2013-2014学年上学期期末考试初三数学试卷
常熟市2013-2014学年第一学期初三数学期末试题及答案
2013-2014学年第一学期期末考试试卷 初 三 数 学本试卷由填空题、选择题和解答题三大题组成,共29小题.满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上.1.抛物线y =2(x -3)2+1的顶点坐标是A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)2.若关于x 的一元二次方程x 2-2x +m =0有两个不相等的实数根,则m 的取值范围是A .m<-1B .m<1C .m>-1D .m>13.已知⊙O 1的半径为1cm ,⊙O 2的半径为3cm ,圆心距O 1O 2为1cm ,则两圆的位置关系是A .外离B .外切C .内含D .内切4.下列说法正确的是A .平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若两个圆有公共点,则这两个圆相交5.若二次函数y =ax 2的图象经过点P(-2,4),则该图象必经过点A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)6.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是A .atanA =bB .bcosB =cC .ctanB =bD .csinA =a7.一小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下列函数关系式: h =-5(t -1)2+6,则小球距离地面的最大高度是A .1mB .5mC .6mD .7m8.将宽为1cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是A .1cmB .2cmC .3cm D .3cm9.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0.其中正确结论的个数是A.2个B.3个C.4个D.5个10.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为A.4 B.5 C.6 D.7二、填空题本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11.x2+6x+12=(x+3)2+▲.12.若关于x的方程x2-mx+2=0有两个相等的实数根,则m的值是▲.13.已知在Rt△ABC中,∠C=90°,sinA=513,则tanB的值为▲.14.如图,在⊙O中,若∠OAB 22.5°,则∠C的度数为▲°.15.抛物线y=3x2沿x轴向左平移1个单位长度,则平移后抛物线对应的关系式是▲.16.如图,四边形OABC为菱形,点B、C在以点O为圆心的弧EF上,若OA=3,∠1=∠2,则扇形OEF的周长为▲.17.无论x m的取值范围为▲.18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m,木板顶端向下滑动了0.9m,则小猫在木板上爬动了▲m.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)解方程:x2+3x-4=0.20.(本题满分5分)计算:2cos30°-tan45.21.(本题满分6分)甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:S2乙=3.4.(1)计算样本甲的方差;(2)试判断哪个样本波动大.22.(本题满分6分)二次函数y =ax 2+bx +c 的图象与x 轴交于A(1,0)、B 两点,与y 轴交于点C ,其顶点P 的坐标为(-3,2).(1)求这二次函数的关系式;(2)求△PBC 的面积;(3)当函数值y<0时,则对应的自变量x 取值范围是 ▲ .23.(本题满分6分)把一根长为2m 的铁丝弯成顶角为120°的等腰三角形,求此三角形的各边长.24.(本题满分6分)如图,△ABC 是⊙O 的内接三角形,直径AD =8,∠ABC =∠DAC .(1)求AC 的长;(2)求图中阴影部分的面积(结果保留π).25.(本题满分7分)如图,一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,测得AE =3,木箱端点E 距地面AB 的高度EG 为1.5m.已知木箱高DE.(1)求斜坡AC 坡度i 的值;(2)求木箱端点D 距地面AB 的高度DF.26.(本题满分8分)△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E .设此内切圆,的半径为r ,BC 边上的高为h a .(1)求ar h 的值; (2)求DE 的长.27.(本题满分8分)如图,AB 为⊙O 的直径,C 为圆上一点,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,过B 作FB ⊥AB 交AD 的延长线于点F.(1)求证:DE 是⊙O 的切线;(2)若DE =4,⊙O 的半径为5,求AC 和BF 的长.28.(本题满分9分)已知二次函数y =12x 2+kx +k -12. (1)判断该二次函数的图象与x 轴的交点情况;(2)设k<0,当该二次函数的图象与x 轴的两个交点A 、B 间的距离为6时,求k 的值;(3)在(2)的条件下,若抛物线的顶点为C ,过y 轴上一点M(0,m ,)作y 轴的垂线l ,当m 为何值时,直线l 与△ABC 的外接圆有公共点?29.(本题满分10分)如图,在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 经过A 、B 、C 三点,已知点A (-3,0),B(0,m ,),C(1,0).(1)求m 值;(2)设点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合).①过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;②连接AP ,并以AP 为边作等腰直角△APQ ,当顶点Q 恰好落在抛物线的对称轴上时,求出对应的点P 坐标.。
2013-2014学年上学期期末考试(含答案)九年级数学
九年级(上)数学期末测试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)2.一元二次方程x(x -2)=o根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )4.菱形具有而矩形不一定具有的性质是(。
)A.对角线互相垂直… B: 对角线相等C.对角线互相平分 D。
对角互补5.从1,2,-3三个数中,随机抽敢两个数相乘,积是正数的概率是A.o B1/3 C2/3 D.1j j6.如图所示河堤横断面迎水坡AB韵坡比是1:√3(根号3),堤高BC=5m,~烈藏面AB的长度是A: lOm B. lO√3(根号3) C. 15m D. 5√3(根号3)mA.<2,一3) B.(一2,3) C.(2,3) D.(一2,一3)8:如图,AB是00的直径,点C在圆O上,若∠C =160,∠BOC的度数是( ) :A.其图象的开口向下 B.其图象的对称轴为直线x=一3C.其最小值为1 D.当x<3时,y随x的增大而增大A. -2B.2C.5D.611.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率则黄球的个A.2B.4C.12D.1614.如图,’边长为4的等边△4戤中‘,A酽为中位线,则四边形BCED的面积为( ) .A.2√3 B.3√3 c.4√3 D.6√315.如图,直径为10的OA经过点C(O,5)和点O(O,0),B是J,轴右侧OA优弧上一点,则么OBC的余弦值为( )二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的。
线上.)18.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____19.如图所示,若OO的半径为13cm,点P是弦AB上的一个动点,且到圆心的最短距离为5 cm,则弦AB的长为____ cm.20.抛物线y=ax2+ bx+c上部分点的横坐标x,纵坐标y的对应对应值如下表从上表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,O);②函数向最大值为6;③抛物线的对称轴是④在对称轴左侧,y随x增大而增大21.如图,直线与x轴、j,分别相交与4、B两点,圆心尸的坐标为(1,O),圆尸与y轴相切与点D.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点Ps 个数是个.三、解答题(本大题共7小题,满分57分,解答应写出文字说明、证明过程或演算步骤.)(2)如图,已知点E在ABC的边AB上,以AE为直径的圆O与BC相切于点D,且AD平分∠BAC求证:AC BC.24.(本小题满分8分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;的图象上的概率.25.(本小题满分8分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?26.(本小题满分9分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自么处测得建筑物顶部的仰角是300,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是450.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取√3(根号3)=1.732,结果精确到1m)27.(本小题满分9分)已知:如图,在△ABC中,BC=AC,以BC为直径的圆O与边AB相交于点D,DEIAC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与圆O的位置关系,并证明你的结论;(3)若OO的直径为18,求DE的长.28.(本小题满分9分)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=900,AC=BC,OA=1,00=4,抛物线J,=X2+ bx+c经过A,B两点,抛物线的顶点为D.(1)求B标点坐标及抛物线的解析式;(2)点E是Rt△ABC斜边AB上一动点(A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件EF长度最大时,在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,直接写出所有点P的坐标;若不存在,说明理由.答案:一、D A C A B A D C C B B D D B C 二、16、217、3± 18、 28 19、24 20、①③④ 21、3 22.(1)120,1x x == -------------(4分) (2)12-------------(3分) 23. (1)证明:有尺规作图的图示可以看出 在△OCM 与△OCN 中, OM=ON ,CM=CN ,OC=OC ······················································································ (1分) ∴△OCM ≌△OCN ····································································································· (2分) ∴∠AOC=∠BOC ············································································································ (3分) (2)证明:连接OD∵OA = OD ,∴∠1 =∠3;∵AD 平分∠BAC ,∴∠1 =∠2; ∴∠2 =∠3; ∴OD ∥AC , ······························· (2分) ∵BC 是⊙O 的切线 ∴OD ⊥BC ······························· (3分) ∴AC ⊥BC ··························· (4分)24. 解:(1)································· 4分 (2)可能出现的结果共有16个,它们出现的可能性相等.满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ··························· 7分 25. 解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-10x)=1500 ------------(2分) 解得:x1=10 x2=5 因为顾客要得到实惠,5<10 所以 x=5答:每千克应涨价5元. -------------(4分) (2)设商场每天获得的利润为y 元,则根据题意,得y=( x +5)(200-10x)= -102x +150x -500 -------------(6分)当x=5.7)10(21502=-⨯-=-a b 时,y 有最大值.因此,这种水果每千克涨价7.5元时,能使商场获利最多 -------------(8分) 26. 解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m .-------------(2分) 在Rt △AEC 中,tan ∠CAE =AE CE,即tan30°=100+x x ∴33100=+x x ,3x =3(x +100) - ------------(5分) 解得x =50+503=136.6 -------------(8分) ∴CD =CE +ED =(136.6+1.5)=138.1≈138(m)答:该建筑物的高度约为138m . -------------(9分)27. 解:(1)证明:连接CD ,则CD AB ⊥, 又∵AC = BC , CD = CD , ∴ACD Rt ∆≌BCD Rt ∆∴AD = BD , 即点D 是AB 的中点.------------(3分)(2)DE 是⊙O 的切线 .理由是:连接OD , 则DO 是△ABC 的中位线,∴DO ∥AC , 又∵DE AC ⊥; ∴DE DO ⊥ 即DE 是⊙O 的切线;------------(6分)(3)∵AC = BC , ∴∠B =∠A , ∴cos ∠B = cos ∠A =31, ∵ cos ∠B =31=BC BD , BC = 18,∴BD = 6 , ∴AD = 6 , ∵ cos ∠A =31=AD AE , ∴AE = 2, 在AED Rt ∆中,DE =2422=-AE AD .------------(9分) 28. 解:(1)由已知得:A (-1,0) B (4,5)------------(1分)∵二次函数2y x bx c =++的图像经过点A (-1,0)B(4,5)∴101645b c b c -+=⎧⎨++=⎩ ------------(2分)解得:b=-2 c=-3∴二次函数223y x x =-- ------------(3分) (2)∵直线AB 经过点A (-1,0) B(4,5)∴直线AB 的解析式为:y=x+1∵二次函数223y x x =--∴设点E(t , t+1),则F (t ,223t t --) ------------(4分) ∴EF= 2(1)(23)t t t +--- ------------(5分) =2325()24t --+∴当32t =时,EF 的最大值=254∴点E 的坐标为(32,52) ------------------------(6分)(3)所有点P 的坐标:15)2p ,25)2p 3P (11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.---------------------------------(9分)。
2013-2014学年上学期期末考试考试卷九年级数学试题
