0,+∞)上为增函数,且f (1)=ln 2-1<0,f (2)=ln 3-12>0,∴f (x )的零点所在区间为(1,2).【答案】B3.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.【解析】求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.【答案】24.(2015·长沙模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内【解析】本题考查零点的存在性定理.依题意得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -b )(c -a )>0,因此由零点的存在性定理知f (x )的零点位于区间(a ,b )和(b ,c )内.【答案】A5.(2014·高考湖北卷)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【解析】令x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.【答案】D确定函数f (x )零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看解得的根是否落在给定区间上. (2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.1.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【解析】因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).【答案】C2.方程log 3x +x =3的根所在的区间为( )。

高中数学函数零点问题必考点梳理+真题精练(附答案)

高中数学函数零点问题必考点梳理+真题精练(附答案)

第 7 页 共 19 页
由图可知:当
0
m
1 2
时,两图象有两个不同的交点,
在区间 1,1 上方程 f x mx m 0 有两个不同的实根,故选:B
例 5.(2020·江苏宝应中学高三三模)已知函数 f x 2ln x2 3x 3 ,其中x 表示不大于 x 的
最大整数(如1.6 1,2.1 3),则函数 f x 的零点个数是( )
对函数
y
ln x
1, x
0 求导得
y
1 x 1

设切点为
x0, ln x0 1
,则
ln x0 1
x0 1
2 3
1 x0 1
m ,解得
x0
1
1
e3
,m
1
e3

数形结合可知,当
m
2 3
1
,e 3
时,直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,即函数
g
x
有四个零点.故选:B.
第 6 页 共 19 页
f |
(x) x|

2
个不同交点,不满足题意;
当 k 0 时,如图 2,此时 y | kx 2 |与 h(x)
f |
(x) x|
恒有
3
个不同交点,满足题意;
当 k 0 时,如图 3,当 y kx 2 与 y = x2 相切时,联立方程得 x2 kx 2 0 ,
令 0 得 k2 8 0 ,解得 k 2 2 (负值舍去),所以 k 2 2 . 综上, k 的取值范围为 (,0) (2 2, ) ,故选 D.
图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。

