高中数学教学设计案例资料讲解

合集下载

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。

教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

高中数学教学设计案例(优秀4篇)

高中数学教学设计案例(优秀4篇)

高中数学教学设计案例(优秀4篇)高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。

教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。

二。

学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。

三。

教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。

(1)认真把握“标准”的教学要求。

(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。

(3)关注现代信息技术的运用。

(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。

平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。

这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。

2、以老师的精心备课与充满激情的教学,换取学生学习高效率。

3.将学校和教研组安排的有关工作落到实处。

高中数学教学设计案例篇二以现代教育理论,教学大纲和考纲为指导,以课本和大纲为依据,全面贯彻党的教育方针,积极实施和推进素质教育,提高学生的学习能力。

不仅使学生掌握高中数学基础知识与能力,而且要从全方位培养学生的创新意识,创新精神。

本学期执教班次是高二6班的文科班的数学教学,基础好的学生较少,绝大多数学生数学基础极差。

且成绩参次不齐,针对这种情况,必须要因材施教,充分调动学生学习积极性,提高学生的学习兴趣,力争本学期数学教学上新台阶。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

高中数学教案【6篇】

高中数学教案【6篇】

高中数学教案【6篇】篇一:中学数学优秀教案篇一教学目标:1、理解并驾驭曲线在某一点处的切线的概念;2、理解并驾驭曲线在一点处的切线的斜率的定义以及切线方程的求法;3、理解切线概念实际背景,培育学生解决实际问题的实力和培育学生转化问题的实力及数形结合思想。

教学重点:理解并驾驭曲线在一点处的切线的斜率的定义以及切线方程的求法。

教学难点:用无限靠近、局部以直代曲的思想理解某一点处切线的斜率。

教学过程:一、问题情境1、问题情境。

如何精确地刻画曲线上某一点处的改变趋势呢?假如将点P旁边的曲线放大,那么就会发觉,曲线在点P旁边看上去有点像是直线。

假如将点P旁边的曲线再放大,那么就会发觉,曲线在点P旁边看上去几乎成了直线。

事实上,假如接着放大,那么曲线在点P旁边将靠近一条确定的直线,该直线是经过点P的全部直线中最靠近曲线的一条直线。

因此,在点P旁边我们可以用这条直线来代替曲线,也就是说,点P旁边,曲线可以看出直线(即在很小的范围内以直代曲)。

2、探究活动。

如图所示,直线l1,l2为经过曲线上一点P的两条直线,(1)试推断哪一条直线在点P旁边更加靠近曲线;(2)在点P旁边能作出一条比l1,l2更加靠近曲线的直线l3吗?(3)在点P旁边能作出一条比l1,l2,l3更加靠近曲线的直线吗?二、建构数学切线定义:如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。

随着点Q沿曲线C向点P运动,割线PQ在点P旁边靠近曲线C,当点Q无限靠近点P时,直线PQ 最终就成为经过点P处最靠近曲线的直线l,这条直线l也称为曲线在点P处的切线。

这种方法叫割线靠近切线。

思索:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?三、数学运用例1 试求在点(2,4)处的切线斜率。

解法一分析:设P(2,4),Q(xQ,f(xQ)),则割线PQ的斜率为:当Q沿曲线靠近点P时,割线PQ靠近点P处的切线,从而割线斜率靠近切线斜率;当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

高中数学优秀教学案例范文(必备3篇)

高中数学优秀教学案例范文(必备3篇)

高中数学优秀教学案例范文第1篇一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?高中数学优秀教学案例范文第2篇教学目的:掌握圆的标准方程,并能解决与之有关的问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3⒉指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=0⒊判断3x-4y-10=0和x2+y2=4的位置关系⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

高中数学说课教案(优秀4篇)

高中数学说课教案(优秀4篇)

高中数学说课教案(优秀4篇)高中数学说课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一()般方程及标准圆方程的关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学说课教案篇二教学目标(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原理;(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