2013-2014学年上学期期末考试考试卷数 学考生须知:1.全卷满分为150分,考试时间120分钟.试卷共4页,有三大题,24小题. 2.本卷答案必须做在答题卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.答卷Ⅰ共1页、答卷Ⅱ共4页.3.请用钢笔将姓名、准考证号分别填写在答题卷Ⅰ、Ⅱ的相应位置上. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数y =ax 2+bx +c 的顶点坐标是)44,2(2ab ac a b --. 试 卷 Ⅰ请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1、某物体的三视图是如图1所示的三个图形,那么该物体形状是 A 、长方体 B 、圆锥体 C 、立方体 D 、圆柱体2、下列事件中,是必然事件的是 A 、在地球上,上抛出去的篮球会下落 B 、打开电视机,任选一个频道,正在播新闻 C 、购买一张彩票中奖一百万D 、掷两枚质地均匀的正方形骰子,点数之和一定大于63、随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为A 、7×10-6 B 、 0.7×10-6 C 、7×10-7 D 、70×10-84、下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是5、如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 为位似中心,OD=12OD′,则A′B′:AB 为A 、2:3B 、3:2C 、1:2D 、2:1A ′ ′ E ′正视图左视图俯视图图1(4)(3)沿虚线剪开对角顶点重合折叠(2)6、在数轴上表示不等式组10240xx+>⎧⎨-⎩≤的解集,正确的是ABCD7、估算324+的值A、在5和6之间B、在6和7之间C、在7和8之间D、在8和9之间8、如图,抛物线)0(2>++=acbxaxy的对称轴是直线1=x,且经过点P(3,0),则cba+-的值为A、0B、-1C、1D、29、如图,小明拿一张矩形纸图(1),沿虚线对折一次得图(2),再将对角两顶点重合折叠得图(3)。
2013-2014学年北京市丰台区九年级(上)期末数学练习试卷
2013-2014学年北京市丰台区九年级(上)期末数学练习试卷一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知3x=4y(xy≠0),则下列比例式成立的是( )A.=B.=C.=D.=2.(4分)如图,在△ABC中,D、E分别是AB、AC边上的点,且DE∥BC,如果DE:BC=3:5,那么AE:AC的值为( )A.3:2B.2:3C.2:5D.3:53.(4分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.不确定4.(4分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.B.C.D.5.(4分)在小正方形组成的网格图中,直角三角形的位置如图所示,则sinα的值为( )A.B.C.D.6.(4分)当x>0时,函数y=﹣的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限7.(4分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A.4B.6C.8D.108.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y= x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.169.(4分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC 运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形二.填空题(本题共20分,每小题4分)10.(4分)两个相似三角形的面积比是5:9,则它们的周长比是 .11.(4分)在Rt△ABC中,∠C=90°,如果tanA=,那么∠A= °.12.(4分)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为 cm2.13.(4分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .14.(4分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= ,A n B n= .(n为正整数)三、解答题(本题共19分,第15题4分,第16题5分,第17题5分,第18题5分)15.(4分)计算:3tan30°﹣2cos45°+2sin60°.16.(5分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.17.(5分)如图,在⊙O中,C、D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.18.(5分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AB的长.四、解答题(本题共17分,第19题5分,第20题6分,第21题6分)19.(5分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.20.(6分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.21.(6分)已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G,求证:AB2=BG•BC.五.解答题(本题共28分,第22题6分,第23题7分,第24题7分,第25题8分)22.(6分)如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B 处.(参考数据:≈1.414,≈1.732,≈2.449)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.23.(7分)如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.24.(7分)已知直线y=kx﹣3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D坐标;若不存在,请说明理由.25.(8分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论.2013-2014学年北京市丰台区九年级(上)期末数学练习试卷参考答案与试题解析一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知3x=4y(xy≠0),则下列比例式成立的是( )A.=B.=C.=D.=【分析】根据两內项之积等于两外项之积对各选项进行计算,然后利用排除法求解.【解答】解:A、由=得,xy=12,故本选项错误;B、由=得,3x=4y,故本选项正确;C、由=得,4x=3y,故本选项错误;D、由=得,4x=3y,故本选项错误.故选:B.【点评】本题考查了比例的性质,熟记两內项之积等于两外项之积是解题的关键.2.(4分)如图,在△ABC中,D、E分别是AB、AC边上的点,且DE∥BC,如果DE:BC=3:5,那么AE:AC的值为( )A.3:2B.2:3C.2:5D.3:5【分析】由DE∥BC,根据平行于三角形一边的直线截其它两边所得的三角形与原三角形相似得到△ADE∽△ABC,再根据相似三角形对应边的比相等得到AE:AC的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE:AC,∵DE:BC=3:5,∴AE:AC的值为3:5,故选:D.【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线截其它两边所得的三角形与原三角形相似;相似三角形对应边的比相等.3.(4分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.不确定【分析】根据直线和圆的位置关系的内容判断即可.【解答】解:∴⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,∴3.5<4,∴直线l与⊙O的位置关系是相交,故选:A.【点评】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.4.(4分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.B.C.D.【分析】由一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,∴向上一面的数字不小于3的概率是:=.故选:C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.(4分)在小正方形组成的网格图中,直角三角形的位置如图所示,则sinα的值为( )A.B.C.D.【分析】根据勾股定理求得三角形的斜边长,然后利用三角函数的定义即可求解.【解答】解:斜边长是:=,则sinα==.故选:D.【点评】本题考查了勾股定理以及三角函数,理解三角函数的定义是关键.6.(4分)当x>0时,函数y=﹣的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限【分析】先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x>0时,函数的图象所在的象限即可.【解答】解:∵反比例函数中,k=﹣5<0,∴此函数的图象位于二、四象限,∵x>0,∴当x>0时函数的图象位于第四象限.故选:A.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k<0时,双曲线的两支分别位于第二、第四象限.7.(4分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A.4B.6C.8D.10【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】解:如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE==4,∴AB=2AE=8,故选:C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE.8.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y= x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.16【分析】根据抛物线解析式计算出y=的顶点坐标,过点C作CA⊥y轴于点A,根据抛物线的对称性可知阴影部分的面积等于矩形ACBO的面积,然后求解即可.【解答】解:过点C作CA⊥y,∵抛物线y==(x2﹣4x)=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴顶点坐标为C(2,﹣2),对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4,故选:B.【点评】本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.9.(4分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC 运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC===;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=,NC=,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.二.填空题(本题共20分,每小题4分)10.(4分)两个相似三角形的面积比是5:9,则它们的周长比是 :3 .【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形的周长的比等于相似比解答.【解答】解:∵两个相似三角形的面积比是5:9,∴它们的相似比是:3,∴它们的周长比是:3.故答案为::3.【点评】本题考查了相似三角形的性质,熟记性质并求出两三角形的相似比是解题的关键.11.(4分)在Rt△ABC中,∠C=90°,如果tanA=,那么∠A= 60 °.【分析】根据∠C=90°,tanA=,可求得∠A的度数.【解答】解:在Rt△ABC中,∵tanA=,∴∠A=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.(4分)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为 3π cm2.【分析】根据扇形的面积公式即可求解.【解答】解:扇形的面积==3πcm2.故答案是:3π.【点评】本题主要考查了扇形的面积公式,正确理解公式是解题关键.13.(4分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .【分析】根据题意列出表格得出所有等可能的情况数,找出颜色不同的情况数,即可求出所求的概率.【解答】解:列表如下:白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(红,红)所有等可能的情况有9种,其中两次摸出棋子颜色不同的情况有5种,则P(颜色不同)=.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= 6 ,A n B n= n(n+1) .(n为正整数)【分析】根据OA1=1,求出A1A2、A2A3、A3A4的值,推出A n A n﹣1的值,根据平行线分线段成比例定理得出=,代入求出A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),推出A n B n=n(n+1)即可.【解答】解:∵OA1=1,∴A1A2=2×1=2,A2A3=3×1=3,A3A4=4,…A n﹣2A n﹣1=n﹣1,A n﹣1A n=n,∵A1B1∥A2B2∥A3B3∥A4B4∥…,∴=,∴=,∴A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),…,∴A n B n=n(n+1),故答案为:6,n(n+1).【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是根据求出的结果得出规律,题型较好,但是有一定的难度.三、解答题(本题共19分,第15题4分,第16题5分,第17题5分,第18题5分)15.(4分)计算:3tan30°﹣2cos45°+2sin60°.【分析】本题可根据特殊的三角函数值解出tan30°、cos45°、sin60°的值,再代入原式中即可.【解答】解:原式=,=,=.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.16.(5分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.【分析】(1)配方后直接写出顶点坐标即可;(2)确定对称轴后根据其开口方向确定其增减性即可;(3)令y=0后求得x的值后即可确定与x轴的交点坐标;【解答】解:(1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2);(2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+,∴图象与x轴的交点坐标为(﹣1﹣,0),(﹣1+,0).【点评】本题考查了二次函数的性质,解题的关键是了解抛物线的有关性质.17.(5分)如图,在⊙O中,C、D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.【分析】(1)直接利用弧长公式求出即可;(2)利用邻补角的定义以及圆周角定理得出即可.【解答】解:(1)∵∠AOC=130°,AB=2,∴===;(2)由∠AOC=130°,得∠BOC=50°,又∵∠D=∠BOC,∴∠D=×50°=25°.【点评】此题主要考查了弧长公式以及圆周角定理,熟练记忆弧长公式是解题关键.18.(5分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【分析】由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A 的正弦值,即可求出AB的长.【解答】解:∵∠C=90°,∠BDC=45°∴BC=CD=6又∵sinA=∴AB=6÷=15.【点评】直角三角形知识的牢固掌握和三角函数的灵活运用.四、解答题(本题共17分,第19题5分,第20题6分,第21题6分)19.(5分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.【分析】根据PA,PB分别是⊙O的切线得到PA⊥OA,PB⊥OB,在四边形AOBP中根据内角和定理,就可以求出∠P的度数.【解答】解:连接OB,∴∠AOB=2∠ACB,∵∠ACB=70°,∴∠AOB=140°;∵PA,PB分别是⊙O的切线,∴PA⊥OA,PB⊥OB,即∠PAO=∠PBO=90°,∵四边形AOBP的内角和为360°,∴∠P=360°﹣(90°+90°+140°)=40°.【点评】本题主要考查了切线的性质,切线垂直于过切点的半径.20.(6分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.【分析】(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题注意数形结合思想的运用,数形结合是数学解题中经常用到的,同学们注意熟练掌握.21.(6分)已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G,求证:AB2=BG•BC.【分析】因为直径所对的圆周角是直角,所以作辅助线:连接AD;利用同角的余角相等,可得∠BAG=∠D,又由同弧所对的圆周角相等,可得∠C=∠D,证得∠C=∠BAG,又因为∠ABG是公共角,即可证得△ABG∽△CBA;由相似三角形的对应边成比例,即可证得AB2=BG•BC.