矩阵基本性质

合集下载

矩阵基本性质

矩阵基本性质

矩阵的基本性质矩阵A的第A第A列的元素为A AA。

我们A A或(A)表A×A的单位矩阵。

1.矩阵的加减法(1)A=A±A,对应元素相加减(2)矩阵加减法满足的运算法则a.交换律:A+A=A+Ab.结合律:(A+A)+A=A+(A+A)c.A+A=Ad.A−A=A2.矩阵的数乘(1)A=A A,各元素均乘以常数(2)矩阵数乘满足的运算法则a.数对矩阵的分配律:A(A+A)=A A+A Ab.矩阵对数的分配律:(A+A)A=A A+A Ac.结合律:(AA)A=A(A A)d.A?A=A3.矩阵的乘法(1)A=A A×A A A×A,左行右列对应元素相乘后求和为C的第A行第A列的元素(2)矩阵乘法满足的运算法则a.对于一般矩阵不满足交换律,只有两个方正满足且有AA=AA=Ab.分配律:A(A+A)=AA+AAc.结合律:(AA)A=A(AA)d.数乘结合律:A(AA)=A(A A)4.矩阵的转置A A, (A A)AA=A AA(1)矩阵的幂:A1=A,A2=AA,…,A A+1=A(A A)(2)矩阵乘法满足的运算法则a. (A A)A=Ab. (A+A)A=A A+A Ac. (A A)A=A(A A)d. (AA)A=A A A A5.对称矩阵:A A=A即a AA=a AA;反对称矩阵:A A=−A即a AA=−a AA (1)设A,A为(反)对称矩阵,则A±A仍是(反)对称矩阵。

(2)设A,A为对称矩阵,则AA或AA仍是对称矩阵的充要条件AA=AA。

(3)设A 为(反)对称矩阵,则A A ,A A 也是(反)对称矩阵。

(4)对任意矩阵A ,则A ≡12(A +A A ),A ≡12(A +A A )分别是对称矩阵和反对称矩阵且A =A +A . (5)(A A )A =A6. Hermite 矩阵:A A =A 即a AA =a AA ̅̅̅̅̅̅̅;反Hermite 矩阵,A A =−A 即a AA =−aAA ̅̅̅̅̅̅̅ a.A A =(A̅)Ab. (A +A )A =A A +A Ac. (A A )A =A ̅̅̅(A A )d. (AA )A =A A A Ae. (A A )A =Af. (A A )−A =(A −A )A (当A矩阵可逆时)7.正交矩阵:若A A A =A A A =A ,则A ,(A )∈A A ×A 是正交矩阵 (1)A −A =A A ∈A A ×A (2)det A =±1(3)AA , AA ∈A A ×A8.酉矩阵:若A A A =A A A =A ,则A ,(A )∈A A ×A 是酉矩阵 (1)A −A =A A ∈A A ×A(2)|det A |=1(3)AA , AA ∈A A ×A (4)A A ∈A A ×A9.正规矩阵:若A A A =A A A ,则A 是正规矩阵;若A A A =AA A ,则A 是实正规矩阵10.矩阵的迹和行列式(1)AA (A )=∑A AA A A =A =∑A A A A =A 为矩阵A 的迹;|A |或det ?(A )为行列式(2)AA (AA )=AA (AA );注:矩阵乘法不满足交换律 (3)AA (AAA )=AA (AAA )=AA (AAA ) (4)A =AAA ?, A 为酉矩阵,则AA (A )=AA (A ) (5)|A A +AA A |=|A A +A A A | (6)|A A +AA A |=|A A +A A A | (7)|A A |=|A | (8)|A A |=A A |A | (9)|AA |=|A ||A |(10)det ?(A +AA )=det ?(A +AA ) (11)|A |=∏A A A A =A(12)A=log[det(A A+AAA∗)],A=AA A A,则A=∑log(1+AAA A)AA=1其中A A为AA∗奇异分解值的特征值11.矩阵的伴随矩阵A∗(1)设A={A AA}由行列式|A|的代数余子式A AA所构成的矩阵(2)AA∗=A∗A=|A|A12.矩阵的逆(逆矩阵是唯一的)(1)A的逆矩阵记作A−A,AA−A=A−A A=A;(2)|A|≠0(A为非奇矩阵)时,A−A=A|A|A∗(3)|A|≠0且A≠0,则(A A)−A=1AA−A(4)由AAA−A A−A=A,得(AA)−A=A−A A−A(5)(A A)−A=(A−A)A(6)若|A|≠0,|A−A|=A|A|(7)若A是非奇上(下)三角矩阵,则A−A也上(下)三角矩阵(8)A−A=(A−A)A(9)(A−A+A A A−A A)−A A A A−A=AA A(AAA A+A)−A (10)(A+AA)−A A=A(A+AA)−A(11)Woodbury 恒等式 :(A +AA −A A )−A=A −A −A −A A (A +AA −A A )−A AA −A (12)A −A =A ∧−1A A12.对角矩阵,矩阵A 为对称矩阵,A 正交矩阵,则A −A AA =AAAA (A A ?,A A )为对角矩阵或A −A AA =A A AA =AAAA (A A ?,A A )=∧,则A =A ∧A A =∑A A A A A A A A A =A ; A −A =A ∧−1A A =∑1A AA A A A A A A =A13.矩阵的导数(1)??A (AA )=?A?A A +A ?A?A (2)??A (A −A )=−A −A ?A?A A −A (3)??A AA |A |=AA (A −A ?A?A ) (4)??AAAAA (AA )=A AA(5)?AA (AA )=A A (6)??A AA (A A A )=A (7)??A AA (A )=A(8)??A AA (AAA A )=A (A +A A ) (9)??A AA |A |=(A −A )A。

