基于神经网络和PSO的机器人路径规划研究
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract: A new method of neural network and particle swarm algorithm based mobile robot path planning was proposed. With combination of the advantages of wavelet network and RBF network, a four layers neural network was designed. In conventional method, many hidden cells should design for every obstacle according to information of blocks, and the scale of network was very large with many obstacles. So PSO was used to train the parameters of neural network with its character of quick optimization to make the robot respond quickly to the dynamic environment. At last, the effectiveness of the method was proved by simulation experiments of mobile robotic in dynamic and static environments. Key words: WRBF neural network; Robot; Path planning; particle swarm algorithm
第 20 卷第 3 期 2008 年 2 月
系 统 仿 真 学 报© Journal of System Simulation
Vol. 20 No. 3 Feb., 2008
基于神经网络和 PSO 的机器人路径规划研究
成伟明,唐振民,赵春霞,陈得宝
(南京理工大学 计算机系人工智能实验室, 南京 210094)
神经网络方法进行路径规划一般都是将环境信息存储
第 20 卷第 3 期 2008 年 2 月
成伟明, 等:基于神经网络和 PSO 的机器人路径规划研究
Vol. 20 No. 3 Feb., 2008
在神经元中。目前多数算法是将环境中障碍直接用神经元表 示。如文[8]中建立了栅格环境信息与神经元的直接映射,文 [7]对于每个障碍均设计一定数量的隐节点来表示其位置。这 些表示方法有易于实现的优点,在环境中障碍较少时能够快 速发现路径。但当障碍较多且环境为动态时,网络结构变得 庞大且神经元的阈值随时间的变化需要不断改变,影响规划 的鲁棒性。针对以上问题本文给出一种新的神经网络路径规 划方法,采用有限固定数量的神经元,在规划过程中不断通 过环境信息的提取,利用粒子群算法及时调整 WRBF 网络 参数,实现对环境变化的快速响应。
神经网络作为一种高度并行的分布式系统,为机器人的 路径规划提供了可能,近年来,许多研究工作已取得较好的
效果[7,8]。传统的神经网络对环境的表示方法都采用根据障 碍的形状,对每一个障碍都用一定的神经元来表示[8],当障 碍物较多,网络规模往往庞大,处理运动的障碍时,由于障 碍物边界方程的不定性,通常要求表示环境的网络的一些神 经元的阈值随着障碍边界的方程变化而不断地调整,使得实 际中难应用。为尽量简化网络的规模,Hopfield 网络、自组 织网络、PAC 和 MLP 相结合的网络等被用于对机器人的路 径进行规划,取得了一定的成果。
(2)
式 2 中 D,T,R 分别为尺度变量,平移变量和旋转变量。
∑m
H2 j = exp(−
i=1
(H1i − c j 2σ 2 j
2
)
j = 1, 2,", n
(3)
式 3 中,cj 和 σj 是径向基函数的中心点和宽度变量。网
络输出如式 4:
n
∑ x(t + 1) = H2 j * w j1 j=1
1.1 WRBF 网络结构