【解答】解:连接AD,∵BD是⊙O的直径,∴∠BAD=90°,∴∠BAF+∠DAF=90°,∵AF⊥BD,∴∠D+∠DAF=90°,∴∠BAG=∠D,∵∠C=∠D,∴∠C=∠BAG,∵∠ABG=∠ABC,∴△ABG∽△CBA,∴AB:CB=BG:AB,∴AB2=BG•BC.【点评】此题考查了相似三角形的判定与性质与圆的性质.解此题的关键是掌握辅助线的作法,在圆中,构造直径所对的角是直角是常见辅助线,同学们应注意掌握.五.解答题(本题共28分,第22题6分,第23题7分,第24题7分,第25题8分)22.(6分)如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B 处.(参考数据:≈1.414,≈1.732,≈2.449)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)如图,作PC⊥AB于点C,在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣60°=30°,∴PC=PA•cos30=100×=50,在Rt△PCB中,∠PCB=90°,∠PBC=90°﹣45°=45°,∴PB=PC=50≈122.5,∴B处距离P有122.5海里.(2)没有危险.理由如下:OB=OP﹣PB=190﹣50,(190﹣50)﹣50=140﹣50>0即OB>50,∴无危险【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.(7分)如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.【分析】(1)由图形可知这是一条抛物线,根据图形也可以知道抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设出抛物线的解析式将两点代入可得抛物线方程;(2)第二题中要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是他们的距离.【解答】解:(1)抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1)(2分)设抛物线的解析式是y=a(x﹣5)2+5(3分)把(0,1)代入y=a(x﹣5)2+5得a=﹣(5分)∴y=﹣(x﹣5)2+5(0≤x≤10);(6分)(2)由已知得两景观灯的纵坐标都是4(7分)∴4=﹣(x﹣5)2+5∴(x﹣5)2=1∴x1=,x2=(9分)∴两景观灯间的距离为﹣=5米.(10分)【点评】此题考查对抛物线等二次函数的应用,从图中可以看出的坐标是解题的关键.24.(7分)已知直线y=kx﹣3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D坐标;若不存在,请说明理由.【分析】(1)将A点坐标代入直线的解析式中,即可求得k的值,从而确定该直线的解析式;将A、C的坐标代入抛物线的解析式中,可求得m、n的值,从而确定抛物线的解析式.(2)根据(1)得到的抛物线解析式,可求得点B的坐标,根据P、Q的运动速度,可用t表示出BP、CQ的长,进而可得到AQ、AP的长,然后分三种情况讨论:①∠APQ=90°,此时PQ∥OC,可得到△APQ∽△AOC,根据相似三角形所得比例线段即可求得t的值;②∠AQP=90°,亦可证得△APQ∽△ACO,同①的方法可求得此时t的值;③∠PAQ=90°,显然这种情况是不成立的.(3)过D作y轴的平行线,交直线AC于F,设出点D的横坐标,根据抛物线和直线AC的解析式可表示出D、F的纵坐标,进而可求得DF的长,以DF 为底,A点横坐标的绝对值为高即可得到△ADC的面积表达式(或由△ADF、△CDF的面积和求得),由此可求出关于△ADC的面积和D点横坐标的函数关系,根据函数的性质即可求得△ADC的面积最大值及对应的D点坐标.【解答】解:(1)∵直线y=kx﹣3过点A(4,0),∴0=4k﹣3,解得k=.∴直线的解析式为y=x﹣3.(1分)由直线y=x﹣3与y轴交于点C,可知C(0,﹣3).∵抛物线经过点A(4,0)和点C,∴,解得m=.∴抛物线解析式为.(2分)(2)对于抛物线,令y=0,则,解得x1=1,x2=4.∴B(1,0).∴AB=3,AO=4,OC=3,AC=5,AP=3﹣t,AQ=5﹣2t.①若∠Q1P1A=90°,则P1Q1∥OC(如图1),∴△AP1Q1∽△AOC.∴,∴,解得t=;(3分)②若∠P2Q2A=90°,∵∠P2AQ2=∠OAC,∴△AP2Q2∽△ACO.∴,∴解得t=;(4分)③若∠QAP=90°,此种情况不存在.(5分)综上所述,当t的值为或时,△PQA是直角三角形.(3)答:存在.过点D作DF⊥x轴,垂足为E,交AC于点F(如图2).∴S△ADF=DF•AE,S△CDF=DF•OE.∴S△ACD=S△ADF+S△CDF=DF•AE+DF•OE=DF×(AE+OE)=×(DE+EF)×4=×()×4=.(6分)∴S△ACD=(0<x<4).又∵0<2<4且二次项系数,∴当x=2时,S△ACD的面积最大.而当x=2时,y=.∴满足条件的D点坐标为D(2,).(7分)【点评】此题考查了用待定系数法确定函数解析式的方法、直角三角形的判定、相似三角形的判定和性质、图形面积的求法等知识,(3)题中,将图形面积的最大(小)值问题转化为二次函数的最值问题是此类题常用的解法.25.(8分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论.【分析】(1)如图1,连接FE、FC,构建全等三角形△ABF≌△CBF(SAS),则易证∠BAF=∠2,FA=FC;根据垂直平分线的性质、等量代换可知FE=FA,∠1=∠BAF,则∠5=∠6.然后由四边形内角和是360°、三角形内角和定理求得∠5+∠6=∠3+∠4,则∠5=∠4,即∠EAF=∠ABD;(2)FM=FN.理由如下:由△AFG∽△BFA,易得∠AGF=∠BAF,所以结合已知条件和图形得到∠MBG=∠BMG.易证△AGF∽△DGA,则对应边成比例:==.即==.设GF=2a(a>0),AG=3a,则GD=a,FD=a;利用平行线(BE∥AD)截线段成比例易得=,则==.设EG=2k(k>0),所以BG=MG=3k.如图2,过点F作FQ∥ED交AE于点Q.则===,又由FQ∥ED,易证得==,所以FM=FN.【解答】(1)证明:如图1,连接FE、FC.∵点F在线段EC的垂直平分线上,∴FE=FC,∴∠1=∠2.∵△ABD和△CBD关于直线BD对称(点A的对称点是点C),∴AB=CB,∠4=∠3,∵在△ABF与△CBF中,,∴△ABF≌△CBF(SAS),∴∠BAF=∠2,FA=FC,∴FE=FA,∠1=∠BAF,∴∠5=∠6.∵∠1+∠BEF=180°,∴∠BAF+∠BEF=180°∵∠BAF+∠BEF+∠AFE+∠ABE=360°,∴∠AFE+∠ABE=180°.又∵∠AFE+∠5+∠6=180°,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF=∠ABD;(2)FM=FN.理由如下:如图2,由(1)知,∠EAF=∠ABD.又∵∠AFB=∠GFA,∴△AFG∽△BFA,∴∠AGF=∠BAF.又∵∠MBF=∠BAF,∴∠MBF=∠AGF.∵∠AGF=∠MBG+∠BMG,∴∠MBG=∠BMG,∴BG=MG.∵AB=AD,∴∠ADB=∠ABD=∠EAF.又∵∠FGA=∠AGD,∴△AGF∽△DGA,∴==.∵AF=AD,∴==.设GF=2a(a>0),AG=3a,∴GD=a,∴FD=a∵∠CBD=∠ABD,∠ABD=∠ADB,∴∠CBD=∠ADB,∴BE∥AD,∴=,∴==.设EG=2k(k>0),∴BG=MG=3k.如图2,过点F作FQ∥ED交AE于点Q.则===,∴GQ=QE,∴GQ=EG=k,MQ=3k+k=k.∵FQ∥ED,∴==,∴FM=FN.第31页(共31页)【点评】本题综合考查了相似三角形的判定与性质,平行线分线段成比例,三角形内角和定理以及四边形内角和是360度等知识点.难度较大,综合性较强.。
2013-2014学年度第一学期期末考试初三数学试题卷
2013-2014学年度第一学期期末考试初三数学试题卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a=-。
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在3,-1,0这四个数中,最小的数是( ) A. 3 B. -1 C. 02.下列图形是轴对称图形的是( )3.计算23(2)x 的结果是( )A .66x B. 58x C. 56x D. 68x4.如图,ABC ∆为O 的内接三角形,50ACB ∠=︒,则ABO ∠的度数等于( ) A.40° B.50° C.60° D.25° 5110,60E ︒∠=︒,则∠A. 30°B. 40°C. 50°D. 60° 6.下列调查适合全面调查(即:普查)的是( ) A.了解全国每天丢弃的塑料袋的数量 B.了解某种品牌的彩电的使用寿命 C.调查“神州9号”飞船各零部件的质量 D.了解浙江卫视“中国好声音”栏目的收视率7.若x = 2是关于x 的一元二次方程280x ax -+=的一个解,则a 的值是( ) A .2 B. 5 C. -6 D. 68.地铁1号线是贯穿渝中区和沙坪坝区的重要交通通道,1号线的开通极大的方便了市民的出行,小王下班后从渝中区较场口乘坐地铁回沙坪坝,他从公司出发,先匀速步行至较场口地铁站,等了一会儿,小王搭乘地铁1号线到达沙坪坝站,下面能反映在此过程中小王到沙坪坝的距离y 与时间x 的函数关系的大致图象是( )9.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A.83B.84C.85D.8610.二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列结论中,正确的是( ) A.0abc >B.24ac b > C.20a b -=D.420a b c ++>二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据统计,重庆市2011年全市地方财政收入超过29000000万元,将数29000000用科学记数法表示为 . 12.已知ABC ∆∽DEF ∆,ABC ∆的周长为2,DEF ∆的周长为4,则ABC ∆与DEF ∆的面积之比为 . 13.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 . 14.已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2.(结果保留π) 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加3作为b 的值,则(a ,b )使得关于x 的不等式组3(2)0,0x a x x b --≥⎧⎨-+>⎩恰好有3个整数解的概率是 .16.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 17.计算:120131(5)()(1)|4|2π--++---18.如图,AD = BC ,,12A B ∠=∠∠=∠,求证:PA = PB.19.解方程:42233x x x-+=--.20.如图,在ABC ∆中,60,C AD BC ∠=︒⊥,垂足为D,若2AD BD CD ==,求ABC ∆的周长(结果保留根号).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.先化简22144(1)11x x x x -+-÷--,再从不等式组203(1)21x x x +>⎧⎨-≤-⎩的解集中选取一个合适的整数解作为x 的值代入求值.22.如图,一次函数y ax b =+的图象与反比例函数ky=交于A ,B 两点,与y 交于C ,与x 轴交于点D ,已知OA =(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积. 23.重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A 、B 、C 、D 、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为 ;(3)2月份王老师到药房买了抗生素类药D 、E 各一盒,若D 中有两盒是降价药,E 中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率。
芜湖市2013-2014学年度第一学期九年级期末考试数学试卷
芜湖市2013~2014学年度第一学期九年级期末测评·数学试卷·班级____________姓名____________编号____________得分____________一、单项选择题:(本题共12小题,每小题3分,满分36分)1.下列图形中,是轴对称图形但不是中心对称图形的是【】2.若x+y−1+(y+3)2=0,则x-y的值为【】A.1B.-1C.7D.-73.一元二次方程x(x-4)=4-x的根是【】A.-1B.4C.1和4D.-1和44.若两圆的半径分别是1㎝和5㎝,圆心距为8㎝,则这两个圆的位置关系是【】A.内切B.外切C.相交D.外离5.将抛物线y=2x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为【】A.y=2(x-3)2+4B.y=2(x+4)2+3C. y=2(x-4) 2+3D.y=2(x-4) 2-36.某厂一月份生产产品l50台,计划二、三月份共生产该产品450台,设二、三月平均每月增长率为x,根据题意列出方程是【】A.150(1+x)2=45OB.150(1+x)+150(1+x)2=450C.150(1+2x)=450 D.150(1+x)2 =6007.如图所示,在平面直角坐标系中,过格点A、B、C作一圆弧,点B与下列各点的连线中,能够与该圆弧相切的是【】A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)8.为丰富社区活动,某街道办事处打算组织一次篮球友谊赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【】A.7队B.6队C.5队D.4队9.如图所示,在△ABC中,∠A=70°,⊙0截△AB的三条边所得的弦长相等,则∠B0C的度数为【】A.125°B.130°C.135°D.160°10.已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于【】A.-5B.5C.-9D.911.现有A,B两枚均匀的小立方体,立方体的每个面上分别标有数字1,2,3,4,5,6,用小丁掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在抛物线y= -x 2+4x上的概率为【】A.118B.112C.19D.1612.如图,直线y=k x+c与抛物线y=a x2+b x+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且第1题图第7题图第9题图OA=OD。
2013---2014学年上学期初三数学期末考试试题