矩阵的基本性质和运算法则

矩阵的基本性质和运算法则

矩阵的基本性质和运算法则矩阵是线性代数中的一个重要概念,是一个由数数组成的矩形阵列。

矩阵不仅有丰富的应用,比如在物理、经济、统计等领域中,还有着自身的基本性质和运算法则。

下面我们来谈谈矩阵的基本性质和运算法则。

一、矩阵的基本性质1.维数和元素矩阵的维数是指矩阵有多少行和多少列。

用矩阵的行数和列数来表示,如m×n的矩阵表示有m行,n列。

矩阵中的元素就是矩阵中的每一个数。

2.矩阵的转置矩阵的转置就是将矩阵的行和列交换,所得到的新矩阵称为原矩阵的转置矩阵。

如下所示:3 2 1 3 5A = 5 4 6 A^T = 2 47 8 9 1 6矩阵的转置可以表示为Aij = Aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n。

3.矩阵的行列式矩阵的行列式是矩阵的一个标量值,它是由矩阵的元素按照某一特定的规律计算得到的。

矩阵的行列式常用来描述矩阵线性方程组的解的情况。

如果一个矩阵的行列式为0,则该矩阵是一个奇异矩阵。

二、矩阵的运算法则1.矩阵的加法矩阵的加法必须满足两个矩阵的维数相同,即都是m×n的矩阵才能进行加法运算。

对于矩阵A和矩阵B,它们的和可以表示为C=A+B,即在矩阵A和矩阵B的对应元素上相加得到矩阵C。

如下所示:1 2 4 5 5 7C = 3 4 +D = 1 3 =E = 4 76 7 5 4 11 112.矩阵的减法矩阵的减法也必须满足两个矩阵的维数相同。

对于矩阵A和矩阵B,它们的差可以表示为C=A-B,即在矩阵A和矩阵B的对应元素上相减得到矩阵C。

如下所示:1 2 4 5 -3 -3C = 3 4 -D = 1 3 =E = 2 16 7 5 4 1 33.矩阵的数乘矩阵的数乘指的是一个矩阵的每一个元素与一个数相乘所得到的新矩阵。

如下所示:1 2 2 42A = 3 4 -3B= -6 -126 7 -9 -154.矩阵的乘法矩阵的乘法是指由两个矩阵相乘所得到的新矩阵。

线代矩阵知识点总结

线代矩阵知识点总结

线代矩阵知识点总结一、矩阵的定义与基本性质1. 矩阵的定义矩阵是一个二维数组,其中的元素具有特定的排列方式。

一般地,矩阵的元素用小写字母表示,而矩阵本身用大写字母表示。

例如,一个矩阵A可以表示为:A = [a11, a12, ..., a1n][a21, a22, ..., a2n]...[am1, am2, ..., amn]其中,a_ij表示矩阵A的第i行、第j列元素。

2. 矩阵的基本性质(1)相等性:两个矩阵A和B相等,当且仅当它们具有相同的维度,并且对应位置的元素相等。

(2)加法:两个矩阵A和B的加法定义为它们对应位置的元素相加,得到一个新的矩阵C。

即C = A + B。

(3)数量乘法:矩阵A的数量乘法定义为将A的每一个元素乘以一个标量k,得到一个新的矩阵B。

即B = kA。

(4)转置:矩阵A的转置是将A的行和列互换得到的新矩阵,记作A^T。

(5)逆矩阵:对于方阵A,如果存在另一个方阵B,使得AB = BA = I(单位矩阵),则称B是A的逆矩阵,记作A^-1。

二、矩阵的运算与性质1. 矩阵的加法设矩阵A和B是同样维度的矩阵,则它们的加法定义为将对应位置的元素相加得到一个新的矩阵C。

即C = A + B。

性质:(1)交换律:矩阵加法满足交换律,即A + B = B + A。

(2)结合律:矩阵加法满足结合律,即(A + B) + C = A + (B + C)。

(3)零元素:对于任意矩阵A,存在一个全为0的矩阵0,使得A + 0 = 0 + A = A。

2. 矩阵的数量乘法对于矩阵A和标量k,矩阵A的数量乘法定义为将A的每一个元素乘以k,得到一个新的矩阵B。

即B = kA。

性质:(1)分配律:矩阵的数量乘法满足分配律,即k(A + B) = kA + kB。

(2)结合律:矩阵的数量乘法满足结合律,即(k1k2)A = k1(k2A)。

(3)单位元素:对于任意矩阵A,存在一个标量1,使得1A = A。

矩阵的性质与运算

矩阵的性质与运算

矩阵的性质与运算矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。

本文将从矩阵的基本性质入手,探讨矩阵的运算规则及其应用。

一、矩阵的基本性质矩阵是由数个数按照一定规则排列成的二维数组。

我们一般用大写字母表示矩阵,比如A、B等,矩阵的元素用小写字母表示,如a11、a12等。

1. 矩阵的阶:一个矩阵A有m行n列,我们称其为m×n阶矩阵,记作A(m,n)。

2. 矩阵的相等:两个矩阵A和B相等,当且仅当它们的对应元素相等,即A(i,j) = B(i,j)。

3. 矩阵的转置:将矩阵A的行与列对调得到的新矩阵称为A的转置矩阵,记作A^T。

其中转置矩阵的元素满足(A^T)(i,j) = A(j,i)。

二、矩阵的运算规则矩阵的运算包括矩阵的加法、减法和数乘运算。

下面我们将详细介绍这些运算。

1. 矩阵的加法:若矩阵A和B的阶数相同,即A(m,n)和B(m,n),则定义矩阵的加法为A+B = (a(i,j) + b(i,j))。

其中加法满足交换律和结合律。

2. 矩阵的减法:与矩阵的加法相对应,矩阵的减法定义为A-B = (a(i,j) - b(i,j))。

同样地,减法也满足交换律和结合律。

3. 矩阵的数乘:若矩阵A有m行n列,k是一个实数,我们可以定义矩阵A的数乘kA为kA = (k * a(i,j))。

数乘也满足结合律和分配律。

4. 矩阵的乘法:若矩阵A是一个m×n阶矩阵,矩阵B是一个n×p 阶矩阵,则定义矩阵的乘法为C = AB,其中C是一个m×p阶矩阵,C 的元素满足C(i,j) = Σa(i,k)b(k,j)。

三、矩阵运算的应用矩阵的运算在实际问题中有着广泛的应用。

下面我们通过几个具体的例子来说明矩阵运算的应用。

1. 线性方程组的求解:对于一个m个方程、n个未知数的线性方程组,可以用矩阵的表示形式AX = B来求解,其中A是一个m×n阶系数矩阵,X是一个n×1阶未知数矩阵,B是一个m×1阶列向量。

