运筹学课后答案

合集下载

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学部分课后习题解答

运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答篇一:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一 P46 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。

(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

(a) 约束方程组的系数矩阵?1236300A??81?4020??30000?1最优解x??0,10,0,7,0,0?T。

(b) 约束方程组的系数矩阵?1234?A2212?????211?最优解x??,0,,0?。

5??5T(a)(1) 图解法最优解即为??3x1?4x2?935?3?的解x??1,?,最大值z?5x?2x?822??2?1(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?10x1?5x2?0x3?0x4?3x?4x2?x3? ?1?5x1?2x2?x4?8则P3,P4组成一个基。

令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表 ?1??2。

??min?,89??53?8 5?2?0,??min??218?3,??142?2?335?1,?2?0,表明已找到问题最优解x1?1, x2?,x3?0 , x4?0。

最大值 z*?22(b)(1) 图解法6x1?2x2x1?x2?最优解即为??6x1?2x2?2417?73?的解x??,?,最大值z?2?22??x1?x2?5(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?2x1?x2?0x3?0x4?0x5?5x2?x3?15??6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。

令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。

??min??,??245?,??461?3?3?15,24,??2?2?5?2?0,??min?新的单纯形表为篇二:运筹学习题及答案运筹学习题答案第一章(39页)用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学教材习题答案详解

运筹学教材习题答案详解
每加工一个单位产品B的同时,会产生两个单位的副产品C,且不需要任何费用,产品C一部分可出售赢利,其余的只能加以销毁.
出售单位产品A、B、C的利润分别为3、7、2元,每单位产品C的销毁费为1元.预测表明,产品C最多只能售出13个单位.试建立总利润最大的生产计划数学模型.
【解】设x1,x2分别为产品A、B的产量,x3为副产品C的销售量,x4为副产品C的销毁量,有x3+x4=2x2,Z为总利润,则数学模型为
公司目前和预计今后三年可用于三个项目的投资金额是:现有2500万,一年后2000万,两年后2000万,三年后1500万.当年没有用完的资金可以转入下一年继续使用.
IV公司管理层希望设计一个组合投资方案,在每个项目中投资多少百分比,使其投资获得的净现值最大.
表1-24
年份
10%项目所需资金(万元)
项目1
(2)
【解】最优解X=(3/4,7/2);最优值Z=-45/4
(3)
【解】最优解X=(4,1);最优值Z=-10
(4)
【解】最优解X=(3/2,1/4);最优值Z=7/4
(5) 【解】最优解X=(3,0);最优值Z=3
(6)
【解】无界解。
(7)
【解】无可行解。
(8)
【解】最优解X=(2,4);最优值Z=13
3
2
-0.125
0
0
0
R. H. S.
Ratio
3/4
C(j)-Z(j)
0
0
-0.375
-0.875
11.25
对应的顶点:
基可行解
可行域的顶点
X(1)=(0,0,2,12)、
X(2)=(0,2,0,6,)、
X(3)=( 、

运筹学(第五版) 习题答案

运筹学(第五版)  习题答案
单纯形表计算略
当所有非基变量为负数,人工变量 =0.5,所以原问题无可行解。
两阶段法(略)
(4)解法一:大M法
单纯形法,(表略)非基变量 的检验数大于零,此线性规划问题有无界解。
两阶段法略
1.7求下述线性规划问题目标函数z的上界和下界;
Max z= +
其中: , , , , , , ,
解:
求Z的上界
班次时间所需人数16点到10点60210点到14点70314点到18点60418点到22点50522点到2点2062点到6点30设司机和乘务人员分别在各时间区段一开始时上班并连续上班8小时问该公交线路至少配备多少司机和乘务人员
运筹学习题答案
第一章(39页)
1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
以( , )为基,基解 =(0,0,1,1 是 =-3;
最大值为 =43/5;最优解为 =(2/5,0,11/5,0 。
1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。
(1)max z=2 +
3 +5 15
6 +2 24
, 0
(2)max z=2 +5
4
2 12
1
0
0
0
14
-M
2
-2
[3]
-1
2
-2
0
-1
1
0
2/3
-
4M
3-6M
4M-4
2-3M
3M-5
5-3M
0
-M
0
0
(2)解:加入人工变量 , , ,… ,得:

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。

它包括数学模型的建立、问题求解方法的设计等方面。

b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。

它可以帮助组织提高效率、降低成本、优化资源分配等。

c)运筹学主要包括线性规划、整数规划、指派问题等方法。

习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。

它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。

运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。

1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。

在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。

在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。

在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。

在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。

习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。

在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。

在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。

在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。

第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。

其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。

习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。

《运筹学》(第二版)课后习题参考答案

《运筹学》(第二版)课后习题参考答案
表1—17 家具生产工艺耗时和利润表
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;

运筹学课后习题答案

运筹学课后习题答案

6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5

2
0
2②
15 0
6⑧
2
3





x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。

在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。

下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。

以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。

2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。

以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。

3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。

以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。

边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。

在该例中,最小费用为5,最大流量为3。

运筹学课后习题答案

运筹学课后习题答案
目 录


第一章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 复习思考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 复习思考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 第 三 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第 四 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第 五 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第 六 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第 七 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案在运筹学这门课程中,课后习题是帮助学生巩固理论知识和提高解决实际问题能力的重要环节。

以下是一些典型的运筹学课后习题及答案,供学生参考和练习。

习题1:线性规划问题问题描述:一个工厂需要生产两种产品A和B,每种产品都需要使用机器1和机器2。

产品A每单位需要机器1工作3小时,机器2工作2小时;产品B每单位需要机器1工作2小时,机器2工作4小时。

机器1每天最多工作24小时,机器2每天最多工作20小时。

如果产品A每单位的利润是500元,产品B每单位的利润是600元。

假设工厂希望最大化利润,问应该生产多少单位的产品A和B?解答:首先,设产品A的产量为x,产品B的产量为y。

根据题目条件,我们可以得到以下两个约束条件:\[ 3x + 2y \leq 24 \]\[ 2x + 4y \leq 20 \]目标函数是利润最大化,即:\[ \text{Maximize} \ P = 500x + 600y \]通过图解法或单纯形法,我们可以得到最优解为x=4,y=3。

此时,利润最大化为\( P = 500 \times 4 + 600 \times 3 = 3800 \)元。

习题2:网络流问题问题描述:一个供水系统由多个泵站和水库组成,需要确保每个水库都有足够的水量供应。

已知每个泵站的供水能力以及每个水库的需求量。

如何分配泵站的供水量,以满足所有水库的需求?解答:首先,需要构建一个网络流图,其中节点代表泵站和水库,边代表供水路径。

每条边的容量表示泵站的供水能力,每条边的流量表示实际供水量。

目标是找到满足以下条件的网络流:- 每个泵站的总流出量等于其供水能力。

- 每个水库的总流入量等于其需求量。

- 网络中没有负流量。

使用最大流算法,如Ford-Fulkerson算法或Edmonds-Karp算法,可以找到满足上述条件的最大网络流。

习题3:整数规划问题问题描述:一个公司需要决定是否投资于三个不同的项目,每个项目都需要一定的资金和人力资源。

运筹学课后答案大全

运筹学课后答案大全

第2章 线性规划的图解法1.解:x`A 1 (1) 可行域为OABC(2) 等值线为图中虚线部分(3) 由图可知,最优解为B 点, 最优解:1x =712,7152=x 。

最优目标函数值:7692.解: x 2 10 1(1) 由图解法可得有唯一解 6.02.021==x x ,函数值为3.6。

(2) 无可行解 (3) 无界解 (4) 无可行解 (5)无穷多解(6) 有唯一解 3832021==x x ,函数值为392。

3.解:(1). 标准形式:3212100023m ax s s s x x f ++++=,,,,9221323302932121321221121≥=++=++=++s s s x x s x x s x x s x x(2). 标准形式:21210064m in s s x x f +++=,,,46710263212121221121≥=-=++=--s s x x x x s x x s x x(3). 标准形式:21''2'2'10022m in s s x x x f +++-=,,,,30223505527055321''2'2'12''2'2'1''2'2'11''2'21≥=--+=+-=+-+-s s x x x s x x x x x x s x x x4.解:标准形式:212100510m ax s s x x z +++=,,,8259432121221121≥=++=++s s x x s x x s x x松弛变量(0,0) 最优解为 1x =1,x 2=3/2.标准形式:32121000811m in s s s x x f ++++=,,,,369418332021032121321221121≥=-+=-+=-+s s s x x s x x s x x s x x剩余变量(0.0.13) 最优解为 x 1=1,x 2=5.6.解:(1) 最优解为 x 1=3,x 2=7. (2) 311<<c (3) 622<<c (4)4621==x x(5) 最优解为 x 1=8,x 2=0. (6) 不变化。