经验现象表明,双隐层的神经网络无论在逼近能力,还 是在泛化能力方面比单隐层的网络具有更好的性能,而且, 双隐层网络比单隐层网络使用较少的神经元就能达到较好 的效果。但网络的结构和参数依然对算法的性能有较大的影 响,选择合适的网络结构和参数仍是设计优良网络的关键。 RBF 网络具有良好的局部特性,网络结构简单,小波网络具 有良好的非线性映射能力和良好的局部性特征,将二者结合 构造一种新的网络,既能发挥双隐层网络良好的逼近能力, 又不像普通的多层前馈网络中相连接的两层之间都需要对 权值进行设计,其只需要对第二隐层和输出层之间的权值进 行选择,其它权值都是“1”,对隐层神经元个数超过两个时, 采用小波和 RBF 相结合设计的网络有较少的参数。作者在 文献[9]中针对函数优化问题,提出了小波网络和 RBF 网络 相结合的双隐层 WRBF 网络,并通过实验验证了方法的有 效性。考虑到机器人路径规划问题,本文修改网络结构如图 1。同时针对路径规划对于算法实时性要求高的特点,采用 粒子群算法训练网络。
目标点的轨线距离较短,为使机器人接近目标,实际上是使
每一步机器人的位置坐标离目标点的距离尽可能小,因此设
计距离函数如式 6。
Eg = ( yg − yR (t +1))2 + (xg − xR (t +1))2
(6)
式 6 中,Eg 为机器人与目标点的距离,xg,yg 分别为目 标点的坐标,xR,yR 分别为 t+1 时刻机器人的位置坐标,当机 器人在 t+1 时刻接近目标时,Eg 值较小。实际上如果不考虑 碰撞问题,起点到终点的连线将是距离最小路径,由于障碍
收稿日期:2006-12-06
修回日期:2007-02-17
作者简介:成伟明(1981-), 男, 江苏兴化人, 博士生, 研究方向为路径规
1
划, 跟踪控制, 智能导航;唐振民(1961-), 男, 博士, 教授, 南京理工大
学计算机学院院长, 研究方向为智能导航, 图像处理。
• 608 •
基于 WRBF 网络的路径规划
步规划前,机器人通过传感器实时检测机器人周围的障碍物
分布情况,并指导粒子群算法训练神经网络权值,以及时调
整权值参数。权值调整完后,网络输出下一路径节点,机器
人用该路径节点作为自己的当前位置,并进行下一步的规
划。
1.2 能量函数设计
在路径规划中要解决两个问题,首先是不能与障碍物碰
撞,其次是要求路径尽可能的短。如果能够明确的定义这两
个问题的物理意义,提取能量函数,就可以将路径规划问题
转变成优化问题,并通过寻找能量函数的最优解来解决路径
规划问题。
对工作空间作 2 点假设:1、移动机器人在有限的二维
空间中运动;2、考虑安全性,将障碍物空间以机器人在长、
宽方向最大尺寸的 1/2 进行膨胀处理,则机器人可视为质点
处理;
首先希望机器人朝预定的目标移动,而且希望从起点到
摘 要:提出一种神经网络和粒子群算法相结合的移动机器人路径规划方法。采用小波网络和 RBF
网络相结合的四层神经网络结构,克服了传统神经网络方法进行路径规划时对每个障碍均设计一
些特定的隐节点,当障碍较多且环境动态时,网络结构庞大且神经元的阈值随时间的变化而需要不
断改变的缺点。利用粒子群对神经网络的参数进行训练,在规定的代数内对网络参数优化,使得
图 1 中 x(t)、y(t)、x(t+1)、y(t+1)分别为 t 和 t+1 时刻机
器人的位置坐标,分别作为网络的输入和输出。Φ1(x)是小 波函数,Φ2(x)是径向基函数,H1k、H2j 分别为第一隐层和第 二隐层的输出,(k=1,2,…,m; j=1,2,…,n),m,n 分别为第一
隐层和第二隐层神经元的个数,wj1、wj2 分别为第二隐层到 输出层的权值。
n
∑ y(t + 1) = H2 j * w j2
(4)
j=1
小波基函数选择为墨西哥帽小波如式 5:
ψ
(
x)
=
(1
−
x
2
)
*
e
1 2
x2
(5)
在机器人路径规划过程中,t 时刻网络的输出作为 t+1
时刻网络的输入。t 时刻网络的参数作为 t+1 时刻网络的训
练初始参数,以减少每步训练初始参数选择的盲目性。每一
引 言1
路径规划研究的最基本问题是指在有障碍物的工作环 境中,如何寻找一条从给定起点到终点的无碰运动路径。早 在1969年,Nilsson[1]就提出了一种可视图的方法,并采用A* 进行最优路径的搜索。上个世纪80年代,很多学者提出了不 少具有代表性的算法。其中栅格法[2]和势场法[3]是目前最常 用的两种路径规划算法。然而这些方法都有其自身的不足: 如栅格法存在环境分辨率高与环境信息存储量大的矛盾,人 工势场法存在四方面的问题[3],(1)陷阱区域;(2)相近障碍物 之间难发现路径;(3)在障碍物前易震荡;(4)在狭窄通道中 摆动。近年来随着仿生学优化理论的发展, 很多学者将这些 优化方法应用到路径规划上,比较有代表性的有蚁群算法[4] 和遗传算法[5]。同时随着对路径规划问题研究的不断深入, 越来越多的学者开始关注动态环境下的路径规划问题。如文 [6]中利用模糊推理法实现机器人的实时路径规划,但是模糊 控制规则的制定主要靠人的经验,降低了算法的鲁棒性和实 用性。