2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。

若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。

2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。

二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。

例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。

分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。

二)求解有关函数零点的个数(或方程根的个数)问题。

函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。

对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。

数学必修一函数的零点知识点

数学必修一函数的零点知识点

数学必修一函数的零点知识点
数学必修一中,函数的零点是一个重要的知识点。

以下是关于函数的零点的基本知识点:
1. 零点的定义:对于函数 f(x),如果存在某个实数 a,使得 f(a) = 0,那么 a 就是 f(x) 的零点。

换句话说,就是函数图像与 x 轴相交的点。

2. 方程的根:函数的零点也可以理解为方程 f(x) = 0 的根。

解方程 f(x) = 0 可以求得函数的零点。

3. 判断零点的方法:
- 通过图像:可以通过绘制函数的图像,找到函数与 x 轴相交的点来确定零点。

- 通过方程:可以将函数 f(x) 置为零,即 f(x) = 0,然后解方程来求得零点。

4. 零点的性质:
- 零点可能有重根:即某个 x 值对应的函数值可能为 0 的次数大于 1。

- 零点的奇偶性:如果 f(x) 有一个零点 a,则 f(-x) 也有一个零点 -a。

即零点是关于原点对称的。

5. 零点与图像的关系:函数的零点与函数图像的交点有着紧密的关系。

例如,函数上方和下方零点的个数的差别可以用来分析函数的增减性。

6. 零点的应用:零点在数学中应用广泛,可以用来求方程的根、函数的解析式等。

这些是关于函数的零点的一些基本知识点,希望对你有帮助!。

数学必修一零点题型总结

数学必修一零点题型总结
切线法
利用切线的方法,通过分析函数在某 点的切线,结合零点定理的结论,证 明零点的存在。
反证法证明方法
• 反证法:首先假设零点不存在,然后通过推导得出矛盾,从而 证明零点的存在。反证法是一种间接的证明方法,常用于证明 一些难以直接证明的数学命题。
04
零点定理的应用
在求解方程中的应用
总结词
零点定理在求解方程中起到关键作用 ,通过判断函数在区间端点的函数值 异号来确定方程的解。
通过将不等式问题转化为寻找函数零 点的问题,可以利用零点存在定理求 解。
对于一些难以求解的方程,可以利用 零点存在定理判断方程根的存在性。
定理的局限性
需要满足连续性条件
零点存在定理要求函数在区间上连续,如果函数不连续,定理可 能不适用。
不一定唯一解
虽然定理保证了至少存在一个零点,但不一定是唯一解,可能存在 多个零点。
03
零点定理的证明方法
代数证明方法
Hale Waihona Puke 代数恒等式利用代数恒等式来证明零点定理 ,通过将函数进行变形,转化为 已知的恒等式或等价形式,从而 证明零点存在。
连续性
利用函数的连续性,通过分析函 数在区间端点的函数值,结合零 点定理的结论,证明零点的存在 。
几何证明方法
函数图像
利用函数图像来直观地说明零点的存 在,通过观察图像在区间内的变化趋 势,结合零点定理的结论,证明零点 的存在。
这类题目通常会给出不等式和函数的表达式,要求利用零点定理证明该不等式。解题时 需要先分析函数的单调性和零点存在性定理,然后结合函数的图像和性质进行证明。在
证明过程中,可能需要使用到一些不等式的性质和证明技巧,如放缩法、构造法等。
THANKS

高一必修一数学知识点复习【优秀7篇】

高一必修一数学知识点复习【优秀7篇】

高一必修一数学知识点复习【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!高一必修一数学知识点复习【优秀7篇】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。

苏教版高一数学必修一函数的零点与函数的应用综合复习

苏教版高一数学必修一函数的零点与函数的应用综合复习

高一数学函数的零点模块一 函数与方程一. 知识梳理1. 函数图像的变换:平移变换:上加下减,左加右减(针对x )② ()y f x =的图像与()()0y f x a a =+≠的图像; ②()y f x =的图像与()()0y f x a a =+≠的图像; 对称变换:① ()y f x =的图像与()y f x =-的图像关于x 轴对称; ③ ()y f x =的图像与()y f x =-的图像关于y 轴对称; ④ ()y f x =的图像与()y f x =--的图像关于原点对称; 翻折变换:① ()y f x =的图像与()x f y =的图像; ② ()y f x =的图像与()x f y =的图像;2. 函数的零点概念:对于函数()y f x =,我们把方程()0f x =的实数根叫做函数()y f x =的零点。

零点的存在性定理:如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有0)()(<b f a f ,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

二分法的原理。

二. 例题解析数形结合求方程根的个数【例1】利用函数图像讨论方程的解.(1) 方程log (2)(0,1)a x x a a +=->≠的实数解的个数是_________; (2) 方程2|23|x x a --=有四个实数解, 则实数a 的取值范围是__________.年级 高一科目数学上课时间课题函数与方程、函数的应用xyO11-变式练习:1.已知函数()y f x =的图像如右图所示, 则()y f x =的解析式可能为( ) A. 0.5|log |y x = B.0.5log ||y x = C. 20.5(log )y x =D. 23y x-=2.关于x 的方程1x kx -=有两个不同的实根,则k 的取值范围是根的分布与分离参数法【例2】若关于x 的不等式2240x mx x -+-≤的解集为A ,且[]8,1-是A 的子集,则m 的取值范围是 .变式训练:已知方程22210x mx m +++=在区间()1,0-和()1,2内各有一个解,则实数m 的取值范围是 .函数零点的存在性定理【例3】已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,若x 0∈(n ,n +1),n ∈N ,则n =________.变式训练:1.已知函数f (x )=2x -log 4x 的零点为x 0,若x 0∈(k ,k +1),其中k 为整数,则k的值为________.2.已知函数f (x )=2x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________.模块二 函数的应用一.知识梳理1.函数的周期性 定义:()()f x T f x +=常见已知形式:1()(2)f x f x =+,(1)(1)f x f x +=-2.换元法在实际应用中的应用解析式中次数为倍数关系的项:如()f x x x =+,42()f x x x =+注意:实际应用中特别注意函数的定义域二. 例题解析二次函数动轴动区间的分类讨论【例4】求函数2()21,[2,2]f x x ax x =-+-∈-的最大值()g a ,并求()g a 的最小值。