2013---2014学年上学期初三数学期末考试试题一、选择1.如图,已知P 是射线OB 上的任意上点,P M ⊥OA 于M ,且 OM :OP=4:5,则cos ∠a 的值等于( ) A.43 B.34 C. 54D.532.已知⊙O 的半径为5,A 为线段OP 的中点,若OP=10,A. ⊙O 内B. ⊙O 上C. ⊙O 外D.不确定.3.若两圆的半径分别是1厘米和5厘米,圆心距为6置关系是( )A.内切B.相交C.外切D.外离. 4.如图:A 、B 、C 是⊙O 上的点,若∠AOB=70°,则∠ACBA .70° B.50° C.40° D.35°5.若一个正多边形的一个内角是144A.12 B.11 C.10 D.96.如图:在△OAB 中,CD ∥AB ,若OC :OA=1:2,则下列结论(OA (2)AB=2CD (3)S △OAB=2S △COD.其中正确的结论是(A .(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(37.在平面直角坐标系中,以点(2,3)为圆心,2A.与X 轴相离、与Y 轴相切.B.与X 轴、Y 轴都相离.C.与X 与Y 轴相离.D. 与X 轴、Y 轴都相切.8.如图:直径为10的⊙A 经过点C (0,5),与X 交于点D ,B 是Y 轴右侧圆弧上一点,则cos ∠OBC 的值为(A.21 B.23 C.53 D.549.如图:等边△ABC 的边长为3,P 为BC 上一点,且BP=1,D 为AC上一点.若∠APD=60°,则CD 的长为( )A.23B.32C.21D.4310.如图:⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于A ,AB=OA.动点P 从点A 出发,以∏厘米/秒 的速度在⊙O 上按逆时针方向运动一周回到点A 立即 停止.当点P 运动的时间为( )秒,BP 与⊙O 相切. A.1 B.5 C.0.5或5.5 D.1或5 一、 填空11.计算:tan45°+2cos45°=A BO12.如图:⊙O 的弦AB=8,OD ⊥AB 于点D ,OD=3,则⊙O 的半径等于13.如图:是二次函数y=ax 2+bx+c 的部分图象, 由图象可知方程ax 2+bx+c=0的解是14.如图:在⊙O 中,半径OA ⊥BC ,∠AOB=50°, 则∠ADC 的度数15.纸板制作一个底面半径为9厘米,母线长为30形生日礼帽,则这个圆锥形礼帽的侧面积为 16.n 个圆中,m=三、做一做17.如图:在△ABD若∠DAC=∠B ,∠AEC=求证:AE :BD=AC :18.如图:在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已知2∠A+∠B=90°. (1)求证:BC 是⊙O 的切线. (2)若OA=6,BC=8,求BD 的长.19.在平面直角坐标系xoy 中,二次函数y=m x 2+nx-2的图象过A (-1,-2),B (1,0)两点, (1)求此二次函数解析式(2)点P (t,0)是x 轴上的一个动点,过点P 作x 轴的垂线交直线AB 于点M ,交二次函数的图象于点N ,当点M 位于点N 的上方时,直接写出t 取范围.2A20.如图:是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC 的坡度是tan ∠a=43,在与滑沙坡底C 距离200米D 处,测得坡顶A 的仰角为26.6°,且点D 、C 、B 在同一直线上,求滑坡的高AB (结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)四、解答题21.AD 为⊙O 的直径,作⊙O 的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:黄皓:(1)作OD 的垂直平分线,交⊙O 于B、C 两点.(2)连结AB 、AC ,△AB 即为所求的三角形.李明:(1)以D 为圆心,OD 长为半径作圆弧,交⊙O 于B 、C 两点. (2)连结AB ,BC ,CA ,△AB 即为所求的三角形. 已知两位同学的作法均正确,请你选择其中一种作法补全图形,并证明△AB 是等边三角形.22.已知:如图,在四边形ABCD 中,BC ﹤DC ,∠BCD=60°,∠ADC=45°,CA 平分∠BCD ,AB=AD=22,求四边形ABCD 的面积.23.将抛物丝c1:y=-3x 2+3x 沿x 轴翻折,得到抛物线c2,如图所示:(1)请直接写出抛物线c2的解析式(2)现将抛物线c1向左平移m 个单位长度,平移 后的新抛物线的顶点为M ,与x 轴的交点从左到右 依次为A 、B ;将抛物线c2向右也平移m 个单位长 度,平移后得到的新抛物线的顶点为N ,与x 轴的 交点从左到右依次为D 、E.1)用含m 的代数式表示点A 和E 的坐标.2)在平移的过程中,是否存在以点A 、M 、E 为顶点的三角形是直角三角形的情形?若存在,请求也此时m 的值:若不存在说明理由.24.在平面直角坐标系xoy 中,点B (0,3),点C 是x 轴正半轴上一点,连结BC ,过点C 作直线CP ∥y 轴.(1)若含有45°角的直角三角形,如图所示放置.其中一个顶点与O 重合,直角顶点D 在线段BC 上,另一个顶点E 在CP 上,求点C 的坐标.(2)若含30°角的直角三角形一个顶点与O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.。
2013-2014学年度第一学期期末测试(含答案)初三数学
2013-2014学年度第一学期阶段性测试九年级数学(北师大版)本试题分第1卷(选择题)和第II卷(非选择题)两部分,第1卷共2页,满分为36分;第II卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共36分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效,一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)I.点A(-3,4)所在象限为A.第一象限 B.第二象限 C.第三象限 D.第四象限2.-个正比例函数的图象经过点(2,-1),那么这个正比例函数的表达式为3.若直线则直线不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某反比例函数的图象经过点(一l,6),下列各点也在该函数图象上的是A.(一3,2)B.(3,2)C.(2,3)D.f6,1)5.如图,已知AB为圆O的直径,点C在圆O上,∠C=15o,则∠BOC的度数为A. 150B. 300C. 450D. 6006.下列二次函数的图象中,开口向上的有:A. 1个 B.2个 C.3个 D.4个7.已知二次函数的图象如图所示,则下列结论正确的是A. a>0 B.b<0C. c<0D. b2-4ac>08.如图,4为反比例函数图象上一点,ABIx轴于点召,若则后的值为A.6 B. 3 D.无法确定9.如图,在4x4的正方形网格中,cosa的值为10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间“分钟)的函数关系是A.Q=0.2tB.Q=20-0.2tC.卢0.2QD. t=20-0.2Q11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④平分弦的直径垂直于弦.其中正确的有A.4个 B.3个 C. 2个 D. 1个12.如图,的半径为2,点A的坐标为直线AB为的切线,曰为切点.则曰点的坐标为第1I卷(非选择题共84分)注意事项:1.第1I卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题,每小题3分,共1 8分j巴答案填在题中横线上.)13. cos600=14.如图,AB为的直径,点C在上,∠A=300,则∠B的度数为15.一次函数y=(k-2)x+b的图象如图所示,则K的取值范围是____.16.已知:线段AB=3cm,半径分别是lcm和4cm,则的位置关系是17.抛物线y= kx2 -3x -3的图象和x轴有交点,则K的取值范围是18.如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,使点B落在点D的位置,若B(1,2),则点D的横坐标是三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)20.(本小题满分6分)若反比例函数与一次函数,y=2x-4的图象都经过点A(a,2).(1)求a的值.(2)求反比例函数的解析式;21.(本小题满分6分)如图,已知AB是求AB的长.22.(本小题满分7分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为300,看这栋大楼底部C的俯角为600.热气球A的高度为240米,求这栋大楼的高度.23.(本小题满分7分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明;单价每上涨1元,该商品每月的销量就减少10件.(l)请写出每月销售该商品的利润y(元)与单价上涨x(元)的函数关系式:(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?24.(本小题满分8分)已知的直径AB的长为4cm,C是上一点,过点C作的切线交AB的延长线于点P,求BP的长.25.(本小题满分8分)如图,已知在(l)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径^第25题圈26.(本小题满分9分)如图,直线y= - 2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点D逆时针方向旋转900后得到△OCD.(1)填空:点C的坐标是(__ __,_ _),点D的坐标是(_ __,_ );(2)设直线CD与AB交于点M,求线段BM的长;27.(本小题满分9分)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为抛物线的对称轴l与冉线BD交于点C、与x轴交于点E.(1)求A、B、C三个点的坐标.(2)点P为线段AB上的一个动点(与点A 、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.①求证:AN=BM.②在点P九年级数学试题参考答案与评分标准运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.。
2013-2014学年上学期期末考试九年级数学试题卷
2013-2014学年上学期期末考试九年级数学试题卷一、选择题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是 ( )A 、0432=-+y x B 、ax 2+bx+c=0 C 、0212=-+xx D 、02=x2.一元二次方程x x =23的解是 ( )A .0x =B .1203x x ==,C .1210,3x x ==D .13x = 3.在Rt △ABC 中,∠C=90°,a = 4,b = 3,则sinA 的值是 ( ) A .54 B .35C .43 D .454.下列性质中正方形具有而矩形没有的是 ( ) A .对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角 5.一个家庭有两个不同年龄的孩子,两个都是女孩的概率是 ( ) A .21B .31 C .41 D . 无法确定。
6. 将二次函数2y x =的图象向下平移2个单位,再向右平移1个单位,那么得到的图象对应的函数表达式为 ( ) A .2(1)2y x =-+B. 2(1)2y x =-- C. 2(1)2y x =++ D .2(1)2y x =+-7.直线 y=-2x+6与坐标轴围成的三角形面积是 ( )A. 9B. 6C. 3D. 128.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的是 ( )A 、580(1+x )2=1185B 、1185(1-x )2=580C 、580(1-x )2=1185D 、1185(1+x )2=5809.在△ABC 中,,,,则最大边上的中线长为 ( ) AB :C :2D :以上都不对10=二. 填空(每小题3分,共30分)11.把方程2(x -2)2=x(x -1)化为一元二次方程的一般形式为 . 12.顺次连接等腰梯形四边中点所得的四边形是___________13.二次函数3412+--=x x y 的图象的顶点坐标是______________。
2013-2014学年度九年级数学第一学期期末模拟考试试题 (新人教版 第29套)
学校: 班级: 姓名: 座号: (密封线内请不要答题) …………⊙…………密…………⊙…………封…………⊙…………装…………⊙…………订…………⊙…………线…………⊙………永定县仙师中学2013~2014学年度第一学期期末模拟考试九年级数学试题(满分:150分 考试时间:120分钟)一个符合题意.)A .0x ≥B .2x ≠C .0x >D .0x ≥且2x ≠ 2.下列计算正确的是( )A 2=±B 1=C 1=D 2 3.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 4.下列一元二次方程有两个相等实数根的是( )A .210x +=B .220x x -=C . 2(3)4x +=D .(1)(2)0x x -+=5.若关于x 的一元二次方程为250(0)ax bx a ++=≠的解是1x =,则2014a b --=( ) A .2019 B .2015 C .2013 D .20096.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( ) A .23 B .49 C .12 D .197.如图,已知AB ,CD 是⊙O 的两条直径,∠ABC =28°, 那么∠BAD =( ) A .28° B .42° C .56° D .84°8.已知⊙O 1的半径是3cm ,⊙O 2的半径是2cm ,O 1O 2, 则两圆的位置关系是( )A .相交B .相离C .内切D .外切9.二次函数2y ax bx c =++图象上部分点的坐标满足下表:A .(-3,-3)B .(-2,-2)C .(-1,-3)D .(0,-6)10.二次函数2yax bx c =++的图象如图所示,对于下列结论:①0a <;②0b <;③0c >;④20a b +=;⑤0a b c ++<. 其中正确的个数是( )A .1个B .2个C .3个D .4个 二、填空题(本大题共7小题,每小题3分,共21分)11.计算:2= .12.孔明同学在解一元二次方程20x bx c -+=时,正确解得方程的两根11x =,22x =,则c 的值为 .13.写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲国家的概率是 .14.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是 _______ .15.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),(第7题图)(第10题图) 九年级数学试题 第1页(共8页) 九年级数学试题 第2页(共8页)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相 切,另一边与杯口外沿两个交点处的读数恰好是3和9, 那么玻璃杯的杯口外沿半径为 _____ 厘米. 16.将二次函数2(2)3y x =-+的图象向右平移2个单位,再向下平移2个单位,所得二次函数的解析式为 ______ ___ .17.对于任意非零实数a 、b ,定义运算:“⊕”,使下列式子成立:3122⊕=-,3212⊕=,21(2)510-⊕=,215(2)10⊕-=-,…,则a b ⊕= . 三、解答题(本大题共8小题,共89分) 18.(本题满分10分)(1)计算:020141π-+-;(2)解方程:221x x -=.19.(本题满分8分)先化简,再求值:83111x x x x +⎛⎫--÷⎪++⎝⎭,其中3x =20.(本题满分10分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1,2,3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时 重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果; (2)求每次游戏结束得到的一组数恰好是方程2320x x -+=的解的概率.21.(本题满分10分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向上平移3个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点A 1的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的△A 2B 2C 2,并求点B 所经过的路径长.(第20题图)(第21题图)九年级数学试题 第3页(共8页)学校: 班级: 姓名: 座号: (密封线内请不要答题) ………⊙…………密…………⊙…………封…………⊙…………装…………⊙…………订…………⊙…………线…………⊙………22.(本题满分12分)如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,若AC =FC . (1)求证:AC 是⊙O 的切线:(2)若BF =8,DFO 的半径r .23.(本题满分12分)某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y (个)与销售单价x (元/个)之间成一次函数关系,如下表:(1)求y 与x (2)若该商品的销售单价在45元~80元之间浮动,①销售单价定为多少元时,销售利润最大?此时销售量为多少?②商场想要在这段时间内获得4 550元的销售利润,销售单价应定为多少元?(第22题图)九年级数学试题 第4页(共8页) 九年级数学试题 第5页(共8页)24.(本题满分13分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+ABCB,过程如下:过点C作CE⊥CB于点C,与MN交于点E,∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BDCD= ,CB= .25.(本题满分14分)已知二次函数2221y x mx m=-+-.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当2m=时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.(第24题图)(第25题图)第6页(共8页)九年级数学试题第7页(共8页)永定县仙师中学2013~2014学年度第一学期期末模拟考试九年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分.)二、填空题(本大题共7小题,每小题3分,共21分)11.2. 12.2. 13.12. 14.(3,-4). 15.134. 16.(y x =22三、解答题(本大题共8小题,共89分)18.