矩阵的基本运算与性质

矩阵的基本运算与性质

矩阵的基本运算与性质矩阵是线性代数中重要的数学结构,它广泛应用于统计学、物理学、计算机科学等领域。

本文将介绍矩阵的基本运算和性质,包括矩阵的加法、减法、数乘、乘法以及转置等运算。

一、矩阵的加法和减法矩阵的加法和减法是指将两个矩阵进行逐元素地相加或相减的运算。

假设我们有两个矩阵A和B,它们的维度相同,即有相同的行数和列数。

矩阵的加法运算可以表示为C = A + B,其中C的每个元素等于A和B对应元素的和。

同理,矩阵的减法运算可以表示为D = A - B,其中D的每个元素等于A和B对应元素的差。

二、矩阵的数乘运算矩阵的数乘运算是指将一个实数或复数与矩阵的每个元素相乘的运算。

假设我们有一个矩阵A和一个实数k,矩阵A的数乘运算可以表示为B = kA,其中B的每个元素等于k乘以A对应元素的值。

三、矩阵的乘法运算矩阵的乘法运算是指将两个矩阵相乘得到一个新的矩阵的运算。

矩阵乘法的定义要求第一个矩阵的列数等于第二个矩阵的行数。

假设我们有两个矩阵A和B,A的维度为m×n,B的维度为n×p,那么矩阵的乘法运算可以表示为C = AB,其中C的维度为m×p。

矩阵乘法的元素计算方式为C的第i行第j列元素等于A的第i行与B的第j列对应元素乘积的和。

四、矩阵的转置运算矩阵的转置运算是指将矩阵的行转换为列,将列转换为行的操作。

假设我们有一个矩阵A,A的转置可以表示为A^T。

A^T的第i行第j 列元素等于A的第j行第i列元素,即A^T的维度为n×m,其中A的维度为m×n。

矩阵的基本性质:1. 矩阵的加法和减法满足交换律和结合律,即A + B = B + A,(A +B) + C = A + (B + C)。

2. 矩阵的乘法满足结合律,即(A × B) × C = A × (B × C)。

3. 矩阵的加法和数乘运算满足分配律,即k(A + B) = kA + kB,(k + l)A = kA + lA。

矩阵性质资料

矩阵性质资料

矩阵的减法运算

矩阵减法示例
• 二阶矩阵减法:[[1, 2], [3, 4]] - [[5, 6], [7, 8]] = [[-4, -4], [-4, -4]] • 三阶矩阵减法:[[1, 2, 3], [4, 5, 6], [7, 8, 9]] - [[9, 8, 7], [6, 5, 4], [3, 2, 1]] = [[-8, -6, -4], [-2, 0, 2], [4, 6, 8]]
矩阵的Cholesky分解
Cholesky分解定义
• 将对称正定矩阵A分解为下三角矩阵L的转置与L的乘积 • L为下三角矩阵
Cholesky分解的应用
• 求解线性方程组Ax = b时,可以先对对称正定矩阵A进 行Cholesky分解,然后通过前向消元法求解 • Cholesky分解可以用于计算矩阵的逆矩阵和行列式
CREATE TOGETHER
DOCS
DOCS SMART CREATE
矩阵性质与应用
01
矩阵的基本概念与性质
矩阵的定义与表示
矩阵的定义
• 由一组数组成的矩形阵列 • 每个元素都有一个确定的位置 • 矩阵的行数和列数相等称为方阵
矩阵的表示
• 用方括号包围的元素列表 • 元素之间用逗号分隔 • 矩阵的大小用行数和列数表示
矩阵的乘法运算
矩阵乘法定义
• 矩阵A乘以矩阵B的每个元素是矩阵A的行与矩阵B的列对应元素相乘的和 • 结果矩阵的行数等于矩阵A的行数,列数等于矩阵B的列数
矩阵乘法示例
• 二阶矩阵乘法:[[1, 2], [3, 4]] * [[5, 6], [7, 8]] = [[19, 22], [43, 50]] • 三阶矩阵乘法:[[1, 2, 3], [4, 5, 6], [7, 8, 9]] * [[9, 8, 7], [6, 5, 4], [3, 2, 1]] = [[30, 24, 18], [84, 69, 54], [138, 114, 90]]

矩阵基本性质总结

矩阵基本性质总结

矩阵基本性质总结矩阵是数学中一个非常重要的概念,广泛应用于多个领域,如物理学、计算机科学、经济学等。

理解矩阵的基本性质对于掌握这一工具至关重要。

首先,矩阵具有加法和数乘的运算性质。

矩阵的加法是指两个具有相同行数和列数的矩阵对应位置的元素相加。

例如,若有矩阵 A 和矩阵 B ,它们都是 m 行 n 列的矩阵,那么矩阵 A 和矩阵 B 的和就是一个新的 m 行 n 列的矩阵 C ,其中 C 的每个元素 Cij = Aij + Bij 。

数乘矩阵则是用一个数乘以矩阵中的每个元素。

如果有矩阵 A ,用数 k 去乘以矩阵 A ,得到的新矩阵 B 中每个元素 Bij = k × Aij 。

矩阵加法和数乘运算满足一些规律,比如加法满足交换律和结合律,即 A + B = B + A ,(A + B) + C = A +(B + C) ;数乘满足分配律,如 k ×(A + B) = k × A + k × B 。