《运筹学(胡运权)》第五版课后习题答案

《运筹学(胡运权)》第五版课后习题答案
X1 5.000000 0.000000
X2 0.000000 2.000000
X3 3.000000 0.000000
X1,X2,X30.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.200000
3) 0.000000 0.600000
P1 P4
-1/3 0 0 11/6

P2 P3
0 1/2 2 0

5
P2 P4
0 -1/2 0 2

P3 P4
0 0 1 1

5
最优解A=(0 1/2 2 0)T和(0 0 1 1)T
49页13题
设Xij为第i月租j个月的面积
minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x14
x41+x42+x43+x44+x45=1
x11+x21+x22+x23=1
x12+x22+x32+x42=1
x13+x23+x33+x43=1
x14+x24+x34+x44=1
x15+x25+x35+x45=1
xij=1或0(i=1,2,3,4 j=1,2,3,4,5)
由excel计算得出;张游仰泳,王游蛙泳,赵游自由泳,预期总成绩为126.2s.
6x1+3x2+5x3+8x4≤45

运筹学课后答案

运筹学课后答案

运筹学课后答案3.1 与一般线性规划的数学模型相比,运输问题的数学模型具有什么特征?答: 1、运输问题一定有有限最优解。

2、约束系数只取0或1。

3、约束系数矩阵的每列有两个1, 而且只有两个1。

前m 行中有一个1,或n 行中有一个1。

4、对于产销平衡的运输问题,所有的约束都取等式。

3.2 运输问题的基可行解应满足什么条件?将其填入运输表中时有什么体现?并说明在迭代计算过程中对它的要求。

解:运输问题基可行解的要求是基变量的个数等于m+n-1。

填入表格时体现在数字格的个数也应该等于m+n-1。

在迭代过程中,要始终保持数字格的个数不变。

3.3 试对给出运输问题初始基可行解的西北角法、最小元素法和V ogel 法进行比较,分析给出的解之质量不同的原因。

解:用西北角法可以快速得到初始解,但是由于没有考虑运输价格,效果不好;最小元素法从最小的运输价格入手,一开始效果很好,但是到了最后因选择余地较少效果不好; V ogel 法从产地和销地运价的级差来考虑问题,总体效果很好,但是方法较复杂。

3.4 详细说明用位势法(对偶变量法)求检验数的原理。

解:原问题的检验数也可以利用对偶变量来计算 :其中,ui 和vj 就是原问题约束对应的对偶变量。

由于原问题的基变量的个数等于m+n-1。

所以相应的检验数就应该等于0。

即有:由于方程有m+n-1个, 而变量有m+n 个。

所以上面的方程有无穷多个解。

任意确定一个变量的值都可以通过方程求出一个解。

然后再利用这个解就可以求出非基变量的检验数了。

3.5 用表上作业法求解运输问题时,在什么情况下会出现退化解?当出现退化解时应如何处理? 解:当数字格的数量小于m+n-1时,相应的解就是退化解。

如果出现了退化解,首先找到同时划去的行和列,然后在同时划去的行和列中的某个空格中填入数字0。

只要数字格的数量保持在m+n-1个的水平即可。

3.6 一般线性规划问题具备什么特征才能将其转化为运输问题求解,请举例说明。

运筹学第3版熊伟编著习题答案

运筹学第3版熊伟编著习题答案
最优解X=<30000,0,66000,0,109200,0>;Z=84720
1.5炼油厂计划生产三种成品油,不同的成品油由半成品油混合而成,例如高级汽油可以由中石脑油、重整汽油和裂化汽油混合,辛烷值不低于94,每桶利润5元,见表1-26.
表1-26
成品油
高级汽油
一般汽油
航空煤油
一般煤油
半成品油
中石脑油
基本最优解 ,最优解的通解可表示为 即
〔4〕
[解]单纯形表:
C<j>
3
2
1
0
0
R. H. S.
Ratio
Basis
C<i>
X1
X2
X3
X4
X5
X4
0
5
4
6
1
0
25
5
X5
0
[8]
6
3
0
1
24
3
C<j>-Z<j>
3
2
1
0
0
0
X4
0
0
1/4
33/8
1
-5/8
10
X1
3
1
3/4
3/8
0
1/8
3
C<j>-Z<j>
方案四:在三年内投资人应在第三年年初投资,一年结算一次,年收益率是30%,这种投资最多不超过1万元.
投资人应采用怎样的投资决策使三年的总收益最大,建立数学模型.
[解]是设xij为第i年投入第j项目的资金数,变量表如下
项目一
项目二
项目三
项目四
第1年
第2年