(1)解:原式11π=-+-, (2)解:22x x -+π=-; 2(1)x -21=19.解:原式=== =20方程2320x x -+=的解的为(1,2),(2,1)共2种,则P (是方程的解)=29.21.解:(1)如图所示,△A 1B 1C 1就是所求画的三角形, A 1的坐标为:(﹣3,6);(2)如图所示,△A 2B 2C 2就是所求画的三角形,∵BO ==∴2BB l=.即点B. 22.(1)证明:连接OA 、OD ,∵D 为弧BE 的中点,∴OD ⊥BC ,∠DOF =90°, ∴∠D +∠OFD =90°, ∵AC =FC ,OA =OD ,∴∠CAF =∠CFA ,∠OAD =∠D , ∵∠CFA =∠OFD ,∴∠OAD +∠CAF =90°, ∴OA ⊥AC ,∴AC 是⊙O(2)解:∵⊙O ∴OD =r ,OF =8﹣在Rt△DOF 中,解得:16r =,r 当2r =时,2<∴⊙O 的半径r 23.解:(1)设y kx b =+由题意得:3019050150k b k b +=⎧⎨+=⎩,解得2250k b =-⎧⎨=⎩,∴2250y x =-+; (2)设该商品的利润为W 元.则(25)(25)(2250)W x y x x =-⋅=--+ 即22(75)5000W x =--+. ∴当x =75时,W 最大,此时销量为y =﹣2×75+250=100(个).(3)依题意,得:(25)(2250)4550x x --+=,解得:160x =,290x =.∵4580x << ∴60x =. 答:销售单价应定在60元.24.解:(1)如图(2):A B B D-=;如图(3):B D A B -.证明:过点C 作CE ⊥CB 于点C ,与MN 交于点E , ∵∠ACD =90°,∴∠ACE =90°﹣∠DCE ,∠BCD =90°﹣∠ECD ,∴∠BCD =∠ACE . ∵DB ⊥MN ,∴∠CAE =90°﹣∠AFC ,∠D =90°﹣∠BFD , ∵∠AFC =∠BFD ,∴∠CAE =∠D , 又∵AC =DC ,∴△ACE ≌△DCB , ∴AE =DB ,CE =CB ,∴△ECB 为等腰直角三角形,∴BE CB . 又∵BE =AB ﹣AE ,∴BE =AB ﹣BD ,∴AB BD -.(2)CD =2,但是CB 11.MN 在绕点A 旋转过程中,这个的意思并没有指明是哪种情况,若是第1∴△ECB ∴∠AEC 过D 作DH ⊥CB∴BD ,∴直角△ECB∴CD =2DH =2,CH解法类似上面,CD =2,但是CB 1.25.解:(1)∵二次函数的图象经过坐标原点O (0,0),∴代入二次函数2221y x mx m =-+-,得出:21=0m -, 解得:1m =±,∴二次函数的解析式为:22y x x =-或22y x x =+; (2)∵2m =,∴二次函数的解析式为:2243(2)1y x x x =-+=-+, ∴抛物线的顶点为:D (2,﹣1),当0x =时,3y =, ∴C 点坐标为(0,3);(3)当P 、C 、D 三点共线时PC +PD 最短,∵C (0,3),D (2,﹣1),∴直线CD 的解析式为:23y x =-+, 当0y =时,32x =, ∴P 点的坐标为302⎛⎫⎪⎝⎭,时,PC +PD 最短.解法二:过点D 作DE ⊥y 轴于点E ,∵PO ∥DE ,∴PO CODE CE =, ∴23342DE CO PO CE ⋅⨯===,∴P 点的坐标为302⎛⎫⎪⎝⎭,时,PC +PD 最短.(第25题图)。
2013-2014学年上学期期末质量调研九年级数学试卷
2013-2014学年上学期期末质量调研九年级数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. 估计实数32在( )A.1至2之间B.2至3之间C.3至4之间D.4至5之间 2. 下列图形中,是.中心对称图形但不是..轴对称图形的是( ) 3.下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( ) A.012=+xB.0122=++x xC.0322=++x xD.0322=-+x x4. 某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A .200(1-a%)2=148 B. 200(1+a%)2=148 C.200(1-2a%)=148 D.200(1-a 2%)=148 5. 用配方法解一元二次方程0542=--x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x 6.某企业1~5月份利润的变化情况图所示,以下说法与图中反 映的信息相符的是( )A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份利润的的中位数为120万元 7.反比例函数y=xk(k>0)在第一象限内的图象如图,点M 是图象上一 点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( ) A .1 B . 2 C .4 D8.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是⌒CmA 上异于点C 、A的一点,若∠ABO =32°,则∠ADC 的度数是( )A .32° B.58° C .29° D .64°9. 如果我们用“♀”、“♂”来定义新运算:对于任意实数a ,b ,都有a ♀b= a ,a ♂b= b ,例如3♀2=3,3♂2=2。
2013-2014学年浙江省衢州市常山县九年级(上)期末数学试卷
2013-2014学年浙江省衢州市常山县九年级(上)期末数学试卷一.选择题(每小题3分,共30分)1.(3分)(2014•常州)已知反比例函数y=的图象经过点P (﹣1,2),则这个函数的图象位于( )2.(3分)已知,则代数式的值为( ).CD .3.(3分)如图的空心钢管的主视图画法正确的是( ).CD.4.(3分)江堤的横断面如图,堤高BC=10米,迎水坡AB 的坡比是1:,则堤脚AC 的长是( )米米D26.(3分)(2007•海淀区二模)小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若有一人与另外两人不同,则此人最后出场.三人同时出手一次,小明最后出场比赛的概率为( ).CD .7.(3分)如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )=28.(3分)如图,经过原点的⊙P与两坐标轴分别交于点A(2,0)和点B(0,2),C是优弧上的任意一点(不与点O,B重合),则tan∠BCO的值为().C D.9.(3分)如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠AMN=60°,则下列结论不正确的是()AM=10.(3分)如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是()二.填空题(本题有6小题,每小题4分,共24分)11.(4分)(2003•汕头)已知⊙O1与⊙O2相切,⊙O1的半径为5cm,圆心距O1O2=3cm,则⊙O2的半径是_________.12.(4分)请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2).你写出的函数表达式是_________.13.(4分)用半径为30cm,圆心角为120°的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为_________cm.14.(4分)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=_________cm.15.(4分)(2011•苏州)如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC 与DE相交于点F,则△AEF的面积等于_________(结果保留根号).16.(4分)已知Rt△ABC,∠B=60°,AB=1,把斜边BC放在直角坐标系的x轴上,且顶点A在反比例函数y=的图象上,则点C的坐标为_________.三.解答题(本题有8小题,共66分,请务必写出解答过程)17.(6分)计算:﹣3sin60°﹣cos30°+2tan45°.18.(6分)(2006•佛山)已知:Rt△OAB在直角坐标系中的位置如图所示,P(3,4)为OB的中点,点C为折线OAB上的动点,线段PC把Rt△OAB分割成两部分.问:点C在什么位置时,分割得到的三角形与Rt△OAB相似(注:在图上画出所有符合要求的线段PC,并求出相应的点C的坐标).19.(6分)甲,乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为﹣7,﹣1,3.乙袋中的三张卡片上所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上的数值,把x,y分别作为点P的横坐标和纵坐标.(1)请用列表法或画树状图的方法写出点P(x,y)的所有情况;(2)求点P落在双曲线y=﹣上的概率.20.(8分)如图,P是⊙O的直径AB延长线上一点,点C在⊙O上,AC=PC,∠ACP=120°.(1)求证:CP是⊙O的切线;(2)若AB=4cm,求图中阴影部分的面积.21.(8分)为倡导健康出行,衢州市道路运输管理局自2013年11月25日起向市民提供一种公共自行车作为代步工具,如图1所示是一辆自行车的实物图.其中AC=45cm,CD=60cm,AC⊥CD,∠CAB=76°,AD∥BC,如图2.求(提示:过点B作BH⊥AC于点H,结果精确到1cm.参考数据:sin76°≈0.96,cos76°≈0.24,tan76≈4.00)车链横档AB的长.22.(10分)(2010•青岛)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)23.(10分)如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=时,求a的值.24.(12分)(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.(1)填空:点D的坐标为_________,点E的坐标为_________.(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.②运动停止时,求抛物线的顶点坐标.2013-2014学年浙江省衢州市常山县九年级(上)期末数学试卷参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)(2014•常州)已知反比例函数y=的图象经过点P (﹣1,2),则这个函数的图象位于( )2.(3分)已知,则代数式的值为( ).CD .解:∵=a=∴=.3.(3分)如图的空心钢管的主视图画法正确的是( ).CD .,4.(3分)江堤的横断面如图,堤高BC=10米,迎水坡AB的坡比是1:,则堤脚AC的长是()D米米解:根据题意得::AC=(米)26.(3分)(2007•海淀区二模)小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若有一人与另外两人不同,则此人最后出场.三人同时出手一次,小明最后出场比赛的概率为().C D.概率是,故选7.(3分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()=2,宽为a∴,8.(3分)如图,经过原点的⊙P与两坐标轴分别交于点A(2,0)和点B(0,2),C是优弧上的任意一点(不与点O,B重合),则tan∠BCO的值为().C D.A==BCO= A==,BCO=.9.(3分)如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠AMN=60°,则下列结论不正确的是()AM=AM=,,所以的长为或,MN==AMN=,即AM==ONB=,即BN=,AM=的长为或10.(3分)如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是()不正确:由图象可知,﹣二.填空题(本题有6小题,每小题4分,共24分)11.(4分)(2003•汕头)已知⊙O1与⊙O2相切,⊙O1的半径为5cm,圆心距O1O2=3cm,则⊙O2的半径是2cm或8cm.12.(4分)请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2).你写出的函数表达式是y=﹣x2+2.13.(4分)用半径为30cm,圆心角为120°的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为10cm.解:扇形的弧长是:14.(4分)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=4cm.×=2(OE=CD=2,AB=4cm==2(15.(4分)(2011•苏州)如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).∴,,,是面积为的等边三角形,∴,CM=AE=x+=××=16.(4分)已知Rt△ABC,∠B=60°,AB=1,把斜边BC放在直角坐标系的x轴上,且顶点A在反比例函数y=的图象上,则点C的坐标为(,0),(,0),(﹣,0),(﹣,0).BD=,上,时,AD=CD=,=BD=,,上,时,AD=CD=,OC=OD+CD=2+=BD=,,上,时,)AD=CD=,=的坐标为(﹣,BD=,,上,时,)AD=CD=,OC=OD+CD=2+=的坐标为(﹣,,,,,三.解答题(本题有8小题,共66分,请务必写出解答过程)17.(6分)计算:﹣3sin60°﹣cos30°+2tan45°.﹣×﹣﹣18.(6分)(2006•佛山)已知:Rt△OAB在直角坐标系中的位置如图所示,P(3,4)为OB的中点,点C为折线OAB上的动点,线段PC把Rt△OAB分割成两部分.问:点C在什么位置时,分割得到的三角形与Rt△OAB相似(注:在图上画出所有符合要求的线段PC,并求出相应的点C的坐标).,∴.∴,∴.19.(6分)甲,乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为﹣7,﹣1,3.乙袋中的三张卡片上所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上的数值,把x,y分别作为点P的横坐标和纵坐标.(1)请用列表法或画树状图的方法写出点P(x,y)的所有情况;(2)求点P落在双曲线y=﹣上的概率.上的点有:.20.(8分)如图,P是⊙O的直径AB延长线上一点,点C在⊙O上,AC=PC,∠ACP=120°.(1)求证:CP是⊙O的切线;(2)若AB=4cm,求图中阴影部分的面积.P=AB=2cmCP==2,=CP=×2(=﹣21.(8分)为倡导健康出行,衢州市道路运输管理局自2013年11月25日起向市民提供一种公共自行车作为代步工具,如图1所示是一辆自行车的实物图.其中AC=45cm,CD=60cm,AC⊥CD,∠CAB=76°,AD∥BC,如图2.求(提示:过点B作BH⊥AC于点H,结果精确到1cm.参考数据:sin76°≈0.96,cos76°≈0.24,tan76≈4.00)车链横档AB的长.ABH=,ACB==ABH=CAB===ACB=,=x=AH=AB==的长为22.(10分)(2010•青岛)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)23.(10分)如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC 于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=时,求a的值.,可以得到=∴,∴,EC=EC=,DE=∴,∴,PAE=,可得:∴=2==2 =224.(12分)(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.(1)填空:点D的坐标为(﹣1,3),点E的坐标为(﹣3,2).(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.②运动停止时,求抛物线的顶点坐标.总共历时秒,≤;当<,)个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标.则∴t=.时,如图(BCO==2=2∵CC′=t,∴FC′=2t.∴S△CC′F=CC′•FC′=t×t=5t2GH=GH==t∴S梯形CC′D′G=(t﹣+t)=5t﹣t=.时,如图(=,∴CB′=t﹣,∴B′N=2CB′=t﹣=N=E N=(∴S△MNE′=(﹣t)•(﹣t)=5t2﹣15t+∴S五边形B′C′D′MN=S正方形B′C′D′E′﹣S△MNE′=(5t2﹣15t+)=﹣5t2+15t﹣时,时,+15t∴∴==,)个单位.∵=原抛物线顶点坐标为(,运动停止时,抛物线的顶点坐标为(,。
立达中学2013-2014年度第一学期初三数学期末试题及答案