其次,矩阵的乘法是一个相对复杂但又极为重要的性质。

矩阵相乘不是简单地将对应元素相乘,而是有特定的规则。

只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘。

假设矩阵 A 是 m 行 n 列,矩阵 B 是 n 行 p 列,那么它们的乘积 C 是一个 m 行 p 列的矩阵。

其中 C 的元素 Cij 是矩阵 A 的第 i 行元素与矩阵 B 的第 j 列元素对应相乘再相加的结果。

矩阵乘法一般不满足交换律,即 A × B 不一定等于 B × A 。

但它满足结合律和分配律,即(A × B) × C = A ×(B × C) , A ×(B + C) = A × B + A × C 。

矩阵乘法有着广泛的应用。

比如在表示线性变换时,一个矩阵可以看作是对向量的一种变换操作。

通过矩阵乘法,可以实现多个线性变换的连续作用。

矩阵的运算与性质

矩阵的运算与性质

矩阵的运算与性质矩阵是线性代数中的重要概念,广泛应用于数学、物理、工程和计算机科学等领域。

矩阵的运算与性质是理解和应用矩阵的基础,下面我们将介绍矩阵的基本运算及其性质。

一. 矩阵的定义与表示在开始讨论矩阵的运算与性质之前,首先需要了解矩阵的定义与表示。

矩阵可以理解为由数个数排列成的矩形阵列。

一个矩阵通常用大写字母表示,比如A,其中的元素用小写字母表示,如a11,a12等。

矩阵可以用方括号或括号表示,比如:A = [a11 a12 a13a21 a22 a23a31 a32 a33]这样,矩阵A就表示了一个3行3列的矩阵。

二. 矩阵的基本运算矩阵具有多种基本运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。

1. 矩阵的加法对于两个具有相同行数和列数的矩阵A和B,它们的加法定义为将对应位置的元素相加,得到一个新的矩阵C。

具体而言,如果A = [aij],B = [bij],则A + B = [aij + bij]。

需要注意的是,两个矩阵相加的前提是它们具有相同的维度。

2. 矩阵的减法与矩阵的加法类似,矩阵的减法也是将对应位置的元素相减得到一个新的矩阵。

假设A = [aij],B = [bij],则A - B = [aij - bij]。

同样,两个矩阵相减的前提是它们具有相同的维度。

3. 数乘数乘指的是将一个矩阵的每个元素乘以一个常数得到一个新的矩阵。

如果A = [aij],k为常数,则kA = [kaij]。

4. 矩阵的乘法矩阵的乘法是一种较为复杂的运算。

对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积C = AB是一个m行p列的矩阵。

具体计算时,C的每个元素cij等于A的第i行与B的第j列对应元素的乘积之和,即cij = a1j * b1j + a2j * b2j + ... + anj * bnj。

三. 矩阵的性质除了基本运算,矩阵还具有一些重要的性质。

1. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到一个新的矩阵。

矩阵的基本性质与变换

矩阵的基本性质与变换

矩阵的基本性质与变换矩阵是线性代数中的重要概念之一,它在各个工程领域和科学研究中都有广泛的应用。

本文将介绍矩阵的基本性质及其在数学变换中的应用。

一、矩阵的基本性质矩阵是由数字排成的矩形阵列,其中的数字称为元素。

矩阵由m行和n列组成,记作m×n的矩阵。

矩阵中的元素通常用小写字母表示,如a、b、c等。

以下是矩阵的一些基本性质:1. 矩阵的加法与减法对于两个相同维度的矩阵A和B,可以进行矩阵的加法和减法运算。

加法运算定义如下:A + B = C,其中C的每个元素等于A与B对应元素之和。

减法运算的定义与加法类似。

2. 矩阵的乘法矩阵乘法是一种矩阵之间的运算。

对于一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积记作AB,得到的结果是一个m×p的矩阵C。

C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。

3. 矩阵的转置矩阵的转置是指交换矩阵的行与列,得到的新矩阵记作A^T。

即A^T的第i行第j列的元素等于A的第j行第i列的元素。

4. 矩阵的逆对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

B称为A的逆矩阵,记作A^(-1)。

只有方阵才存在逆矩阵。

二、矩阵的变换矩阵不仅可以进行基本的加法、减法和乘法运算,还可以用来进行各种数学变换,包括线性变换和仿射变换。

1. 线性变换线性变换是指将一个向量空间V里的向量x映射到另一个向量空间W里的向量y的变换。

对于一个m×n的矩阵A和一个n×1的向量x,线性变换的计算公式为y=Ax。

矩阵A定义了向量x在变换过程中的缩放、旋转和剪切等操作。

2. 仿射变换仿射变换是指将一个向量空间V里的向量x映射到另一个向量空间W里的向量y的变换。

对于一个m×n的矩阵A和一个n×1的向量x,仿射变换的计算公式为y=Ax+b,其中b是一个常向量。

仿射变换可以进行平移、旋转、缩放和错切等操作。

矩阵及其性质知识点及题型归纳总结

矩阵及其性质知识点及题型归纳总结

矩阵及其性质知识点及题型归纳总结
1. 矩阵基本概念
- 矩阵是一个二维数组,由行和列组成。

- 矩阵的元素可以是实数、复数或其他数域中的元素。

2. 矩阵的性质和运算
- 矩阵的转置:交换矩阵的行和列, 记作A^T。

- 矩阵的加法:对应位置元素相加。

- 矩阵的数乘:将矩阵的每个元素乘以一个数。

- 矩阵的乘法:满足左乘法则和右乘法则。

- 矩阵的逆:对于可逆方阵,存在逆矩阵使得矩阵乘法满足乘法逆的要求。

3. 矩阵的特殊类型和性质
- 单位矩阵:一个方阵的主对角线上元素为1,其他元素为0。

- 零矩阵:所有元素都为0的矩阵。

- 对角矩阵:只有主对角线上元素非零,其他元素为0。

- 对称矩阵:矩阵的转置等于它本身。

- 上三角矩阵:主对角线及其以下的元素都不为0。

- 下三角矩阵:主对角线及其以上的元素都不为0。

4. 矩阵的题型归纳
- 矩阵的基本运算:加法、数乘、乘法和转置操作。

- 矩阵的性质判断:检查矩阵是否为对称矩阵、上三角矩阵、下三角矩阵等。

- 矩阵的逆和行列式:求逆矩阵、计算行列式的值等。

- 矩阵的方程求解:解线性方程组、求矩阵的特征值和特征向量等。

以上是矩阵及其性质的基本知识点及题型归纳总结。

通过掌握这些知识,你将能够更好地理解和应用矩阵在数学和工程等领域的相关问题。

矩阵的基本运算与性质

矩阵的基本运算与性质

矩阵的基本运算与性质一、矩阵的定义与表示矩阵是由若干数字按照行和列排列成的矩形阵列,通常用方括号表示。

例如,一个m行n列的矩阵可以表示为[A]m×n,其中每个元素a_ij表示矩阵A中第i行第j列的数字。

二、矩阵的基本运算1. 矩阵的加法:若A和B是同阶矩阵,即行数和列数相等,那么A 和B的和C=A+B是一个同阶矩阵,其中C的任意元素c_ij等于A和B对应元素的和。