教学建议一、知识结构二、重点难点分析本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。

这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。

高中数学优秀教案范例5篇

高中数学优秀教案范例5篇

高中数学优秀教案范例5篇数学是一门日常都要使用的学科,所以要拥有好的教案才能充分教育同学们如何使用数学,这里给大家共享一些关于高中数学优秀教案范例,便利大家学习。

关于高中数学优秀教案范例篇1一、教学目标:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:向量的性质及相关学问的综合应用。

三、教学过程:(一)主要学问:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略四、小结:1、进一步娴熟有关向量的运算和证明;能运用解三角形的学问解决有关应用问题,2、渗透数学建模的思想,切实培育分析和解决问题的力量。

关于高中数学优秀教案范例篇2一、教学目标1.把握菱形的判定.2.通过运用菱形学问解决详细问题,提高分析力量和观看力量.3.通过教具的演示培育同学的学习爱好.4.依据平行四边形与矩形、菱形的附属关系,通过画图向同学渗透集合思想.二、教法设计观看分析商量相结合的方法三、重点·难点·疑点及解决方法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时支配1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计老师演示教具、创设情境,引入新课,同学观看商量;同学分析论证方法,老师适时点拨七、教学步骤复习提问1.表达菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱相互垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线相互垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由同学口述证明)证明时让同学注意线段垂直平分线在这里的应用,师问:对角线相互垂直的四边形是菱形吗?为什么?可画出图,明显对角线,但都不是菱形.菱形常用的判定方法归纳为(同学商量归纳后,由老师板书):注意:(2)与(4)的题设也是从四边形动身,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区分与联系.2.思索题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13关于高中数学优秀教案范例篇3教学目标1.把握平面对量的数量积及其几何意义;2.把握平面对量数量积的重要性质及运算律;3.了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4.把握向量垂直的条件.教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请同学回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有非常重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

高中数学教案(精选10篇)

高中数学教案(精选10篇)

高中数学教案(精选10篇)一、函数与方程教案一:一次函数与二次函数的区别学科:数学年级:高中教学目标:了解一次函数与二次函数的特点与区别,掌握两者的图像表示及性质。

教学步骤:1. 引导学生回顾函数的概念和一次函数的定义。

2. 介绍二次函数的定义以及与一次函数的区别。

3. 讲解二次函数的图像表示及基本性质。

4. 进行实例演练,帮助学生巩固所学知识。

教学要点:1. 一次函数的特点与图像。

2. 二次函数的特点与图像。

3. 了解一次函数与二次函数在现实生活中的应用。

教学辅助材料:教案附件一、教案附件二教案二:方程的解法(一元一次方程、一元二次方程)学科:数学年级:高中教学目标:掌握一元一次方程和一元二次方程的常见解法,能够独立解题。

教学步骤:1. 引入一元一次方程的概念,介绍常见解法。

2. 引入一元二次方程的概念,介绍常见解法。

3. 进行实例演练,帮助学生理解和掌握解题方法。

教学要点:1. 一元一次方程的解法。

2. 一元二次方程的解法。

3. 理解方程的实际应用。

教学辅助材料:教案附件三、教案附件四二、平面几何教案三:三角形的性质和分类学科:数学年级:高中教学目标:了解三角形的定义、性质和分类,能够独立判断和作图。

1. 引导学生回顾直角三角形的定义和判定方法。

2. 介绍三角形的基本性质和分类。

3. 进行实例演练,帮助学生巩固所学知识。

教学要点:1. 三角形的定义和基本性质。

2. 三角形的分类。

3. 利用三角形的性质解决实际问题。

教学辅助材料:教案附件五、教案附件六教案四:圆的性质和相关定理学科:数学年级:高中教学目标:了解圆的定义、性质和相关定理,能够应用定理解决实际问题。

教学步骤:1. 引导学生回顾圆的基本概念和性质。

2. 介绍圆的相关定理,如切线定理、相切定理等。

3. 进行实例演练,帮助学生理解和掌握定理的应用。

1. 圆的定义和基本性质。

2. 圆的相关定理。

3. 利用圆的性质解决实际问题。

教学辅助材料:教案附件七、教案附件八三、立体几何教案五:正方体和长方体的性质学科:数学年级:高中教学目标:了解正方体和长方体的定义、性质和计算方法,能够应用所学知识解决实际问题。