Φ1(X)=Ψ(x(t),y(t))=Ψ(x(t))*Ψ(y(t))
(1)
Ψ 是小波基函数,考虑参数编码的需要,第一隐层的输
出表示成式 2:
H1k = Dx (t) ⋅ Rx (t) ⋅ (x(t)-Tx (t)) ⋅ Dy (t) ⋅
Ry (t) ⋅ (y(t)-T y (t)) k = 1,2…,m
CHENG Wei-ming, TANG Zhen-min, ZHAO Chun-xia, CHEN De-bao
(AI Lab of Computer Department, Nanjing University of Science & Technology, Nanjing 210094, China)
的存在,机器人不可能沿着此方向移动,充分考虑避碰和机
器人所移动的轨线距离尽可能小两种因素,设计带有惩罚函
• 609 •
第 20 卷第 3 期 2008 年 2 月
系统仿真学报
Vol. 20 No. 3 Feb., 2008
数项的机器人运动距离表达式如式 7。
N −1
M
∑ ∑ Ec = (xR (t +1) − xR (t))2 + ( yR (t + 1) − yR (t))2 + F (7)
本文针对传统神经网络方法进行路径规划时对每个障 碍均设计一些特定的隐节点,当障碍较多且环境为动态时, 网络结构庞大且神经元的阈值随时间的变化而需要不断改 变的缺点,在对已有方法研究的基础上,结合小波网络和径 向基函数网络的优点,采用一种新的四层的(WRBF)网络进 行路径规划。以机器人当前位置作为网络的输入,根据传感 器获得的环境障碍信息,利用粒子群算法无交叉、快速、易 操作的优点训练网络权值,网络的输出是下一时刻的机器人 位置。提出了一种新的能量函数作为粒子群的适应度函数, 利用函数各部分之间相互制约作用,引导机器人朝目标方向 运动,避开障碍的同时,使路径尽量较优。最后进行了仿真 实验,实验结果验证了本文方法的有效性。
F 1 ( x)
F 2 ( x)
w11
H11
H21
x(t)
w21
x(t+1)
y(t) input layer
wn1
H12
H22
.
.
.
.
w12
.
.
.
.
w22
wn2
y(t+1)
H1m
H2 n
first hidden layer secend hidden layer output layer
图 1 WRBห้องสมุดไป่ตู้ 网络的基本结构
机器人在移动过程中能够快速响应环境的变化。通过对移动机器人在动、静态不同环境下的仿真
实验,证明了方法的有效性。
关键词:WRBF 网络;机器人;路径规划;粒子群算法
中图分类号:TP24
文献标识码:A
文章编号:1004-731X (2008) 03-0608-04
Path Planning of Robot Based on Neural Network and PSO
第 20 卷第 3 期 2008 年 2 月
系 统 仿 真 学 报© Journal of System Simulation
Vol. 20 No. 3 Feb., 2008
基于神经网络和 PSO 的机器人路径规划研究
成伟明,唐振民,赵春霞,陈得宝
(南京理工大学 计算机系人工智能实验室, 南京 210094)
神经网络方法进行路径规划一般都是将环境信息存储
第 20 卷第 3 期 2008 年 2 月
成伟明, 等:基于神经网络和 PSO 的机器人路径规划研究
Vol. 20 No. 3 Feb., 2008
在神经元中。目前多数算法是将环境中障碍直接用神经元表 示。如文[8]中建立了栅格环境信息与神经元的直接映射,文 [7]对于每个障碍均设计一定数量的隐节点来表示其位置。这 些表示方法有易于实现的优点,在环境中障碍较少时能够快 速发现路径。但当障碍较多且环境为动态时,网络结构变得 庞大且神经元的阈值随时间的变化需要不断改变,影响规划 的鲁棒性。针对以上问题本文给出一种新的神经网络路径规 划方法,采用有限固定数量的神经元,在规划过程中不断通 过环境信息的提取,利用粒子群算法及时调整 WRBF 网络 参数,实现对环境变化的快速响应。