高中数学必修一函数零点知识点

高中数学必修一函数零点知识点

高中数学必修一函数零点知识点1.函数f (x )=log 5(x -1)的零点是( ) A .0B .1 C .2 D .3 解析:选C.log 5(x -1)=0,解得x =2,∴函数f (x )=log 5(x -1)的零点是x =2,故选C. 2.根据表格中的数据,可以判断方程e x -x -2=0必有一个根在区间( ) x -1 0 1 2 3 e x 0.37 1 2.78 7.39 20.09 x +21 2 3 4 5 A.(-1,0) B .(0,1) C .(1,2) D .(2,3) 解析:选C.设f (x )=e x -x -2,∵f (1)=2.78-3=-0.22<0,f (2)=7.39-4=3.39>0.∴f (1)f (2)<0,由根的存在性定理知,方程e x -x -2=0必有一个根在区间(1,2).故选C. 3.(2010年高考福建卷)函数f (x )=îïíïìx 2+2x -3,x ≤0-2+ln x ,x >0的零点个数为( ) A .0 B .1 C .2 D .3 解析:选C.当x ≤0时,由f (x )=x 2+2x -3=0,得x 1=1(舍去),x 2=-3;当x >0时,由f (x )=-2+ln x =0,得x =e 2,所以函数f (x )的零点个数为2,故选C. 4.已知函数f (x )=x 2-1,则函数f (x -1)的零点是________.解析:由f (x )=x 2-1,得y =f (x -1)=(x -1)2-1=x 2-2x ,∴由x 2-2x =0.解得x 1=0,x 2=2,因此,函数f (x -1)的零点是0和2. 答案:0和2 1.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,-12C .0,12D .2,12解析:选B.由题意知2a +b =0,∴b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1),使g (x )=0,则x =0或-12. 2.若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是( ) A .a <1 B .a >1 C .a ≤1 D .a ≥1 解析:选B.由题意知,Δ=4-4a <0,∴a >1. 3.函数f (x )=ln x -2x的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(e,3) 解析:选B.∵f (2)=ln2-1<0,f (3)=ln3-23>0, ∴f (2)·f (3)<0,∴f (x )在(2,3)内有零点.4.下列函数不存在零点的是( ) A .y =x -1xB .y =2x 2-x -1 C .y =îïíïì x +1 (x ≤0)x -1 (x >0)D .y =îïíïì x +1 (x ≥0)x -1 (x <0)解析:选D.令y =0,得A 和C 中函数的零点均为1,-1;B 中函数的零点为-12,1;只有D 中函数无零点.5.函数y =log a (x +1)+x 2-2(0<a <1)的零点的个数为( ) A .0 B .1 C .2 D .无法确定.无法确定解析:选C.令log a (x +1)+x 2-2=0,方程解的个数即为所求函数零点的个数.即考查图象y 1=log a (x +1)与y 2=-x 2+2的交点个数.6.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 解析:选B.设f (x )=x 3-(12)x -2, 则f (0)=0-(12)-2<0;f (1)=1-(12)-1<0;f (2)=23-(12)0>0.∴函数f (x )的零点在(1,2)上. 7.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________. 解析:设方程f (x )=0的另一根为x , 由根与系数的关系,得1+x =-2a a=-2, 故x =-3,即另一个零点为-3. 答案:-3 8.若函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________. 解析:因为函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,所以有f (-1)·f (1)≤0,即(-5a +1)·1)·((a +1)≤0,(5a -1)(a +1)≥0, 所以îïíïì 5a -1≥0a +1≥0或îïíïì5a -1≤0,a +1≤0,解得a ≥15或a ≤-1. 答案:a ≥15或a ≤-1. 9.下列说法正确的有________:①对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内一定没有零点.零点.②函数f (x )=2x -x 2有两个零点.有两个零点. ③若奇函数、偶函数有零点,其和为0. ④当a =1时,函数f (x )=|x 2-2x |-a 有三个零点.有三个零点.解析:①错,如图.