示例:[A]m×n + [B]m×n = [C]m×n,其中c_ij = a_ij + b_ij。

2. 矩阵的数乘:若A是一个矩阵,k是一个常数,那么kA就是将A的每个元素乘以k得到的矩阵。

示例:k[A]m×n = [B]m×n,其中b_ij = k * a_ij。

3. 矩阵的乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么它们的乘积C=AB是一个m行p列的矩阵,其中C的任意元素c_ij等于A的第i行与B的第j列对应元素的乘积之和。

示例:[A]m×n × [B]n×p = [C]m×p,其中c_ij = Σk=1^n (a_ik *b_kj)。

三、矩阵的运算法则1. 加法的交换律:矩阵的加法满足交换律,即A+B=B+A。

2. 加法的结合律:矩阵的加法满足结合律,即(A+B)+C=A+(B+C)。

3. 数乘的结合律:数乘与矩阵的乘法满足结合律,即k(A+B)=kA+kB。

4. 数乘的分配律:数乘与矩阵的乘法满足分配律,即(k+m)A=kA+mA,k(A+B)=kA+kB。

5. 乘法的结合律:矩阵的乘法满足结合律,即(A*B)*C=A*(B*C)。

6. 乘法的分配律:矩阵的乘法满足分配律,即(A+B)*C=AC+BC。

四、矩阵的性质1. 矩阵的转置:若A是一个m行n列的矩阵,在A的上方写A的名字的转置符号T,表示A的转置矩阵。

A的转置矩阵是一个n行m 列的矩阵,其中A的第i行被用作A的转置矩阵的第i列。

矩阵的概念与性质

矩阵的概念与性质

矩阵的概念与性质矩阵是线性代数中的一个重要概念,它具有多种性质和运算规律。

在数学和工程学科中,矩阵被广泛应用于各种问题的描述和求解中。

本文将介绍矩阵的基本概念和一些重要的性质,帮助读者更好地理解和运用矩阵。

**1. 矩阵的定义**在数学中,矩阵是由数构成的矩形阵列。

通常用大写字母表示,比如A、B、C等。

一个m×n的矩阵由m行n列的数排列在方括号 [] 中表示,如下所示:\[ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \]其中,a<sub>ij</sub>表示矩阵A中第i行第j列的元素。

**2. 矩阵的性质**- 矩阵的加法:设A和B是同型矩阵,即行数和列数相同。

则它们的和A + B是一个同型矩阵,其每个元素是对应位置元素的和。

\[ A + B = \begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots &a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \end{bmatrix} \]- 矩阵的数乘:给定一个矩阵A和一个标量k,矩阵A乘以标量k表示将矩阵A的每个元素乘以k。

矩阵的基本运算与性质知识点

矩阵的基本运算与性质知识点

矩阵的基本运算与性质知识点矩阵是线性代数中重要的概念之一,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本运算与性质知识点,包括矩阵的定义、加法、数乘、乘法、转置、逆矩阵等内容。

一、矩阵的定义矩阵是由m行n列数字组成的一个矩形数组,通常用大写字母表示。

其中,m表示矩阵的行数,n表示矩阵的列数。

例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中a11, a12, a21等表示矩阵中的元素。

二、矩阵的加法对于两个同型矩阵A和B,即行数和列数相等的矩阵,可以进行加法运算。

加法的结果是一个同型矩阵C,其每个元素等于相应位置的两个矩阵元素之和。

例如,对于两个3行2列的矩阵A和B,其加法C可以表示为:C = A + B = [a11 + b11 a12 + b12a21 + b21 a22 + b22a31 + b31 a32 + b32]三、矩阵的数乘矩阵的数乘是指将一个数与矩阵的每个元素相乘。

结果是一个与原矩阵同型的矩阵。

例如,将一个3行2列的矩阵A乘以一个数k,得到的结果可以表示为:C = kA = [ka11 ka12ka21 ka22ka31 ka32]四、矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B 相乘,得到一个m行p列的矩阵C。

矩阵乘法的定义是,C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。

例如,对于一个2行3列的矩阵A和一个3行2列的矩阵B,其乘法C可以表示为:C = AB = [a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32]五、矩阵的转置矩阵的转置是指将矩阵的行与列对换得到的新矩阵。

如果原矩阵为A,转置后的矩阵表示为A^T。

例如,对于一个3行2列的矩阵A,其转置矩阵表示为:A^T = [a11 a21 a31a12 a22 a32]六、逆矩阵对于一个n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,矩阵B称为矩阵A的逆矩阵,记作A^-1。

矩阵基本性质总结

矩阵基本性质总结

矩阵基本性质总结矩阵是线性代数中重要的概念之一,广泛应用于各个领域。

矩阵的基本性质是研究和理解矩阵的重要前提。

本文将对矩阵的基本性质进行总结和讨论。

一、矩阵的定义及表示方式矩阵是由m行n列元素排列成的矩形数表,用大写字母表示,如A。

其中,m代表矩阵的行数,n代表矩阵的列数。

矩阵中的元素通常用小写字母表示,如a_ij,其中i表示行数,j表示列数。

二、矩阵的运算性质1. 矩阵的加法:对应元素相加若A和B为同型矩阵,即行数和列数相同,那么它们可以相加。

相加的结果为一个同型矩阵C,C的每个元素等于A和B对应元素的和。

2. 矩阵的数乘:每个元素乘以同一个数若A为一个矩阵,k为一个实数,那么A与k的乘积为一个与A同型的矩阵,其中每个元素等于A中对应元素乘以k。

3. 矩阵的乘法:行乘列得到新矩阵两个矩阵相乘的前提是第一个矩阵的列数等于第二个矩阵的行数。

乘积矩阵C的行数等于第一个矩阵A的行数,列数等于第二个矩阵B的列数。

乘积矩阵C的元素等于A的第i行与B的第j列对应元素的乘积之和。

4. 矩阵的转置:行变列,列变行若矩阵A的行数为m,列数为n,那么A的转置矩阵记作A^T,行数变为n,列数变为m,且A^T的第i行第j列元素等于A的第j行第i列元素。