神经网络作为一种高度并行的分布式系统,为机器人的 路径规划提供了可能,近年来,许多研究工作已取得较好的
效果[7,8]。传统的神经网络对环境的表示方法都采用根据障 碍的形状,对每一个障碍都用一定的神经元来表示[8],当障 碍物较多,网络规模往往庞大,处理运动的障碍时,由于障 碍物边界方程的不定性,通常要求表示环境的网络的一些神 经元的阈值随着障碍边界的方程变化而不断地调整,使得实 际中难应用。为尽量简化网络的规模,Hopfield 网络、自组 织网络、PAC 和 MLP 相结合的网络等被用于对机器人的路 径进行规划,取得了一定的成果。
(2)
式 2 中 D,T,R 分别为尺度变量,平移变量和旋转变量。
∑m
H2 j = exp(−
i=1
(H1i − c j 2σ 2 j
2
)
j = 1, 2,", n
(3)
式 3 中,cj 和 σj 是径向基函数的中心点和宽度变量。网
络输出如式 4:
n
∑ x(t + 1) = H2 j * w j1 j=1
1.1 WRBF 网络结构
经验现象表明,双隐层的神经网络无论在逼近能力,还 是在泛化能力方面比单隐层的网络具有更好的性能,而且, 双隐层网络比单隐层网络使用较少的神经元就能达到较好 的效果。但网络的结构和参数依然对算法的性能有较大的影 响,选择合适的网络结构和参数仍是设计优良网络的关键。 RBF 网络具有良好的局部特性,网络结构简单,小波网络具 有良好的非线性映射能力和良好的局部性特征,将二者结合 构造一种新的网络,既能发挥双隐层网络良好的逼近能力, 又不像普通的多层前馈网络中相连接的两层之间都需要对 权值进行设计,其只需要对第二隐层和输出层之间的权值进 行选择,其它权值都是“1”,对隐层神经元个数超过两个时, 采用小波和 RBF 相结合设计的网络有较少的参数。作者在 文献[9]中针对函数优化问题,提出了小波网络和 RBF 网络 相结合的双隐层 WRBF 网络,并通过实验验证了方法的有 效性。考虑到机器人路径规划问题,本文修改网络结构如图 1。同时针对路径规划对于算法实时性要求高的特点,采用 粒子群算法训练网络。
目标点的轨线距离较短,为使机器人接近目标,实际上是使
每一步机器人的位置坐标离目标点的距离尽可能小,因此设
计距离函数如式 6。
Eg = ( yg − yR (t +1))2 + (xg − xR (t +1))2
(6)
式 6 中,Eg 为机器人与目标点的距离,xg,yg 分别为目 标点的坐标,xR,yR 分别为 t+1 时刻机器人的位置坐标,当机 器人在 t+1 时刻接近目标时,Eg 值较小。实际上如果不考虑 碰撞问题,起点到终点的连线将是距离最小路径,由于障碍
收稿日期:2006-12-06
修回日期:2007-02-17
作者简介:成伟明(1981-), 男, 江苏兴化人, 博士生, 研究方向为路径规
1
划, 跟踪控制, 智能导航;唐振民(1961-), 男, 博士, 教授, 南京理工大
学计算机学院院长, 研究方向为智能导航, 图像处理。
• 608 •
基于 WRBF 网络的路径规划
步规划前,机器人通过传感器实时检测机器人周围的障碍物
分布情况,并指导粒子群算法训练神经网络权值,以及时调
整权值参数。权值调整完后,网络输出下一路径节点,机器
人用该路径节点作为自己的当前位置,并进行下一步的规
划。
1.2 能量函数设计
在路径规划中要解决两个问题,首先是不能与障碍物碰
撞,其次是要求路径尽可能的短。如果能够明确的定义这两
个问题的物理意义,提取能量函数,就可以将路径规划问题
转变成优化问题,并通过寻找能量函数的最优解来解决路径
规划问题。
对工作空间作 2 点假设:1、移动机器人在有限的二维
空间中运动;2、考虑安全性,将障碍物空间以机器人在长、
宽方向最大尺寸的 1/2 进行膨胀处理,则机器人可视为质点
处理;
首先希望机器人朝预定的目标移动,而且希望从起点到
摘 要:提出一种神经网络和粒子群算法相结合的移动机器人路径规划方法。采用小波网络和 RBF
网络相结合的四层神经网络结构,克服了传统神经网络方法进行路径规划时对每个障碍均设计一
些特定的隐节点,当障碍较多且环境动态时,网络结构庞大且神经元的阈值随时间的变化而需要不
断改变的缺点。利用粒子群对神经网络的参数进行训练,在规定的代数内对网络参数优化,使得
图 1 中 x(t)、y(t)、x(t+1)、y(t+1)分别为 t 和 t+1 时刻机
器人的位置坐标,分别作为网络的输入和输出。Φ1(x)是小 波函数,Φ2(x)是径向基函数,H1k、H2j 分别为第一隐层和第 二隐层的输出,(k=1,2,…,m; j=1,2,…,n),m,n 分别为第一