②错,应有三个零点.③对,奇、偶数图象与x 轴的交点关于原点对称,其和为0. ④设u (x )=|x 2-2x |=|(x -1)2-1|,如图向下平移1个单位,顶点与x 轴相切,图象与x 轴有三个交点.∴a =1. 答案:③④③④10.若方程x 2-2ax +a =0在(0,1)恰有一个解,求a 的取值范围.的取值范围.解:设f (x )=x 2-2ax +a . 由题意知:f (0)·f (1)<0,即a (1-a )<0,根据两数之积小于0,那么必然一正一负.故分为两种情况. îïíïì a >0,1-a <0,或îïíïìa <0,1-a >0, ∴a <0或a >1. 11.判断方程log 2x +x 2=0在区间[12,1]内有没有实数根?为什么?内有没有实数根?为什么? 解:设f (x )=log 2x +x 2,∵f (12)=log 212+(12)2=-1+14=-34<0, f (1)=log 21+1=1>0,∴f (12)·f (1)<0,函数f (x )=log 2x +x 2的图象在区间[12,1]上是连续的,因此,f (x )在区间[12,1]内有零点,即方程log 2x +x 2=0在区间[12,1]内有实根.12.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,为何值时,(1)方程有一正一负两根;方程有一正一负两根;(2)方程的两根都大于1;(3)方程的一根大于1,一根小于1. 解:(1)因为方程有一正一负两根,所以由根与系数的关系得îïíïìa -1a <0Δ=12a +4>0,解得0<a <1.即当0<a <1时,方程有一正一负两根.(2)法一:当方程两根都大于1时,函数y =ax 2-2(a +1)x +a -1的大致图象如图(1)(2)所示,所以必须满足îïíïì a >0Δ>0a +1a >1f (1)>0,或îïíïì a <0Δ>0a +1a >1f (1)<0,不等式组无解. 所以不存在实数a ,使方程的两根都大于1. 法二:设方程的两根分别为x 1,x 2,由方程的两根都大于1,得x 1-1>0,x 2-1>0, 即îïíïì (x 1-1)(x 2-1)>0(x 1-1)+(x 2-1)>0 ⇒îïíïì x 1x 2-(x 1+x 2)+1>0x 1+x 2>2. îíìa -1-2(a +1)+2(a +1)a >0>0,解得a >0. 时,方程的一个根大于1,一个根小于1. 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一《零点》专题复习
1、方程062=-+x x
的实数解的个数有_______个. 2. 函数()2ln f x x x
=-的零点所在的大致区间是 ( ) A.()1,2 B.()2,3 C. ()3,4 D.(),e +
3.
可以看出函数至少有 个零点6.设方程 x x lg 2=-的两个根为21,x x ,则 ( )
A. 021<x x B .121=x x C .121>x x D. 1021<<x x 7.已知x 0是函数1()21x f x x
=+-的一个零点,若10(1,)x x ∈,20(,)x x ∈+∞,则12()()f x f x _______0.(填“>”,“=”或“<”). 8、若方程3log 3=+x x 的解所在的区间是(), 1k k +,则整数k =
9.已知函数21(0)()(1)(0)
x x f x f x x -⎧-≤=⎨->⎩,若方程()f x x a =+有且只有两个不等实根,则实数a 的取值范围是( )
A .(,0]-∞
B .[0,1]
C .(,1)-∞
D .[1,)+∞
10、若函数()y f x =在定义域内单调,且用二分法探究知道()f x 在定义域内的零点同时在(0,8),(0,4),(0,2),(0,1)内,那么下列命题中正确的是( )
A .函数()f x 在区间1
(0,)2
内有零点 B .函数()f x 在区间[)1,8上无零点
C .函数()f x 在区间1(0,)2或1(,1)2
内有零点 D .函数()f x 可能在区间(0,1)上有多个零点 11.关于x 的方程27+=x x 的解所在的区间是( )
A.0(,1)
B.(1, 2)
C.(2, 3)
D.(3, 4)
12. R 若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围 ( )
A .()12,0-
B .15,14⎛⎫-∞ ⎪⎝
⎭ C .15,14⎛⎫+∞ ⎪⎝⎭ D .1,22⎛⎫ ⎪⎝⎭ 13.若关于x 的方程35+=a x 有根,则实数a 的取值范围是 .
14. 若关于x 的方程210x ax -+=在1(,3)2x ∈上有实数根,则实数a 的取值范围是 15、函数()ln |1|3f x x x =--+的零点个数为
16.已知函数2()(1)43f x a x ax =++-.当0a >时,若方程()0f x =有一根大于1,一根小于1,则a 的取值范围是 ;
17.二次函数2()(0)f x ax bx a =+≠,满足(1)f x +为偶函数,且方程()f x x =有相等实根。