三、矩阵的特殊矩阵性质1. 方阵:行数等于列数的矩阵称为方阵。

2. 零矩阵:所有元素都为0的矩阵称为零矩阵,用0表示。

3. 单位矩阵:主对角线上的元素为1,其他元素为0的方阵称为单位矩阵,记作I。

4. 对角矩阵:只在主对角线上有非零元素的矩阵称为对角矩阵。

5. 可逆矩阵:若存在一个矩阵B,使得AB=BA=I,那么矩阵A称为可逆矩阵,B称为A的逆矩阵。

四、矩阵的基本性质1. 矩阵的加法和乘法满足结合律、交换律和分配律。

2. 矩阵的转置运算满足(A^T)^T=A,(A+B)^T=A^T+B^T,(kA)^T=k(A^T),(AB)^T=B^T*A^T。

3. 若A是方阵,则A与单位矩阵的乘积等于A本身,即AI=IA=A。

矩阵知识点总结

矩阵知识点总结

矩阵知识点总结1. 矩阵的概念矩阵是数学中的一种特殊形式的数组,是由m×n个数排成m行、n列所组成的数表。

矩阵通常用大写字母表示,例如A、B、C等。

其中,m表示矩阵的行数,n表示矩阵的列数。

矩阵中的每个数称为元素,用小写字母表示,如a[i][j]表示矩阵A中第i行第j列的元素。

2. 矩阵的基本性质(1) 矩阵的相等:两个矩阵A和B相等,当且仅当它们的对应元素都相等,即A[i][j]=B[i][j]。

(2) 矩阵的加法和减法:两个矩阵A和B相加减的规则是对应元素相加减,即A[i][j] ±B[i][j]。

(3) 矩阵的数乘:矩阵A的数乘是指将A的每个元素都乘以同一个数k,即kA[i][j]。

(4) 矩阵的乘法:两个矩阵A和B的乘法不是对应元素相乘,而是按照特定的规则进行计算,具体的规则将在后面介绍。

3. 矩阵的运算(1) 矩阵的转置:矩阵A的转置记作A^T,就是将A的行和列互换得到的新矩阵。

即A^T[i][j]=A[j][i]。

(2) 矩阵的加法和减法:两个矩阵A和B相加减时,要求它们的行数和列数都相等,然后对应元素相加减。

(3) 矩阵的数乘:矩阵A的数乘是将A的每个元素都乘以同一个数k。

(4) 矩阵的乘法:矩阵A和矩阵B的乘法是指矩阵A的行与矩阵B的列进行内积运算,得到一个新的矩阵C。

其中,矩阵A的列数要等于矩阵B的行数,即A(m×n)B(n×p)=C(m×p)。

4. 矩阵的特殊类型(1) 方阵:行数和列数相等的矩阵称为方阵,通常用大写字母表示,如A、B、C等。

(2) 对角矩阵:只有主对角线上有非零元素的矩阵称为对角矩阵,其他位置的元素都为零。

(3) 单位矩阵:主对角线上的元素都为1,其他位置的元素都为0的n阶方阵称为单位矩阵,记作I。

(4) 零矩阵:所有元素都为0的矩阵称为零矩阵,通常用0表示。

5. 矩阵的应用(1) 线性方程组的解法:线性方程组可以通过矩阵的方法进行求解,将系数矩阵与未知数矩阵进行组合,然后通过矩阵的运算得到方程组的解。

矩阵的基本运算和性质

矩阵的基本运算和性质

矩阵的基本运算和性质矩阵是线性代数中一个重要的概念,广泛应用于数学、工程、计算机科学等领域。

本文将介绍矩阵的基本运算和性质,旨在帮助读者理解和应用矩阵。

一、矩阵的基本定义和表示方法在开始讨论矩阵的运算和性质之前,首先应了解矩阵的基本定义和表示方法。

矩阵是一个按照矩形排列的数表,它由m行n列的元素组成。

一般用大写字母表示矩阵,例如A、B等,而矩阵的元素一般用小写字母表示,例如a、b等。

矩阵的表示方法有多种,其中最常见的是用方括号将矩阵的元素排列起来。

例如:A = [a11, a12, a13; a21, a22, a23; a31, a32, a33]其中A是一个3行3列的矩阵,a11、a12等表示矩阵A的元素。

二、矩阵的基本运算1. 矩阵的加法和减法矩阵的加法只能对应位置的元素进行相加,也就是说,如果两个矩阵具有相同的行数和列数,则可以将它们对应位置的元素进行相加,得到一个新的矩阵。

例如,对于两个相同维数的矩阵A和B,其加法和减法运算的规则如下:A +B = [a11 + b11, a12 + b12; a21 + b21, a22 + b22]A -B = [a11 - b11, a12 - b12; a21 - b21, a22 - b22]2. 矩阵的数乘和数除矩阵的数乘是指将矩阵的每个元素乘以一个常数,矩阵的数除是指将矩阵的每个元素除以一个常数。

例如,对于一个矩阵A和一个常数k,其数乘和数除运算的规则如下:kA = [ka11, ka12; ka21, ka22]A/k = [a11/k, a12/k; a21/k, a22/k]3. 矩阵的乘法矩阵的乘法是指将一个矩阵的行与另一个矩阵的列相乘并相加得到结果。

例如,对于两个矩阵A和B,其乘法运算的规则如下:C = AB其中,C为一个m行n列的矩阵,其元素cij可以通过下面的公式计算得到:cij = a[i1]*b[1j] + a[i2]*b[2j] + ... + a[in]*b[nj]4. 矩阵的转置矩阵的转置是指将矩阵的行与列互换得到一个新的矩阵。