苏州立达中学校 2013–2014年度第 一 学 期 期末考试试卷初三数学 一、选择题(请把答案写在答卷表中,每题3分,共30分)1.下列各组二次根式为同类二次根式的是 ( ▲ )A .a 与aB .a a 2与aa12C .a 2与a 12D . 33a 与43a2.下列统计量中,不能..反映一名学生在9年级第一学期的数学成绩稳定程度的是 ( ▲ ) A .中位数 B .方差 C .标准差 D .极差 3. 如图,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB =4,CD =2,AB 的弦心距等于1,那么两个同心圆的半径之比为( ▲ )A .3:2B .5:2C .5:2D .5:44.用半径为30cm ,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的底面半径为( ▲ )A .10cmB .30cmC .45cmD .300cm5.已知二次函数12)1(2+--=x x a y 的图像与x 轴有两个交点,则a 的取值范围是( ▲ )A .2<aB .2>aC .2<a 且1≠aD .2-<a6.已知两圆的半径分别为1和2,圆心距是d ,若两圆有公共点,则下列结论正确的是( ▲ )A .d =1B .d =3C .1<d <3D .13d ≤≤7.二次函数2y ax bx c =++的图象如图所示,则直线y bx c =+的图象不经过 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8.某电视机厂计划用两年的时间把某型号的电视机成本降低36%,若每年下降的百分数相同,则这个百分数是( ▲ )A .10%B .18%C .20%D .60%9.已知在平面直角坐标系中,⊙P 的圆心坐标为(4,5),半径为3个单位长度,把⊙P 沿水平方向向左平移d 个单位长度后恰好与y 轴相切,则d 的值是 ( ▲ ) A .1B .2C .2或8D .1或710.如图,电子屏幕上有一正六边形ABCDEF ,点P 沿直线AB 从右向左移动,当出现:点P 与正六边形六个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB 上会发出警报的点P 有y( ▲ )A .12个B .11个C .10个D .9个 二、填空题(请把答案写在答卷中,每小题3分,共24分) 11.函数11-+=x x y 的自变量x 的取值范围是 ▲ ; 12.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则=αtan ▲ ; 13.设一组数据12,n x x x 的方差为S 2,将每个数据都减去5,则新数据的方差为 ▲ ;14. 抛物线y =(k +1)x 2+k 2-9开口向下,且经过原点,则k = ▲ ; 15.抛物线1)1(32--=x y 不经过...的象限是 ▲ ; 16.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm ,则此光盘的直径..是 ▲ cm ;17.左图表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10cm 。
2013—2014学年上学期期末考试九年级数学试题
2013—2014学年上学期期末考试九年级数学试题(分数:120分 时间:120分钟)一.选择题(每小题3分,共24分)1. 下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为( ) A.21 B.31 C.32 D. 41是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( )A .1B .2C .1或2D .04.如图,在直角梯形ABCD 中,AD BC ∥,90C = ∠,且AB AD BC >+,AB 是⊙O 的直径,则直线CD 与⊙O 的位置关系为( )A .相离B .相切C .相交D .无法确定(第4题图) (第5题图) (第6题图) (第7题图) 5.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120°,则r 与R 之间的关系是( )A .R =2rB .R =rC .R =3rD .R =4r6.如图所示的向日葵图案是用等分圆周画出的,则⊙O 与半圆P 的半径的比为( )A .5﹕3B .4﹕1C .3﹕1D .2﹕17.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则 ∠DFE 的度数是( )A .55°B .60°C .65°D .70°8.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为( ).A .1个B .2个C .3个D .4个(第8题) (第16 题) 二 .填空题(每小题3分,共24分)9.在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b +1),则点(a,b )在第 象限 .10.x 的取值范围是 . 11.若关于x 的一元二次方程0)2(32=--+m x x 没有实数根,则m 的取值范围是__________.12.若⊙O 1和⊙O 2相交于点A 、B ,且AB =24,⊙O 1的半径为13,⊙O 2的半径为15,则O 1O 2的长为_________.13.如图,这是中央电视台“曲苑杂坛”中的一副图案,它是一扇形图形,其中AOB ∠为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为 .14. 在一所4000人的学校随机调查了100人,其中有24人上学之前没有吃早饭,则在这所学校里随便问一个人,上学之前吃过早餐的概率是 .15.一个直角三角形的两条边的长是方程x 2-14x +48=0的两个根,则此直角三角形的周长为 .16.如图,将一个含有45°角的三角尺绕顶点C 顺时针旋转135°后,顶点A 所经过的路线与顶点B 所经过的路线长的比值为 .三、解答题(共72分)17.(每小题4分,共8分)(1)、化简3321825038a a a a a a -+ (2)、解方程:4x 2-4x +1=x 2+6x +918. (本题满分8分)如图所示,已知△ABC 的三个顶点的坐标分别为A(-2,3), B(-6,0),C(-1,0).(1)请直接写出点A 关于y 轴对称的点的坐标;A C O B(第13题)(2)将△ABC 绕坐标原点O 顺时针旋转90°,画出图形,直接写出点B 的对应点的坐标;(3)请直接写出:以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标.19. (本题满分8分) 已知:关于x 的方程2210x kx +-=⑴求证:方程有两个不相等的实数根;⑵若方程的一个根是-1,求另一个根及k 值20.(本题满分8分)如图,在△ABC 中,∠C=90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D 。
肥城市2013—2014学年度上学期期末考试初三数学试题2(青岛版)含答案
肥城市2013—2014学年度上学期期末考试初三数学试题(青岛版)一.选择题(共15小题)1.(2013•葫芦岛)装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA1=4时,BB1=()A.10 B.8C.6D.42.(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.3.(2013•大庆)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形4.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.85.(2011•淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B.(25+25)cm2C.(25+)cm2D.(25+)cm26.(2013•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.20127.(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°11.(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)12.(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.13.(2013•乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣214.(2013•菏泽)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1D.215.(2008•咸宁)如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③二.填空题(共5小题)16.(2007•乌兰察布)如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是_________.17.(2011•长春)如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为_________度.18.(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_________.19.(2013•崇左)崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度是_________米.20.(2010•双鸭山)如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n个正方形对角线交点M n的坐标为_________.三.解答题(共6小题)21.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.22.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.23.(2013•达州)已知反比例函数的图象与一次函数y=k2x+m的图象交于A(﹣1,a)、B(,﹣3)两点,连结AO.(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标.24.(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25.(2004•内江)某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?26.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.初三上学期期末考试数学试题(青岛版)参考答案与试题解析一.选择题(共15小题)1.(2013•葫芦岛)装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA1=4时,BB1=()A.10 B.8C.6D.4考点:梯形;矩形的性质.专题:增长率问题.分析:设A1B1=a,则根据长方形和梯形的面积公式得出6a=(4+BB1)•a,求出即可.解答:解:设A1B1=a,则根据面积公式得出:6a=(4+BB1)•a,BB1=8,故选B.点评:本题考查了长方形和梯形的面积的应用,关键是能根据题意得出方程.2.(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2013•大庆)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.专题:压轴题.分析:根据平行四边形、菱形的判定与性质分别判断得出即可.解答:解:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误;故选C.点评:此题主要考查了菱形的判定以及矩形和正方形的判定,熟练掌握相关判定是解题关键.4.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.5.(2011•淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B.(25+25)cm2C.(25+)cm2D.(25+)cm2考点:解直角三角形;旋转的性质.专题:计算题.分析:过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=10cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.解答:解:过G点作GH⊥AC于H,如图,∠GAC=60°,∠GCA=45°,GC=10cm,在Rt△GCH中,GH=CH=GC=5cm,在Rt△AGH中,AH=GH=cm,∴AC=(5+)cm,∴两个三角形重叠(阴影)部分的面积=•GH•AC=×5×(5+)=(25+)cm2.故选C.点评:本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.6.(2013•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012考点:一元二次方程的解.分析:将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.解答:解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2013﹣a﹣b=2013﹣(a+b)=2013﹣(﹣5)=2018.故选A.点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.7.(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5考点:根的判别式.分析:由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.解答:解:(1)当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;(2)当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.所以a的取值范围为a≥1.故选A.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.专题:压轴题.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°考点:切线的性质;圆周角定理.专题:计算题;压轴题.分析:先连接BC,由于AB 是直径,可知∠BCA=90°,而∠A=25°,易求∠CBA,又DC是切线,利用弦切角定理可知∠DCB=∠A=25°,再利用三角形外角性质可求∠D.解答:解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选C.点评:本题考查了直径所对的圆周角等于90°、弦切角定理、三角形外角性质.解题的关键是连接BC,构造直角三角形ABC.11.(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)考点:二次函数综合题.专题:综合题.分析:首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解答:解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.点评:本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可.12.(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.考点:反比例函数系数k的几何意义;等边三角形的性质.专题:压轴题.分析:如图,根据反比例函数系数k的几何意义求得点P的坐标,则易求PD=4.然后通过等边三角形的性质易求线段AD=,所以S△POA=OA•PD=××4=.解答:解:如图,∵点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,∴16=a2,且a>0,解得,a=4,∴PD=4.∵△PAB是等边三角形,∴AD=.∴OA=4﹣AD=,∴S△POA=OA•PD=××4=.故选D.点评:本题考查了反比例函数系数k的几何意义,等边三角形的性质.等边三角形具有等腰三角形“三合一”的性质.13.(2013•乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣2考点:反比例函数综合题.专题:计算题;压轴题.分析:过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y=上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.解答:解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,∴S△BFO:S△OEA=2:1,∵A在反比例函数y=上,∴S△OEA=1,∴S△BFO=2,则k=﹣4.故选B点评:此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.14.