高中数学优质课教案5篇

高中数学优质课教案5篇

高中数学优质课教案5篇高中数学优质课教案1教学目标知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2) 从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3) 依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。

即:导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。

在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。

在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

高中数学教学设计案例

高中数学教学设计案例

高中数学教学设计案例作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学获得成功、提高教学质量的基本条件。

那么大家知道正规的教案是怎么写的吗?下面是由作者给大家带来的高中数学教学设计案例7篇,让我们一起来看看!高中数学教学设计案例篇1教学目标:1。

通过生活中优化问题的学习,体会导数在解决实际问题中的作用,增进学生全面认识数学的科学价值、运用价值和文化价值。

2。

通过实际问题的研究,增进学生分析问题、解决问题以及数学建模能力的提高。

教学重点:如何建立实际问题的目标函数是教学的重点与难点。

教学进程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的运用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

1。

几何方面的运用(面积和体积等的最值)。

2。

物理方面的运用(功和功率等最值)。

3。

经济学方面的运用(利润方面最值)。

三、知识建构例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解运用题一样有四个要点步骤:设——列——解——答。

说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。

例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数。

说明2用导数法求单峰函数最值,可以对一样的求法加以简化,其步骤为:S1列:列出函数关系式。

S2求:求函数的导数。

S3述:说明函数在定义域内仅有一个极大(小)值,从而肯定为函数的最大(小)值,必要时作答。

高中数学优秀教案(优秀7篇)

高中数学优秀教案(优秀7篇)

高中数学优秀教案(优秀7篇)高中数学优秀教案篇一一、教材分析1、教材的地位和作用算术平均数与几何平均数是不等式这一章的核心,对于不等式的证明及利用均值不等式求最值等应用问题都起到工具性作用。

通过本章的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。

2、教学内容本节课的主要教学内容是通过现实问题进行数学实验猜想,构造数学模型,得到均值不等式;并通过在学习算术平均数与几何平均数的定义基础上,理解均值不等式的几何解释;与此同时在推理论证的基础上学会应用。

3、教学目标教学目标是基于对教材,教学大纲和学生学情的分析相应制定的。

在新课程理念的指导下,更为关注学生的合作交流能力的培养,关注学生探究问题的习惯和意识的培养。

因此,结合本节课内容与实验,设计本节课教学目标如下:知识与技能:对于算术平均数与几何平均数的理解以及定理的掌握;过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯;引导学生通过问题设计,模型转化,类比猜想实现定理的发现,体验知识与规律的形成过程;通过模型对比,多个角度,多种方法求解,拓宽学生的思路,优化学生的思维方式,提高学生综合创新与创造能力。

情感态度价值观:培养学生生活问题数学化,并注重运用数学解决生活中实际问题的习惯,有利于数学生活化,大众化;同时通过学生自身的探索研究领略获取新知的喜悦。

教学重点:算术平均数与几何平均数的理解以及定理的掌握;教学难点:算术平均数与几何平均数以及定理发现探索过程的构建及应用;教学关键:学生对于实验的实践及函数模型的构建。

教学模式:探究式合作式二、学情分析学生已经掌握了不等式的基本性质,高中的学生已经具有较好的逻辑思维能力,因此他们希望能够自己探索,发现问题和解决问题。

现在经历课改的学生不仅仅停留在接受学习的框框内,他们更需要充满活力与创造发现的课堂。

课堂实验可能存在问题:对EXEL软件不够熟练。

对于模型构造思路不够清晰。

完整版)高中数学教学案例

完整版)高中数学教学案例

完整版)高中数学教学案例1.实物模型演示通过展示实物模型,让学生直观感知直线与平面的位置关系,引导学生进行合情推理,探究直线与平面平行的判定定理。

2.合情推理与归纳总结在学生进行实物模型演示的基础上,引导学生进行合情推理,归纳总结直线与平面平行的判定定理。

通过学生的自主探究和合作交流,让学生理解判定定理的本质和原理。

三)判定定理的应用1.数学符号语言、文字语言表述判定定理通过数学符号语言和文字语言的表述,让学生掌握直线与平面平行的画法,并能准确使用数学符号语言、文字语言表述判定定理。