矩阵的性质与运算

矩阵的性质与运算

矩阵的性质与运算矩阵是线性代数中一个重要的概念,它不仅在数学领域有着广泛的应用,还在物理、工程等多个学科中发挥着重要的作用。

矩阵的性质和运算是我们研究和应用矩阵的基础,本文将详细介绍矩阵的性质和运算,使读者对矩阵有更加深入的理解。

一、矩阵的基本性质1.1 矩阵的定义矩阵是一个按照长方阵列排列的数表,其中的元素可以是实数、复数或其他数域中的元素。

一个矩阵有m行和n列,我们通常以大写字母表示矩阵,如A、B等。

1.2 矩阵的维度如果一个矩阵有m行和n列,我们称其为m×n维矩阵,其中m表示行数,n表示列数。

特殊地,如果一个矩阵的行数和列数相等,我们称其为方阵。

1.3 矩阵的元素矩阵中的每个数称为一个元素,我们通常用小写字母表示矩阵中的元素。

例如,矩阵A的第i行、第j列的元素用aij表示。

1.4 矩阵的转置对于一个m×n维矩阵A,将其行与列互换得到的n×m维矩阵称为A的转置矩阵,记作AT。

即A的第i行第j列的元素aij在AT中就是第j行第i列的元素。

二、矩阵的运算2.1 矩阵的加法对于两个维度相同的矩阵A和B,它们的和记作A + B。

矩阵A +B的第i行第j列的元素等于矩阵A和矩阵B对应位置上元素的和。

即(A + B)ij = Aij + Bij。

2.2 矩阵的减法对于两个维度相同的矩阵A和B,它们的差记作A - B。

矩阵A - B的第i行第j列的元素等于矩阵A和矩阵B对应位置上元素的差。

即(A - B)ij = Aij - Bij。

2.3 矩阵的数乘对于一个维度为m×n的矩阵A和一个实数或复数c,我们可以将A的每个元素都乘以c得到一个新的矩阵cA。

即(cA)ij = c·Aij。

2.4 矩阵的乘法对于两个矩阵A和B,它们的乘积记作AB。

要使得两个矩阵A和B可以相乘,A的列数必须等于B的行数。

如果A是一个m×n维矩阵,B是一个n×p维矩阵,那么它们的乘积AB是一个m×p维矩阵。

矩阵与线性变换的性质与应用

矩阵与线性变换的性质与应用

矩阵与线性变换的性质与应用矩阵与线性变换是线性代数中的重要概念,它们在数学和应用领域中有着广泛的应用。

本文将介绍矩阵与线性变换的基本性质,并探讨它们在实际问题中的应用。

一、矩阵的基本性质1. 矩阵的定义矩阵是一个由一定数量的数按照长方阵列排列而成的矩形数表。

一般表示为m×n(m行n列)。

矩阵中的元素可以是实数、复数或者其他代数元素。

2. 矩阵的运算矩阵与矩阵之间有加法和乘法运算。

对于两个相同大小的矩阵A和B,它们的加法定义为A + B = C,其中C的每个元素等于A和B对应位置上元素的和。

矩阵的乘法定义为A × B = D,其中D的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。

3. 矩阵的转置和逆矩阵矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

转置后的矩阵记作A^T。

对于方阵A,如果存在一个矩阵B使得A × B = B × A = I(单位矩阵),则称B为A的逆矩阵。

逆矩阵可以用来解线性方程组,求解矩阵的逆矩阵需要满足一定的条件。

二、线性变换的基本性质1. 线性变换的定义线性变换是指保持向量加法和数乘运算的映射。

对于向量空间V中的两个向量u和v,以及标量c,线性变换T必须满足两个性质:T(u + v) = T(u) + T(v)和T(cu) = cT(u)。

2. 线性变换的表示与矩阵每个线性变换都可以由一个矩阵表示。

对于向量空间V中的一组基底B = {b1, b2, ..., bn},线性变换T定义为T(v) = Av,其中A 是一个由线性变换将基底B中的向量映射到对应的新坐标系中的向量所得到的矩阵。

3. 线性变换的性质线性变换具有以下性质:- 保持原点不变:T(0) = 0- 保持直线性质:对于直线上的点,线性变换后仍然在直线上- 保持比例关系:对于两个向量u和v,如果它们的比例关系为u = cv,那么它们的线性变换后的比例关系为T(u) = cT(v)三、矩阵与线性变换的应用1. 矩阵的行列式矩阵的行列式是一个标量值,可以用来判断矩阵是否可逆以及计算矩阵的逆矩阵。

矩阵基本性质

矩阵基本性质

矩阵基本性质This manuscript was revised by the office on December 22, 2012矩阵的基本性质矩阵A的第A第A列的元素为A AA。

我们A A或(A)表A×A的单位矩阵。

1.矩阵的加减法(1)A=A±A,对应元素相加减(2)矩阵加减法满足的运算法则a.交换律:A+A=A+Ab.结合律:(A+A)+A=A+(A+A)c.A+A=Ad.A−A=A2.矩阵的数乘(1)A=A A,各元素均乘以常数(2)矩阵数乘满足的运算法则a.数对矩阵的分配律:A(A+A)=A A+A Ab.矩阵对数的分配律:(A+A)A=A A+A Ac.结合律:(AA)A=A(A A)d.A?A=A3.矩阵的乘法(1)A=A A×A A A×A,左行右列对应元素相乘后求和为C的第A行第A列的元素(2)矩阵乘法满足的运算法则a.对于一般矩阵不满足交换律,只有两个方正满足且有AA=AA=Ab.分配律:A(A+A)=AA+AAc.结合律:(AA)A=A(AA)d.数乘结合律:A(AA)=A(A A)4.矩阵的转置A A, (A A)AA=A AA(1)矩阵的幂:A1=A,A2=AA,…,A A+1=A(A A)(2)矩阵乘法满足的运算法则a. (A A)A=Ab. (A+A)A=A A+A Ac. (A A)A=A(A A)d. (AA)A=A A A A5.对称矩阵:A A=A即a AA=a AA;反对称矩阵:A A=−A即a AA=−a AA (1)设A,A为(反)对称矩阵,则A±A仍是(反)对称矩阵。