(2013•菏泽)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1D.2考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:根据抛物线开口向上a>0,抛物线开口向下a<0,然后利用抛物线的对称轴或与y轴的交点进行判断,从而得解.解答:解:由图可知,第1、2两个图形的对称轴为y轴,所以x=﹣=0,解得b=0,与b<0相矛盾;第3个图,抛物线开口向上,a>0,经过坐标原点,a2﹣1=0,解得a1=1,a2=﹣1(舍去),对称轴x=﹣=﹣>0,所以b<0,符合题意,故a=1,第4个图,抛物线开口向下,a<0,经过坐标原点,a2﹣1=0,解得a1=1(舍去),a2=﹣1,对称轴x=﹣=﹣>0,所以b>0,不符合题意,综上所述,a的值等于1.故选C.点评:本题考查了二次函数y=ax2+bx+c图象与系数的关系,a的符号由抛物线开口方向确定,难点在于利用图象的对称轴、与y轴的交点坐标判断出b的正负情况,然后与题目已知条件b<0比较.15.(2008•咸宁)如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③考点:相似三角形的判定;全等三角形的判定;勾股定理;旋转的性质.专题:综合题;压轴题.分析:由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.解答:解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,∴AD=AF,∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=45°,∴∠DAE=∠FAE,AE为△AED和△AEF的公共边,∴△AED≌△AEF∴ED=FE在Rt△ABC中,∠ABC+∠ACB=90°,又∵∠ACB=∠ABF,∴∠ABC+∠ABF=90°即∠FBE=90°,∴在Rt△FBE中BE2+BF2=FE2,∴BE+DC=DE③显然是不成立的.故正确的有①④,不正确的有③,②不一定正确.故选B点评:本题考查的知识点较多,由图形的旋转变换、图形的全等、图形的相似、勾股定理等知识点,通过判断可知①④是正确的.二.填空题(共5小题)16.(2007•乌兰察布)如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是12.考点:菱形的性质.专题:计算题.分析:易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.解答:解:设AP与EF相交于O点.∵ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴AEFP是平行四边形.∴S△POF=S△AOE.∴阴影部分的面积就是△ABC的面积,△ABC的面积=菱形的面积=×(×6×8)=12,则阴影部分的面积是12.故答案为12.点评:此题的关键是得出阴影部分的面积就是△ABC的面积,再利用菱形的面积公式计算.17.(2011•长春)如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45度.考点:圆周角定理.专题:计算题.分析:∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.解答:解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.点评:本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.18.(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.考点:二次函数图象与几何变换.专题:压轴题.分析:根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.解答:解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.点评:此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.19.(2013•崇左)崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度是4米.考点:二次函数的应用.分析:根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.解答:解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故答案为:4.点评:本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.20.(2010•双鸭山)如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n个正方形对角线交点M n的坐标为(,).考点:正方形的性质;坐标与图形性质.专题:压轴题;规律型.分析:先观察图形,了解正方形的性质,例如正方形对角线的性质,然后列出几个M点的坐标,推出公式.解答:解:设正方形的边长为1,则正方形四个顶点坐标为O(0,0),C(0,1),B1(1,1),A1(1,0);根据正方形对角线定理得M1的坐标为();同理得M2的坐标为(,);M3的坐标为(,),…,依此类推:M n坐标为(,)=(,)点评:准确掌握正方形的性质,正确认识坐标图.三.解答题(共6小题)21.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.考点:切线的判定;相似三角形的判定与性质.专题:压轴题.分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.解答:解:(1)∵AB是⊙O的直径,∴∠ADB=∠ADC=90°,∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC,∴∠BAC=∠ADC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)∵△ADC∽△BAC(已证),∴=,即AC2=BC×CD=36,解得:AC=6,在Rt△ACD中,AD==2,∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,∴CA=CF=6,∴DF=CA﹣CD=2,在Rt△AFD中,AF==2.点评:本题考查了切线的判定、相似三角形的判定与性质,解答本题的关键是熟练掌握切线的判定定理、相似三角形的性质,勾股定理的表达式.22.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.考点:解一元二次方程-配方法.分析:根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.解答:解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.点评:此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.23.(2013•达州)已知反比例函数的图象与一次函数y=k2x+m的图象交于A(﹣1,a)、B(,﹣3)两点,连结AO.(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)将点A(﹣1,a)、B(,﹣3)代入反比例函数中得:﹣3×=(﹣1)×a=k1,可求k1、a;再将点A(﹣1,a)、B(,﹣3)代入y2=k2x+m中,列方程组求k2、m即可;(2)分三种情况:①OA=OC;②AO=AC;③CA=CO;讨论可得点C的坐标.解答:解:(1)∵反比例函数的图象经过B(,﹣3),∴k1=3××(﹣3)=﹣3,∵反比例函数的图象经过点A(﹣1,a),∴a=1.由直线y2=k2x+m过点A,B得:,解得.∴反比例函数关系式为y=﹣,一次函数关系式为y=﹣3x﹣2;(2)点C在y轴上,且与点A、O构成等腰三角形,点C的坐标为:(0,﹣)或(0,)或(0,2)或(0,1).如图,线段OA的垂直平分线与y轴的交点,有1个;以点A为圆心、AO长为半径的圆与y轴的交点,有1个;以点O为圆心、OA长为半径的圆与y轴的交点,有2个.以上四个点为所求.点评:此题综合考查了待定系数法求函数解析式的方法、等腰三角形的性质等知识,注意分类思想的运用.24.(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.考点:平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).分析:(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG 的长即可.解答:(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.点评:此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.25.(2004•内江)某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?考点:一元二次方程的应用.专题:增长率问题;销售问题;压轴题.分析:(1)直接根据这样每天所获得的利润恰是销售收入的进行计算;(2)设第二天和第三天销售收入平均每天的增长率是m,则根据第一天的4万元增长到6.25万元列方程求解.解答:解:(1)1.25÷=6.25(万元)所以第三天的销售收入是6.25万元;(2)设第二天和第三天销售收入平均每天的增长率是m,则4(1+m)2=6.25.解得m1=25%,m2=﹣2.25%(不合题意舍去).答:第二天和第三天销售收入平均每天的增长率约是25%.点评:理解每天的销售收入和利润之间的关系,能够正确运用增长率表示每一天的销售收入.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.26.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.。
肥城市2013---2014学年度上学期期末考试初三数学试题(含答案)
肥城市2013---2014学年度上学期期末考试初三数学试题一.选择题(共15小题).C D.DF3.(2009•绍兴)如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为()B C.对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,求n的值.6题D..CD .①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等; ③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧. 10.(2010•仙桃)如图,半圆O 的直径AB=7,两弦AC 、BD 相交于点E ,弦CD=,且BD=5,则DE 等于( )D所在圆的圆心分别为A 、O .则图中阴影部分的面积是( ) . CD .10题 11题 13题 12题 213.(2012•岳阳)如图,一次函数y 1=x+1的图象与反比例函数y 2=的图象交于A 、B 两点,过点作AC ⊥x 轴于点14.(2008•呼和浩特)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则直线y=ax+b 与反比例函数y=在同一坐标系内的大致图象为( )B.15.(2005•资阳)已知二次函数y=ax +bx+c (a ≠0)的图象如图所示,则下列结论16.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是_________.17.(2003•广西)如图,CD是⊙O的直径,弦AB⊥CD,P为垂足,AB=8cm,PD=2cm,则CP=_____cm.18.方程x2﹣3x+1=0中的两根分别为a、b,则代数式a2﹣4a﹣b的值为_________.19.(2012•金堂县一模)如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为s2,s3,…,s n(n为正整数),那么第9个正方形的面积S9=_________.20.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.三.解答题(共6小题)21.(2012•雅安)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.22.(2013•河南)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.23.(2013•枣庄)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.24.西瓜经营户以2元/千克的价格购进一批小型西瓜,以4元/千克的价格出售.每天可售出100千克,为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可以多售出20千克.另外,每天的房租等固定成本共50元.(1)该经营户要想每天盈利250元,应将每千克小型西瓜的售价降低多少元?(2)该经营户能否获得再大一些的盈利?若能,西瓜的售价定为多少?若不能,请说明理由.25.(2013•梅州)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB与点E,且CF=AE,(1)求证:四边形BECF是菱形;(2)若四边形BECF为正方形,求∠A的度数.26.(2012•宁德)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________);(2)若抛物线y=﹣x2+bx+c经过A、B两点,求这条抛物线的解析式?(3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD 相似?若存在,求出点M的横坐标;若不存在,说明理由;(4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值.肥城市2013---2014学年度上学期期末考试初三数学试题参考答案与试题解析一.选择题(共15小题).C D.2.(2011•达州)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()DF==DF4.(2006•湖北)在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为().C D.5.(2011•绍兴)李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x 轴交于点N(n,0),如图3.当m=时,求n的值.D.,﹣,=,即6.(2012•宁德质检)如图,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜边AC平均分成n段,以每段为对角线作边与AB、BC平行的小矩形,则这些小矩形的面积和是().C D.=,宽为,•=,•.222222229.(2012•攀枝花)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.10.(2010•仙桃)如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE等于().C D.=x+,﹣<﹣2x=2,.11.(2003•滨州)如图,等腰梯形ABCD的上底BC长为1,弧OB、弧OD、弧BD的半径相等,弧OB、弧BD 所在圆的圆心分别为A、O.则图中阴影部分的面积是().C D.×××=12.(2013•株洲)二次函数y=2x2+mx+8的图象如图所示,则m的值是()13.(2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()x+1=,=×14.(2008•呼和浩特)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为().C D.中的系数符号,判断图象的位置.经历:图象位置﹣系数符号﹣图象位置.<过二、四象限.故选15.(2005•资阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0;②a﹣b+c<0;③b+2a <0;④abc>0,其中正确的个数是()<二.填空题(共5小题)16.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是①②④.两点都在x==x点在=k﹣,x,×AC==点在﹣•﹣=17.(2003•广西)如图,CD是⊙O的直径,弦AB⊥CD,P为垂足,AB=8cm,PD=2cm,则CP=8cm.18.方程x2﹣3x+1=0中的两根分别为a、b,则代数式a2﹣4a﹣b的值为﹣4.19.(2012•金堂县一模)如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为s2,s3,…,s n(n为正整数),那么第9个正方形的面积S9=256.,对角线长为,以,第820.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).三.解答题(共6小题)21.(2012•宁德)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A(6,0)、B(0,﹣8);(2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是y=﹣x2+x﹣8;(3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD 相似?若存在,求出点M的横坐标;若不存在,说明理由;(4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值.OA=x﹣m﹣m上方,=,则,即下方,=,则,即或,﹣,﹣,﹣p﹣+分为①如图,当PH=﹣•p p+8•p p+8≤时,取最大值,且最大值为﹣+p p(﹣p p•(﹣+•PH=p p+8(﹣﹣•p p+8时,取得最大值,最大值为22.(2012•雅安)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.是平行四边形,PBA=BP=23.(2013•河南)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.()BE=,)k=b=y=24.(2013•枣庄)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.=AC=×DC=××﹣=π25.西瓜经营户以2元/千克的价格购进一批小型西瓜,以4元/千克的价格出售.每天可售出100千克,为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可以多售出20千克.另外,每天的房租等固定成本共50元.(1)该经营户要想每天盈利250元,应将每千克小型西瓜的售价降低多少元?(2)该经营户能否获得再大一些的盈利?若能,西瓜的售价定为多少?若不能,请说明理由.×)﹣×26.(2013•梅州)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB与点E,且CF=AE,(1)求证:四边形BECF是菱形;(2)若四边形BECF为正方形,求∠A的度数.。