隐层和第二隐层神经元的个数,wj1、wj2 分别为第二隐层到 输出层的权值。
n
∑ y(t + 1) = H2 j * w j2
(4)
j=1
小波基函数选择为墨西哥帽小波如式 5:
ψ
(
x)
=
(1
−
x
2
)
*
e
1 2
x2
(5)
在机器人路径规划过程中,t 时刻网络的输出作为 t+1
时刻网络的输入。t 时刻网络的参数作为 t+1 时刻网络的训
练初始参数,以减少每步训练初始参数选择的盲目性。每一
引 言1
路径规划研究的最基本问题是指在有障碍物的工作环 境中,如何寻找一条从给定起点到终点的无碰运动路径。早 在1969年,Nilsson[1]就提出了一种可视图的方法,并采用A* 进行最优路径的搜索。上个世纪80年代,很多学者提出了不 少具有代表性的算法。其中栅格法[2]和势场法[3]是目前最常 用的两种路径规划算法。然而这些方法都有其自身的不足: 如栅格法存在环境分辨率高与环境信息存储量大的矛盾,人 工势场法存在四方面的问题[3],(1)陷阱区域;(2)相近障碍物 之间难发现路径;(3)在障碍物前易震荡;(4)在狭窄通道中 摆动。近年来随着仿生学优化理论的发展, 很多学者将这些 优化方法应用到路径规划上,比较有代表性的有蚁群算法[4] 和遗传算法[5]。同时随着对路径规划问题研究的不断深入, 越来越多的学者开始关注动态环境下的路径规划问题。如文 [6]中利用模糊推理法实现机器人的实时路径规划,但是模糊 控制规则的制定主要靠人的经验,降低了算法的鲁棒性和实 用性。
Φ1(X)=Ψ(x(t),y(t))=Ψ(x(t))*Ψ(y(t))
(1)
Ψ 是小波基函数,考虑参数编码的需要,第一隐层的输
出表示成式 2:
H1k = Dx (t) ⋅ Rx (t) ⋅ (x(t)-Tx (t)) ⋅ Dy (t) ⋅
Ry (t) ⋅ (y(t)-T y (t)) k = 1,2…,m
CHENG Wei-ming, TANG Zhen-min, ZHAO Chun-xia, CHEN De-bao
(AI Lab of Computer Department, Nanjing University of Science & Technology, Nanjing 210094, China)
的存在,机器人不可能沿着此方向移动,充分考虑避碰和机
器人所移动的轨线距离尽可能小两种因素,设计带有惩罚函
• 609 •
第 20 卷第 3 期 2008 年 2 月
系统仿真学报
Vol. 20 No. 3 Feb., 2008
数项的机器人运动距离表达式如式 7。
N −1
M
∑ ∑ Ec = (xR (t +1) − xR (t))2 + ( yR (t + 1) − yR (t))2 + F (7)
本文针对传统神经网络方法进行路径规划时对每个障 碍均设计一些特定的隐节点,当障碍较多且环境为动态时, 网络结构庞大且神经元的阈值随时间的变化而需要不断改 变的缺点,在对已有方法研究的基础上,结合小波网络和径 向基函数网络的优点,采用一种新的四层的(WRBF)网络进 行路径规划。以机器人当前位置作为网络的输入,根据传感 器获得的环境障碍信息,利用粒子群算法无交叉、快速、易 操作的优点训练网络权值,网络的输出是下一时刻的机器人 位置。提出了一种新的能量函数作为粒子群的适应度函数, 利用函数各部分之间相互制约作用,引导机器人朝目标方向 运动,避开障碍的同时,使路径尽量较优。最后进行了仿真 实验,实验结果验证了本文方法的有效性。
F 1 ( x)
F 2 ( x)
w11
H11
H21
x(t)
w21
x(t+1)
y(t) input layer
wn1
H12
H22
.
.
.
.
w12
.
.
.
.
w22
wn2
y(t+1)
H1m
H2 n
first hidden layer secend hidden layer output layer
图 1 WRBห้องสมุดไป่ตู้ 网络的基本结构
机器人在移动过程中能够快速响应环境的变化。通过对移动机器人在动、静态不同环境下的仿真
实验,证明了方法的有效性。
关键词:WRBF 网络;机器人;路径规划;粒子群算法
中图分类号:TP24
文献标识码:A
文章编号:1004-731X (2008) 03-0608-04
Path Planning of Robot Based on Neural Network and PSO