(1)求()f x 的解析式;
(2)求()f x 在[],1m m +上的最大值。

18.设关于x 的函数=)(x f ∈--+b b x x (241
R ),
(1)若函数有零点,求实数b 的取值范围;(2)当函数有零点时,讨论零点的个数,并求出函数的零点.
19.已知()y f x =(x D ∈,D 为此函数的定义域)同时满足下列两个条件:①函数()f x 在D 内单调递增或单调递减;
②如果存在区间[,]a b D ⊆,使函数()f x 在区间[,]a b 上的值域为[,]a b ,那么称()y f x =,x D ∈为闭函数;
(1)求证:函数3y x =-([1,1]x ∈-)为闭函数; (2)若0)y k k =+<是闭函数,求实数k 的取值范围;
20.已知())1(log 2+=x x f ,当点()y x ,在函数()x f y =的图象上时,点⎪⎭⎫
⎝⎛2,3y x 在函数()x g y =的图象上。

(1)写出()x g y =的解析式; (2)求()()0=-x g x f 方程的根。

21.已知)2(log )2(log )(22x x x f ++-=.
(1)求)(x f 的定义域;(2)证明)(x f 为偶函数;(3)指出方程x x f =)(的实根个数,并说明理由.
22.对于函数()f x ,若存在0x R ∈,使得00()f x x =,则称0x 为函数()f x 的不动点...
, (1)设2()2f x x =-,求函数()f x 的不动点; (2)设2()f x ax bx b =+-,若对任意实数b ,函数()f x 都有两个相异的不动点,求实数a 的取值范围;
(3)若奇函数()()f x x R ∈存在K 个不动点,求证:K 为奇数.
23.已知函数2(),21
x x a f x +=- (1)若()f x 为奇函数,求a 的值; (2)在(1)的条件下,求()f x 的值域.论关于x 的方程()=f x k 的解的个数.
24.已知二次函数b a bx ax x f ,()(2+=为常数,且0≠a )满足条件:0)2(=f ,且方程x x f =)(有两个相等的实数根.
(1)求)(x f 的解析式;(2)作出函数)(x f 大致图像,并直接写出函数)(x f 的单调区间。

25.已知函数2()1f x ax bx =++(, a b 为实数,0a ≠,x ∈R ).
(1)当函数()f x 的图像过点(1, 0)-,且方程()0f x =有且只有一个根,求()f x 的表达式;
(2)若() 0,()() 0,
f x x F x f x x >⎧=⎨
-<⎩ 当0mn <,0m n +>,0a >,且函数()f x 为偶函数时,试判断()()F m F n +能否大于0?
26.已知函数22()32(1)5f x x k k x =--++,2()2g x k x k =+,其中k R ∈.
(1) 设函数()()()p x f x g x =+.若()p x 在(0,3)上有零点,求k 的取值范围;
27.已知a 是实数,函数()2223f x ax x a =+--,如果函数()y f x =在区间[]1,1-上有零点,求a 的取值范围.
28、已知函数f(x)=log 2
x
x +-11. (1)判断并证明f(x)的奇偶性;(2)若关于x 的方程f(x)=log 2(x-k)有实根,求实数k 的取值范围;(3)问:方程f(x)=x+1是否有实根?如果有,设为x 0,请求出一个长度为81的区间(a,b),使x 0∈(a,b);如果没有,请说明理由.(注:区间(a,b)的长度为b-a )。

相关文档
最新文档