2013-2014学年上学期期末考试九年级数学试卷
2013-2014学年上学期期末考试九年级数学试卷(考试时间120分钟,满分120分)一、单项选择题(每小题2分,共12分)1.方程x(x-1)=0的解是()A. x=0B. x=1C. x=0或x=-1D. x=0或x=12.下列等式一定成立的是()a b-C.D. a b+3.下列各图中,是中心对称图形的是图()4.已知两圆的半径分别为3cm和5cm,如果它们的圆心距是8cm,那么这两个圆的位置关系是()A.内切B.相交C.外切D.外离5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠C的度数为()A. 32°B. 42°C.28°D.58°6. 一个袋子中装有5个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为()A.12B.19C.85D.23二、填空题(每小题3分,共24分)7.若121+x有意义,则x的取值范围是8.如图,圆形转盘中有A,B,C三个扇形区域,转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停在B区域的概率是9.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O,若⊙O的半径3题初三数学①为4,则弦AB 的长度等于10. 如图,⊿ABC 中,D ,E 分别是AB ,AC 上的点(DE BC),请你添加一个条 件 ,使⊿ADE 与⊿ABC 相似.11.如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为12.用两个全等的含30︒角的直角三角形制作如图A 、B 所示的两种卡片, 两种卡片中扇形的半径均为2, 且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点, 按先A 后B 的顺序交替摆放A 、B 两种卡片得到右图所示的图案. 若摆放这个图案共用两种卡片12张,则这个图案中阴影部分的面积之和为13.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D E 、,量出半径5cm OC =,弦8cm DE =,则直尺的宽度14.观察下列各式:311+413=,514513=+……,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________ 三、解答题(每小题5分,共20分)15.先化简,再求值:xx x 1x 2-46932+ (其中x=2)16.在生活中需测量一些球(如足球、篮球……)的直径,某校研究性学习小组, 通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线DA 、CB 分别与球相切于点E 、F, 则EF 即为球的直径, 若测12题A 学校年班姓名13题10题得AB 的长为44cm,∠ABC=30°,请你计算出球的直径.17.如图,在平面直角坐标系中,点A B C P ,,,的坐标分别为 (0,2),(3,2), (2,3),(1,1)(1)请在图中画出A B C '''△,使得A B C '''△与ABC △关于点P 成中心对称; (2)直接写出(1)中A B C '''△的三个顶点坐标.18.已知二次函数),0(2≠+=a c ax y 当x=1时,解析式.四、解答题(每小题7分,共28分)19.如图,AC 为⊙O 的直径,B 为AC 延长线上的一点,BD 交⊙O 于点D ,∠BAD=∠B=30°(1) 求证:BD 是⊙O 的切线; (2)AB=3CB 吗?请说明理由.20.美化环境,改善人们的居住环境已成为城市建设的一项重要内容.松原市近几年通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息,回答下列问题:2009年的绿地面积为 公顷,比2008年增加了 公顷.在2009年,2010年,2011年这三年中绿地面积增加最多的是 年.17题19题(2)为了满足城市发展的需要,计划到2013年使城区绿地面积达到84.7公顷,试求这两年(2011-2013)绿地面积的年平均增长率.21.水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱) 之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?学校年班姓名22.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.五、解答题(每小题8分,共16分) 23.已知,二次函数的解析式3221++-=x x y (1)这个二次函数的顶点坐标(2)这个二次函数图象与x 轴的交点坐标 (3)当x _____时,1y 随x 的增大而增大;(4)如图,若直线)0(2≠+=a b ax y 的图象与该二次函数图象交于A (21-,m ), B (2,n )两点,结合图象直接写出当x 取何值时21y y >?24.图(1)是油田高中存放学生自行车的车棚示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形,图(2)是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶帆布的面积(不考虑接缝等因素,计算结果保留π)。
2013-2014学年上学期九年级数学期末考试卷(浙教版含答案)
2013-2014学年上学期九年级数学期末考试卷2014.1温馨提示:请仔细审题,细心作答,相信你一定会有出色的表现!请注意:1.全卷满分为120分,考试时间120分钟.试卷共4页,有三大题,24小题.2.本卷答案必须做在答题纸的相应位置上,做在试题卷上无效.3.请用钢笔或圆珠笔将学校、班别、姓名、学号分别写在答题卷的左上角.4. 考试过程中不得使用计算器。
一、仔细选一选(本题有10个小题, 每小题3分, 共30分)1.已知反比例函数y=xk的图象经过点(1,-2),则k的值为……………………(▲)A.-2 B.-21C.1 D.22.抛物线y=3(x-2)2+3的顶点坐标为…………………………………………………(▲)A.(-2,3)B.(2,3)C(-2,-3)D.(2,-3)3.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=(▲)A.20° B.40° C.50° D.80°4.如图,△ABC中,E、D分别是AC、BC的中点,则S△EDC:S△ABC=(▲)A.1:4 B.2:3 C.1:3 D.1:25.如图,修建抽水站时,沿着坡度为i=1:6的斜坡铺设管道,下列等式成立的是(▲)A.sinα=61B.cosα=61C.tanα=61D.tanα=66.已知⊙O1与⊙O2相切,它们的直径分别为2cm和8cm,则O1 O2的长为………(▲)A、10cmB、6cmC、5cmD、5cm或3cm7.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为………………(▲)A.3 B.4 C.23D.248.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O 为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为…………………………………………………(▲)A.4 B.5 C.29D.211第3题第4题第5题第10题第7题9. 如图,一次函数y 1=x+1的图象与反比例函数y 2=x2的图象交于两点A 、B 两点,过点作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接AO 、BO ,下列说法正确的是( )A . 点A 和点B 关于原点对称 B . 当x <1时,y 1>y 2C . S △AOC=S △BOD D . 当x >0时,y 1、y 2都随x 的增大而增大 10.已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于D 点,双曲线y=xk (x >0)经过D 点,交BC 的延长线于E 点,且OB•AC=160, 有下列四个结论:①菱形OABC 的面积为80; ②E 点的坐标是(4,8); ③双曲线的解析式为y=x20 (x >0); ④s in ∠COA=54,其中正确的结论有(▲)个。
2013-2014学年度第一学期九年级数学期末试卷
19、如图,已知 Rt△ ABC 中,∠C=90° ,AC= 2 ,BC=1,若以 C 为圆心,CB 为半径的圆交 AB 于点 P,则 AP = 20、如图,小明作了一顶圆锥形纸帽,已知纸帽底面圆的半 径 OB 为 10cm,母线长 BS 为 20cm,则圆锥形纸帽的侧面 积为 cm2(结果保留含 π 的式子). 三、作图(8 分) 21、如图 6,在平面直角坐标系中,网格中每一个小正方形 的边长为 1 个单位长度;已知△ ABC .(8 分) ⑴△ABC 与△ A1B1C1 关于原点 O 对称,写出△ A1B1C1 各顶点的坐标,画出△ A1B1C1; ⑵ 以 O 为 旋 转 中 心 将 △ ABC 顺 时 针 旋 转 90° 得 △ A2B2C2,画出△ A2B2C2 并写出△ A2B2C2 各顶点的坐标.
)
第 16 题图
第 18 题图
A.-1 到 0 之间 B.0 到 1 之间 C.1 到 2 之间 D.2 到 3 之间 7. 如图,点 A,B,C 都在⊙O 上,∠A=∠B=20º ,则∠AOB 等于( ) A.40º B. 60 º C. 80 º D.100 º 8. 某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如果平均每月增长率为 x,则由题意列方程应为 ( ) A、200(1+x)2=1000 B、200+200× 2x=1000 C、200+200× 3x=1000 D、200[1+(1+x)+(1+x)2]=1000 9. 如图,把边长为 3 的正三角形绕着它的中心旋转 180° 后, 则新图形与原图 形重叠部分的面积为( )
第 7 题图Байду номын сангаас
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年上学期期末考试
初三数学试卷
(答题时间:120分钟 总分:120分)
一:填空题(每题3分,共30分):
1. 在一个袋子中装有除颜色外其它均相同的3个红球和1个白球,从中任意摸出一个球,则摸到红球的概率是_________.
2、二次函数y=x 2-2x+1的对称轴是x=_____________
3.在比例尺为1﹕10 000 0的地图上,量得甲、乙两地的距离是30 cm ,两地的实际距离是__________.
4、将抛物线22x y =先向左平移2个单位,再向下平移1个单位得到的抛物线的解析式为_________________;
5、如图,AB ∥EF ∥CD ,图中共有 对相似三角形。
6、已知相似的两个矩形中,一个矩形的长和面积分别是4和12,另一个矩形的长为6,这两个矩形的面积比______
7、计算:=-+-000060tan 30cos 230sin 45tan 3______
8.掷一枚正方体的骰子,六面分别标有1,2,3,4,5,6,掷一次骰子点数小于5朝上的槪率是____________.
9、在RtΔABC 中,∠C=900,,3,4==b a ,则cosA 的值为______
10.如果某物体的三视图如图所示,那么该物体的形状是______.
二:选择题(每题3分,共30分):
11. 书架上有数学书2本,英语书3本,语文书5本,从中任意抽取一本是数学书的概率是( )
A .110
B .35
C . 310
D .1
5
12.二次函数y =-2(x -3)2-2,则其顶点为( )
A.(0,0)
B.(-2,-2)
C.(-3,-2)
D.( 3,-2)
13、在RtΔABC 中,∠C=900,则b
a 是∠A 的( ) A 、 正弦 B 、余弦 C 、正切 D 、以上都不对
14.下列说法正确的是( )
A .小明上幼儿园时的照片和初中毕业时的照片相似.
B .商店新买来的一副三角板是相似的.
C .所有的课本都是相似的.
D .国旗的五角星都是相似的.
15.两个相似三角形的面积比为4:9,那么它们的对应高的比为( )
A .3:2 B. 2:3 C. 4:9 D. 9:4
16、澜沧江防洪大坝的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为5m ,路基高为3m ,则路基的下底宽应为( )
A .16m
B .15m
C .14.5m
D .14m
17、用一个平面去截圆锥,截面图形不可能是 ( )
18.二次函数y=x 2
﹣6x+4,则此抛物线的对称轴是( ) A .x =4 B.x=3 C. x =﹣5 D. x=﹣1
19、已知α为锐角,且2
1)20sin(=︒+α,则α等于( ) A.︒50 B.︒40 C.︒30 D.10°
20.下列事件你认为是必然事件的是( )
A .从一副扑克牌中任取一张牌,花色是红桃;
B .明天本市一定会下雨;
C .打开电视机,正在播广告;
D .月亮绕着地球转
三:解答题:(21、22、24每题10分,23、25每题9分,26题12分,共60分)
21. 张红和王伟一起玩扑克牌游戏,在两个不透明的口袋中,分别装有形状、大小、质地等完全相同的三张卡片,甲口袋的卡片标号分别为1,2,3;乙口袋的卡片标号分别为4,5,6;分别从每个口袋中随机抽出一张卡片。
(1)用列表法(或树形图)表示抽出的卡片标号的所有可能出现结果。
(2)抽出的两张卡片上标号之积大于10的概率是多少?
22.已知二次函数32
-+=bx ax y 的图像经过点A (2,-3) ,B (-1,0)。
(1)求二次函数的解析式;
(2)用配方法求出抛物线的顶点坐标。
23. 如图AD ⊥BC 于D ,CE ⊥AB 于E 交AD 于F ,
(1)图中共有相似三角形______对.
(2) 请选择其中的一对证明。
24.如图 :港口C 在小岛A 北偏东65°方向且距离小岛A 60海里处,港口C 又在小岛B 的北偏西45°方向,且小岛B 在小岛A 的正东方向上,求小岛A 和小岛B 间的距离。
(精确到0.1)
(供参考数据:sin65°= 0.853 , cos65°= 0.522, tan65°=1.632
Sin25°= 0.383 , cos25°= 0.924, tan25°=0.414)
25.请画出该几何体的三视图。
26、某市政府大力扶持大学生创业。
张华在政府的扶持下投资销售一种进价为每件20元的护眼台灯。
销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可以近似地看作一次函数y=–10x+500。
(1)设张华每月获得利润为w(元)。
当销售单价定为多少元时,每月可获得最大利润?(2)如果张华想要每月获得2000元的利润,那么销售单价应定为多少元?
(3 ) 根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果张华想要每月获得利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)。