2.判定定理的应用通过练题目,让学生掌握判定定理的应用方法,提高学生的数学逻辑思维能力。

四)课堂小结和作业布置在课堂小结中,总结本节课的教学内容和重点,让学生对所学知识进行巩固和回顾。

在作业布置中,布置相关的练题目,让学生巩固所学知识,并提高学生的应用能力。

同时,鼓励学生进行自主探究和思考,培养学生的自主研究能力。

1、直观感知同学们可以通过日常生活中的观察,感知到直线与平面平行的具体事例。

比如日光灯与天花板、树立的电线杆与墙面等。

另外,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。

教师可以用多媒体动画演示这一过程。

2、动手实践教师可以取出预先准备好的直角梯形泡沫板进行演示。

当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。

另外,教师可以直立讲台,让学生感受到老师与四周墙面平行的感觉。

如果老师向前或后倾斜,则感觉老师与左、右墙面平行;如果老师向左、右倾斜,则感觉老师与前、后墙面平行。

教师也可以用事先准备的木条放在讲台桌上进行演示。

3、探究思考1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②平面内一条直线③这两条直线平行。

高中数学教案(8篇)

高中数学教案(8篇)

高中数学教案(8篇)高中数学教案篇一1.课题填写课题名称(高中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。

.。

.。

.知识,提高学生解决实际问题的能力;(2)过程与方法:通过。

.。

.。

.(讨论、发现、探究),提高。

.。

.。

.(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4、教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5、教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。

可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。

设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。

)(3)课堂小结教师提问,学生回答本节课的收获。

(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。

6、教学板书2.高中数学教案格式一.课题(说明本课名称)二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)三.课型(说明属新授课,还是复习课)四.课时(说明属第几课时)五.教学重点(说明本课所必须解决的关键性问题)六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)七.教学方法要根据学生实际,注重引导自学,注重启发思维八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)九.作业处理(说明如何布置书面或口头作业)十.板书设计(说明上课时准备写在黑板上的内容)十一.教具(或称教具准备,说明辅助教学手段使用的工具)十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)3.高中数学教案范文【教学目标】1、知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

高中数学教案案例(素材18篇)

高中数学教案案例(素材18篇)

高中数学教案案例(素材18篇)高中数学教案案例篇1__月,我在江苏连云港新海高中上了一节《椭圆的几何性质》公开课。

这节课从准备,到与组内老师探讨、交流,并修改、上课,直至最后聆听各位老师和专家的指导,都让我受益非浅。

本节课是苏教版普通高中课程标准实验教科书《数学》选修1―1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质。

利用曲线方程研究曲线的性质,是解析几何的主要任务。

通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛物线的性质做好了铺垫。

本节课是围绕着探究椭圆的简单几何性质进行的。

因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。

然而,课后的反思过程中我发现了几个问题:第一,在讲解“顶点”定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即“顶点是椭圆与其对称轴的交点”,如果把握住这一点,在讲解时就应先讲“对称性”,再讲“顶点”;二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课“顶点”之后再讲解,会显得更自然一些;三是“对称性”的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。