2-9章运筹学课后题及答案

2-9章运筹学课后题及答案

第二章决策分析2.1 某公司面对五种自然状态、四种行动方案的收益情况如下表:假定不知道各种自然状态出现的概率,分别用以下五种方法选择最优行动方案:1、最大最小准则2、最大最大准则3、等可能性准则4、乐观系数准则(分别取α=0.6、0.7、0.8、0.9)5、后悔值准则解:1、用最大最小准则决策S4为最优方案;2、用最大最大准则决策S2为最优方案;3、用等可能性准则决策S4为最优方案;4、乐观系数准则决策(1) α=0.6,S1为最优方案;(2) α=0.7,S1为最优方案;(3) α=0.8,S1为最优方案;(4) α=0.9,S2为最优方案;可见,随着乐观系数的改变,其决策的最优方案也会随时改变。

5、用后悔值准则决策S4为最优方案。

2.2 在习题1中,若各种自然状态发生的概率分别为P(N1)=0.1、P(N2)=0.3、P(N3)=0.4、P(N4)=0.2、P(N5)=0.1。

请用期望值准则进行决策。

解:期望值准则决策S1为最优方案。

3.3 市场上销售一种打印有生产日期的保鲜鸡蛋,由于确保鸡蛋是新鲜的,所以要比一般鸡蛋贵些。

商场以35元一箱买进,以50元一箱卖出,按规定要求印有日期的鸡蛋在一周内必须售出,若一周内没有售出就按每箱10元处理给指定的奶牛场。

商场与养鸡场的协议是只要商场能售出多少,养鸡场就供应多少,但只有11箱、12箱、15箱、18箱和20箱五种可执行的计划,每周一进货。

1、编制商场保鲜鸡蛋进货问题的收益表。

2、分别用最大最小准则、最大最大准则、等可能性准则、乐观系数准则(α=0.8)和后悔值准则进行决策。

3、根据商场多年销售这种鸡蛋的报表统计,得到平均每周销售完11箱、12箱、15箱、18箱和20箱这种鸡蛋的概率分别为:0.1、0.2、0.3、0.3、0.1。

请用期望值准则进行决策。

1、收益表2、用各准则模型求解(1)最大最小准则得S5为最优方案;(2)最大最大准则得S1为最优方案;(3)等可能性准则得S4为最优方案;(4)乐观系数( =0.8)准则得S1为最优方案;(5)后悔值准则得S3为最优方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.6 一般线性规划问题具备什么特征才能将其转化为运输问题求解,请举例说明。
☆★☆★☆ 解:如果线性规划问题有“供”和“需”的关系,并且有相应的“费用”,就可以考虑将线性规划问题转成运输 问题求解。例如,生产满足需求的问题。 3.7 试判断表 3-30 和表 3-31 中给出的调运方案可否作为表上作业法迭代时的基可行解?为什么? 答:都不是。数字格的数量不等于 m+n-1。
3] X(2,1) - X(2,2) + X(2,3) + X(2,4) + X(2,5) = 40
3.11 表 3-36 示出一个运输问题及它的一个解:
试问:
☆★☆★☆
(1)表中给出的解是否为最优解?请用位势法进行检验。 答:是最优解。 (2) 如 价 值 系 数 c24 由 1 变 为 3 , 所 给 的 解 是 否 仍 为 最 优 解 ? 若 不 是 , 请 求 出 最 优 解 。 答 : 原来的解不是最优解。新的最优解是: x12=3,x13=5,x21=8,x22=2,x33=1,x34=3,其他变量为 0 。
3.3 试对给出运输问题初始基可行解的西北角法、最小元素法和 Vogel 法进行比较,分析给出的解之质量 不同的原因。 解:用西北角法可以快速得到初始解,但是由于没有考虑运输价格,效果不好;最小元素 法从最小的运输价格入手,一开始效果很好,但是到了最后因选择余地较少效果不好; Vogel 法从产地和 销地运价的级差来考虑问题,总体效果很好,但是方法较复杂。
3.4 详细说明用位势法(对偶变量法)求检验数的原理。 解:原问题的检验数也可以利用对偶变量来计算 :