(2)设A,A为对称矩阵,则AA或AA仍是对称矩阵的充要条件AA=AA。

(3)设A 为(反)对称矩阵,则A A ,A A 也是(反)对称矩阵。

(4)对任意矩阵A ,则A ≡12(A +A A ),A ≡12(A +A A )分别是对称矩阵和反对称矩阵且A =A +A .(5)(A A )A =A6. Hermite 矩阵:A A =A 即a AA =a AA ̅̅̅̅̅̅̅;反Hermite 矩阵,A A =−A即a AA =−a AA ̅̅̅̅̅̅̅ a.A A =(A ̅)Ab. (A +A )A =A A +A Ac. (A A )A =A ̅̅̅(A A )d. (AA )A =A A A Ae. (A A )A =Af. (A A )−A =(A −A )A (当A矩阵可逆时)7.正交矩阵:若A A A =A A A =A ,则A ,(A )∈A A ×A 是正交矩阵(1)A −A =A A ∈A A ×A(2)det A =±1(3)AA , AA ∈A A ×A8.酉矩阵:若A A A =A A A =A ,则A ,(A )∈A A ×A 是酉矩阵(1)A −A =A A ∈A A ×A(2)|det A |=1(3)AA , AA ∈A A ×A(4)A A ∈A A ×A9.正规矩阵:若A A A =A A A ,则A 是正规矩阵;若A A A =AA A ,则A 是实正规矩阵10.矩阵的迹和行列式(1)AA (A )=∑A AA A A =A =∑A A A A =A 为矩阵A 的迹;|A |或det (A )为行列式(2)AA (AA )=AA (AA );注:矩阵乘法不满足交换律(3)AA (AAA )=AA (AAA )=AA (AAA )(4)A =AAA , A 为酉矩阵,则AA (A )=AA (A )(5)|A A +AA A |=|A A +A A A |(6)|A A +AA A |=|A A +A A A |(7)|A A |=|A |(8)|A A |=A A |A |(9)|AA |=|A ||A |(10)det (A +AA )=det (A +AA )(11)|A |=∏A A A A =A(12)A =log [det (A A +AAA ∗)], A =A A A A ,则 A =∑log (1+A AA A )A A =1其中A A 为AA ∗奇异分解值的特征值11.矩阵的伴随矩阵A ∗(1)设A ={A AA }由行列式|A |的代数余子式A AA 所构成的矩阵(2)AA ∗=A ∗A =|A |A12.矩阵的逆(逆矩阵是唯一的)(1)A 的逆矩阵记作A −A , AA −A =A −A A =A ;(2)|A |≠0(A 为非奇矩阵)时,A −A =A|A |A ∗(3)|A |≠0且A ≠0,则(A A )−A =1A A −A(4)由AAA −A A −A =A ,得(AA )−A =A −A A −A(5)(A A )−A =(A −A )A(6)若|A |≠0,|A −A |=A|A |(7)若A 是非奇上(下)三角矩阵,则A −A 也上(下)三角矩阵(8)A −A =(A −A )A(9)(A −A +A A A −A A )−A A A A −A =AA A (AAA A +A )−A(10)(A +AA )−A A =A (A +AA )−A(11)Woodbury 恒等式 :(A +AA −A A )−A =A −A −A −A A (A +AA −A A )−A AA −A(12)A −A =A ∧−1A A12.对角矩阵,矩阵A 为对称矩阵,A 正交矩阵,则A −A AA =AAAA(A A ,A A )为对角矩阵或A −A AA =A A AA =AAAA (A A ,A A )=∧,则A =A ∧A A =∑A A A A A A A A A =A ; A −A =A ∧−1A A =∑1A AA A A A AA A =A 13.矩阵的导数(1)A (AA )=A A A +A A A(2)A (A −A )=−A −A A A A −A(3)A AA |A |=AA (A −A A A )(4)A AA AA (AA )=A AA(5)A AA (AA )=A A(6)A AA (A AA )=A(7)A AA (A )=A(8)A AA (AAA A )=A (A +A A )AA|A|=(A−A)A (9)A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的基本性质
矩阵的第⾏第列的元素为。

我们⽤或()表⽰的单位矩阵。

1.矩阵的加减法
(1),对应元素相加减
(2)矩阵加减法满足的运算法则
a.交换律:
b.结合律:
c.
d.
2.矩阵的数乘
(1),各元素均乘以常数
(2)矩阵数乘满足的运算法则
a.数对矩阵的分配律:
b.矩阵对数的分配律:
c.结合律:
d.
3.矩阵的乘法
(1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则
a.对于一般矩阵不满足交换律,只有两个方正满足且有
b.分配律:
c.结合律:
d.数乘结合律:
4.矩阵的转置,
(1)矩阵的幂:,,…,
(2)矩阵乘法满足的运算法则
a.
b.
c.
d.
5.对称矩阵:即;反对称矩阵:即
(1)设为(反)对称矩阵,则仍是(反)对称矩阵。

(2)设为对称矩阵,则或仍是对称矩阵的充要条件=。

(3)设为(反)对称矩阵,则,也是(反)对称矩阵。

(4)对任意矩阵,则分别是对称矩阵和反对称矩阵且.
(5)
6. Hermite矩阵:即;反Hermite矩阵,即
a.
b.
c.
d.
e.
f.(当矩阵可逆时)
7.正交矩阵:若,则是正交矩阵
(1)
(2)
8.酉矩阵:若,则是酉矩阵
(1)
(2)
(3),
(4)
9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵
10.矩阵的迹和行列式
(1)为矩阵的迹;或为行列式
(2);注:矩阵乘法不满足交换律
(3)
(4),为酉矩阵,则
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12),,则其中为奇异分解值的特征值
11.矩阵的伴随矩阵
(1)设由行列式的代数余子式所构成的矩阵
12.矩阵的逆(逆矩阵是唯一的)
(1)A的逆矩阵记作,;
(2)(为非奇矩阵)时,
(3)且,则
(4)由,得
(5)
(6)若
(7)若是非奇上(下)三角矩阵,则也上(下)三角矩阵
(8)
(9)
(10)
(11)Woodbury恒等式:
(12)
12.对角矩阵,矩阵为对称矩阵,正交矩阵,则为对角矩阵
或,则
;
13.矩阵的导数
(1)
(2)
(3)(4)(5)(6)(7)(8)(9)。

相关文档
最新文档