以上的几点不足都提醒我今后要在研究教材上下更多的功夫。

还有在讲解完“对称性”、准备讲“离心率”之前,我穿插了一道“画椭圆的简图”的题目。

并提圆相似吗?椭圆呢?引起了同学们注意。

这道题起到了较好的承上启下的作用:既巩固了刚学的性质,又引发了一个问题:椭圆的“扁”的程度与哪些要素有关。

高中数学优秀教案5篇

高中数学优秀教案5篇

高中数学优秀教案5篇教学目标:学生能够掌握解一元一次方程的方法,能够熟练应用到实际问题中解决问题。

教学重点:解一元一次方程的基本步骤和方法。

教学难点:解决实际问题中的方程。

教学准备:黑板、彩色粉笔、课件、作业册。

教学过程:一、引入:通过实例引入解一元一次方程的方法。

二、学习:讲解解一元一次方程的基本步骤和方法。

三、练习:让学生在黑板上解决几个练习题。

四、拓展:提出一些实际问题,让学生灵活运用解方程的方法解决问题。

五、归纳:总结解一元一次方程的基本方法。

六、作业:布置作业,巩固学生的解方程能力。

教案二:三角函数教学目标:学生能够掌握三角函数的基本概念和性质,能够熟练计算三角函数的值。

教学重点:三角函数的定义和性质。

教学难点:解决与三角函数相关的实际问题。

教学准备:黑板、彩色粉笔、课件、作业册。

教学过程:一、引入:通过实例引入三角函数的概念。

二、学习:讲解三角函数的定义和性质。

三、练习:让学生在黑板上计算几个三角函数的值。

四、拓展:提出一些实际问题,让学生灵活运用三角函数解决问题。

五、归纳:总结三角函数的性质和计算方法。

六、作业:布置作业,巩固学生的三角函数能力。

教案三:圆的性质教学目标:学生能够掌握圆的基本性质,能够灵活运用圆的性质解决问题。

教学重点:圆的周长、面积和圆心角的性质。

教学难点:解决与圆相关的实际问题。

教学准备:黑板、彩色粉笔、课件、作业册。

教学过程:一、引入:通过实例引入圆的性质。

二、学习:讲解圆的周长、面积和圆心角的性质。

三、练习:让学生在黑板上计算几个圆的周长和面积。

四、拓展:提出一些实际问题,让学生灵活运用圆的性质解决问题。

五、归纳:总结圆的性质和计算方法。

六、作业:布置作业,巩固学生的圆的性质能力。

教案四:导数教学目标:学生能够掌握导数的定义和性质,能够灵活运用导数解决问题。

教学重点:导数的定义和性质。

教学难点:解决与导数相关的实际问题。

教学准备:黑板、彩色粉笔、课件、作业册。

高中数学教案(优秀4篇)

高中数学教案(优秀4篇)

高中数学教案(优秀4篇)高中数学教学设计篇一一、课程说明(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。

辅导内容为第一章第二节等差数列。

前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。

以及了解到什么是递增数列,什么是递减数列。

通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。

而我也是在这些基础上为她讲解第二节等差数列。

(二)学生分析:此次所带学生是一名高二的学生。

聪明但是不踏实,做题浮躁。

基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。

每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。

遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。

就由略不会变成不会。

但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

(三)教学目标:1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。

并且能够灵活运用。

3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。

耐心地解决问题。

5、让她在学习中发现数学的独特的美,能够爱上数学这门课。

并且认真对待,自主学习。

(四)教学重点:1、让学生正确掌握等差数列及其通项公式,以及其性质。

并能独立的推导。

2、能够灵活运用公式并且能把相应公式与题相结合。

(五)教学难点:1、让学生掌握公式的推导及其意义。

2、如何把所学知识运用到相应的题中。

二、课前准备(一)教学器材对于一对一教教采用传统讲课。

一张挂历。

(二)教学方法通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。

从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。

高中数学教学设计案例 高中数学教学设计案例分析(优秀4篇)

高中数学教学设计案例 高中数学教学设计案例分析(优秀4篇)

高中数学教学设计案例高中数学教学设计案例分析(优秀4篇)高中数学教学设计案例高中数学教学设计案例分析篇一1、探究式教学模式的含义。

探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。

它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神【白话文】。

可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。

2、堂探究式教学的实质。

课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。

具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。

在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。

这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。

二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。

这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。

3、探究式教学模式的特征。

(1)问题性。

问题性是探究式教学模式的关键。

能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。

恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。

现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。

教案高中数学教学案例与解析

教案高中数学教学案例与解析

教案高中数学教学案例与解析教案 - 高中数学教学案例与解析一、引言教学是培养学生综合素质的重要途径,而教案则是教师教学的基本工具。

高中数学作为一门重要的学科,对学生的思维能力和问题解决能力的培养起着重要的作用。

因此,如何设计一份高质量的数学教案对于提高学生的学习效果至关重要。

本文将通过介绍数学教学案例并进行解析,以帮助教师更好地理解和设计高中数学教案。

二、教学案例一:函数的概念与性质1. 教学目标通过学习本节课,学生应该能够:- 理解函数的定义与性质;- 掌握函数的图象与函数表达式之间的转换;- 能够应用函数的性质解决实际问题。