其中,ui 和 vj 就是原问题约束对应的对偶变量。由于原问题的基变量的个数等于 m+n-1。所以相应的检验 数就应该等于 0。即有: 由于方程有 m+n-1 个, 而变量有 m+n 个。所以上面的方程有无穷多个解。任意确定一个变量的值都可以 通过方程求出一个解。然后再利用这个解就可以求出非基变量的检验数了。 3.5 用表上作业法求解运输问题时,在什么情况下会出现退化解?当出现退化解时应如何处理? 解:当 数字格的数量小于 m+n-1 时,相应的解就是退化解。如果出现了退化解,首先找到同时划去的行和列,然 后在同时划去的行和列中的某个空格中填入数字 0。只要数字格的数量保持在 m+n-1 个的水平即可。
3.13 试写出本章例 5 转运问题的数学模型。
解解::对 已知偶问a1题=如 10,下a:2=40,a3 = a4 = a5 = 0
m
n
mb1a=x Zb2= b3=aiu0,i b4=b3jv0j,b5=20 Q=50
i 1
j 1
下ui 面 就v j 是 c相ij 应i的模1,型2, :m; j 1,2,, n MINuZi ,=v j无约束, i 1,2,m; j பைடு நூலகம்,2,, n
(3)若所有价值系数均增加 1,最优解是否改变?为什么? 答:不会改变。因为检验数不变。 (4)若所有价值系数均乘以 2,最优解是否改变?为什么? 答:最优解不变。因为检验数不变。 (5)写出该运输问题的对偶问题,并给出其对偶问题的最优解。
3.12 1,2,3 三个城市每年需分别供应电力 320,250 和 350 单位,由 I,Ⅱ两个电站提供,它们的最大 供电量分别为 400 个单位和 450 个单位,单位费用如表 3—37 所示。由于需要量大于可供量,决定城市 1 的供应量可减少 0~30 单位,城市 2 的供应量不变,城市 3 的供应量不能少于 270 单位,试求总费用最低 的分配方案(将可供电量用完)。
4 X(1,1最)+优5 解 X(1是,2: )+u31 X(11,3,)u+2 2X0(,1u,34)+01,00X(1, 5)
+ 5 X(2,1)+ X(2,2)+v21X(12,,3v)2+1020, vX3 (2,54,)v+4 4X1(2, 5)
+ 3 X(3,1)+2X(3,2)+3 X(3,3)+5 X(3, 4) + 5 X( 3, 5)
3.1 与一般线性规划的数学模型相比,运输问题的数学模型具有什么特征? 答: 1、运输问题一定有有限最优解。 2、约束系数只取 0 或 1。 3、约束系数矩阵的每
列有两个 1, 而且只有两个 1。前 m 行中有一个 1,或 n 行中有一个 1。 4、对于产销平衡的运输问题,所有的约束都取等式。
3.2 运输问题的基可行解应满足什么条件?将其填入运输表中时有什么体现?并说明在迭代计算过程中 对它的要求。 解:运输问题基可行解的要求是基变量的个数等于 m+n-1。填入表格时体现在数字格的个 数也应该等于 m+n-1。在迭代过程中,要始终保持数字格的个数不变。
☆★☆★☆
运筹学课后答案
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
☆★☆★☆
ij cij (ui v j ) i 1,2,m; j 1,2,, n cij (ui v j ) 0 i 1,2,m; j 1,2,, n
3.8 表 3-32 和表 3-33 分别给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用 表上作业法求最优解。
3.9 试求出表 3-34 给出的产销不平衡运输问题的最优解。
3.10 某市有三个面粉厂,它们供给三个面食加工厂所需的面粉。各面粉厂的产量、各面食加工厂加工面 粉的能力、各面食加工厂和各面粉厂之间的单位运价,均表示于表 3-35 中。假定在第 1,2 和 3 面食加工 厂制作单位面粉食品的利润分别为 12 元、16 元和 11 元,试确定使总效益最大的面粉分配计划(假定面粉厂 和面食加工厂都属于同一个主管单位)。
+ 2 X(4,1)+100X(4,2)+5 X(4,3)+ 3 X(4,4)+6 X( 4, 5)
+ 100X(5,1)+4X(5,2)+5X(5,3)+6 X( 5, 4) +5 X( 5, 5)
2]-X(1,1) + X(1,2) + X(1,3) + X(1,4) + X(1,5) = 10
相关文档
最新文档