2. 教学步骤(1) 引入:通过一个实际生活中的例子引出函数的概念;(2) 基础知识讲解:介绍函数的定义、自变量、因变量及其图象表示;(3) 例题讲解:通过几个简单的例题演示函数图象与函数表达式之间的关系;(4) 训练:学生分组完成一些相关的练习题,并进行答疑和讨论;(5) 拓展与应用:通过一些实际问题,引导学生应用函数的性质解决问题;(6) 总结与归纳:梳理本节课的重点和难点,并进行小结。

3. 教学重点- 函数的定义与性质;- 函数图象与函数表达式之间的转换。

4. 教学难点- 如何引导学生理解函数的概念;- 如何让学生能够应用函数的性质解决实际问题。

5. 解析与反思本节课通过引入和例题讲解,让学生对函数的概念有了初步的了解。

在训练环节,学生通过完成一系列练习题,巩固了对函数图象与函数表达式之间关系的掌握。

在拓展与应用环节,通过实际问题的引导,让学生能够将函数的性质运用到实际问题解决中。

在总结与归纳环节,对本节课的重点和难点进行了梳理,帮助学生更好地理解与掌握相关知识。

整个教学过程紧密结合学生的实际情况,注重理论与实践的结合,使学生在实际操作中更好地掌握数学知识。

三、教学案例二:向量的运算1. 教学目标通过学习本节课,学生应该能够:- 掌握向量的加法、减法和数量积的计算方法;- 理解向量运算的几何意义;- 能够应用向量的运算解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教学设计案

高中数学教学设计案例——平面与平面平行的判定
吉林省双辽市第二中学马丹
一、教学内容分析
本节内容是《普通高中课程标准实验教科书·数学必修2》(人教A版)第二章,2.2.2 平面与平面平行的判定。

在学习了直线与平面的平行的基础之上,继续研究平面与平面之间的位置关系——平行.判定思想是由“直线与直线平行”转化为“直线与平面平行”,再转化为“两平面平行”.这节课的重点是平面与平面平行的判定定理及其应用,难点是结合问题的特点正确选择方法,准确地使用符号语言进行推理论证.
二、学情分析
对普通高中的学生来说,几何的基础情况一般、空间立体感不强,但在解决立体几何问题,需要有一定观察、分析、解决问题的能力,较强的空间立体感,这就使一部分学生选择了放弃,因此教师应恰当引导,提高学生学习主动性,对以前知识加以复习,带领学生直接参与分析问题、解决问题,感受学习的快乐。

三、设计思想
本节课采用探索与研究的方法进行讲授,在教学过程中,教师不断启发引导,学生可以通过分析、讨论,揭示直线与平面平行的判定。

教师提出问题设计教学情境,为学生提供讨论问题的机会,学生可以自由的提出自己的分析结果,结合多媒体教学和教学模型演示,使学生更加直观的观察立体图形,逐步培养学生发现问题、分析问题、解决问题的能力,提高学生的数学逻辑思维能力。

四、教学目标
1、知识与技能
理解面面平行的判定定理,并能用它证明一些简单问题;能准确使用数学符号语言表述判定定理,进一步培养学生分析、解决问题能力和空间想象能力。

2、过程与方法
学生通过对图形的直观感知、探究归纳得出两个平面平行的判定定理。

3、情感、态度与价值观
激发学生学习数学兴趣,培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力,学生深入体会转化思想方法。

五、教学过程设计
(一)创设情景、引入课题
根据新课程的理念和本节课的教学要求,由上节课直线与平面的判定定理引出了本节课的内容,自然流畅,结合现实生活的实例让学生理解到本节课学习的内容。

提问:(1)直线与平面平行的定义、直线与平面平行的判定定理分别是什么? (写出符号表示)。

(2)观察长方体各个面之间是怎样的位置关系?
(3)大家观察一下教室,是否可以发现面面平行的例子?
(1)(学生回顾上节内容回答)
直线与平面平行的定义:一条直线和一个平面没有公共点,则直线与平面平
行。

直线与平面平行的判定定理:如果平面外一条直线平行于平面内的一条直
线,那么该直线平行于此平面。

符号表示:α
αα∥∥a b a b a ⇒⎪⎭
⎪⎬⎫⊂⊄ (2)(学生观察之后得到结论)长方体相邻的平面是相交,不相邻的平面
是平行即向对平面平行。

(3)教室的天花板与地面是平行的关系。

(二)探究新知
我们已经研究了直线与平面的平行判定定理,那么两个平面具有什么条件
才能平行呢?
问题:判断下列命题是否正确。

(1)平面β内有一条直线与平面α平行,那么α∥β。

(2)如果平面α内有无数条直线与平面β平行,那么α∥β。

(3)如果平面α内有任意条直线与平面β平行,那么α∥β。

(4)如果平面β内有两条直线与平面α平行,那么α∥β。

(学生思考回答问题)
生1回答(1)错误。

βα
α
生2 回答(2)错误。

β
α
生3回答(3)正确。

生4回答(4)错误。

平面与平面平行需一个平面内所有的直线与另一个平面平行,但对所有的直线逐一检验无法实现,那么如何由一个平面内的有限条直线与另一个平面平行,推出面面平行呢?由平面性质可知,两条平行线、两条相交直线都可以确定一个平面,因此可以在一个平面选两条直线证明面面平行。

学生思考并分析问题:由判断题已经知道在一个平面内两条平行直线分别与另一个平面平行,这两个平面可以是平行也可以相交。

讨论:当三角板ABC 的两条边平行桌面时,三角板ABC 所在的平面是否平行桌面?
学生用三角板进行演示,得到结论:当三角板ABC 的两条边平行桌面时,三角板ABC 所在的平面平行桌面。

也就是说,一个平面内的必须是两条交直线与另一个平面平行,两面才平行。

借助长方体模型,由直线与平面平行的判定定理可知,这两条相交直线11C A 、11D B 都与平面ABCD 平行。

此时,平面ABCD 平行平面1111D C B A 。

两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:⎪⎪⎪⎭
⎪⎪⎪⎬⎫=
⊂⊂αα
β
β
∥b ∥a p b a b a I βα∥⇒ 判断两平面平行的方法有二种:(1)用定义:如果两个平面没有公共点,则称这两个平面平行;(2)两平面平行判定定理。

(三)定理实践
BD C ∥D AB D C B A ABCD 21111111平面,求证:平面、正方体例-
BD C ∥D AB D AB B D D AB A D ,D B D A D BD
C ∥B
D :BD
C ∥A
D BD
C B C B
D C A D B C ∥A D AB C D AB C D AB ∥C D B A AB B A ∥AB B A C D B A ∥C D ,
D C B A -ABCD 1111
1111
111111111111111111111111111111111111111平面平面平面平面平面同理平面平面,平面。

为平行四边形,,
,,
,,,为正方体证明:∴⊂⊂=⋂∴⊂⊄∴∴=∴==∴ΘΘΘ (四)知识巩固:P58 1-3
(五)课堂小结:
1、通过本节课的学习,你学会了哪些判定面面平行的方法?
学生回答:(1)用定义;(2)两平面平行判定定理。

2、面面平行的判定定理体现了什么思想?
学生回答:线线平行
(六)课后作业:习题2.2 A 组 7、8
六、教学后记
在教学过程中,通过观察实物、模型演示,创设问题情境,引导学生深入研究面面平行,逐步得到面面平行判定定理。

教师提出一个个问题,学生进行不断的思考讨论、合情推理,回答问题,这样的教学设计可以让学生主动参与课堂教学,充分调动学生的积极性,激发学生的创新思维。

相关文档
最新文档