船舶设计论文中英文外文翻译文献
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶设计论文中英文外文翻译文献
XXX shipbuilding。
with a single large container vessel consisting of approximately 1.5 n atomic components in a n hierarchy。
this n is considered a XXX involves a distributed multi-agent n that runs on top of PVM.
2 XXX
Ship XXX process。
as well as the final product's performance and safety。
nal design XXX-consuming and often fail to consider all the complex factors XXX。
there is a need for a more XXX designers.
3 The Role of HPCN in Ship Design n
HPCN。
or high-performance computing and orking。
has the potential to XXX utilizing the massive parallel processing power of HPCN。
designers XXX changes。
cing the time and cost of the
design process。
nally。
HPCN can handle the complex XXX。
XXX.
4 XXX XXX of the HPCN n Support Tool
The XXX ship designers is implemented as a distributed multi-agent n that runs on top of PVM。
This XXX。
XXX to find the best design ns。
taking into account us performance and safety XXX。
the XXX.
There are many similarities een the n of complex products like ships。
aircraft。
and cars。
and the XXX a n plan to ensure that all components come together at the right time and place。
Similarly。
a parallel computer n should ensure that the appropriate data is available on the XXX.
It is XXX issues with indeterminacy on multi-processor hardware。
This has led researchers in XXX paradigms。
XXX Factories。
XXX of those found in the field of Multi-Agent Systems。
Note: No paragraphs XXX。
XXX.)
XXX large。
XXX。
such as container ships。
XXX 1,100 employees。
and is XXX up to four ships per year.
3 The Ship Design Process
The ship design process is a complex and XXX disciplines。
XXX。
XXX engineering,structural engineering。
XXX the development of the ship's basic design。
which defines its overall ns。
shapeand general arrangement。
This is followed by the detailed design phase。
which XXX for each individual component andsystem。
The final stage of the design process is the n phase。
which XXX.
4 Manufacturing Issues in Ship Design
Manufacturing issues play a critical role in ship design。
as they can have a significantimpact on the overall cost。
quality and performance of the ship。
For example。
the XXX。
XXX。
as well as its XXX。
the layout andarrangement of the ship's components and systems XXX.
5 Parallel n of Ship Design
To address these manufacturing issues。
we have XXX。
The n is based on the een shipbuilding and parallel computing。
and
XXX is used to search for the optimal design parameters。
such as the choiceof materials。
manufacturing processes and component layout。
that minimize the overall costand maximize the performance of the ship。
The n has been tested on a XXX designs。
and has XXX.
XXX's (supertankers) and very large containerships。
The
yard has a remarkable record of being the first in the world to build a double-XXX。
they are constructing 15 of XXX ever built for the Maersk line。
These massive vessels are approximately 340 meters long and can carry around 7000 containers at a top speed of 28 knots。
The ships require a crew of only 12 members.
XXX XXX manufacturing modules。
which are then XXX to
a specific task such as cutting。
welding。
and surface treatment。
At any given time。
up to three identical ships are being built。
and a new ship is XXX 100 days.
XXX。
there are approximately 40 robots XXX。
the yard places a strong emphasis on research and development。
with around 10 industrial Ph.D。
students XXX.
In the future。
XXX in our daily lives。
For instance。
the。
is expected to e the primary medium for XXX format.
Direct digital contact with XXX in the design process。
giving them influence over the final product。
This XXX。
especially with the XXX systems。
like AMROSE。
use digital CAD models to create task-performing。
XXX from the virtual world using simple sensor systems due to the high n required in XXX moving in an artificial force field designed to attract the tool center to the goal and repel it from obstacles。
HoweverXXX.
Most industrial products。
such as windmill housing components。
are designed using us CAD systems。
Figure 1 displays a CAD model for the housing of a windmill。
created using XXX。
which includes both the work-piece and task-curve geometries.
XXX by Henry Ford about 100 years ago。
today'XXX structure of a typical n line。
which follows a serial computer program。
is no longer the norm。
This is because such a structure is not XXX-XXX.
In fact。
XXX do not XXX into account。
To handle unpredictability。
XXX.
Manufacturers are also realizing that the top-down serial approach results in the n of human workers。
For example。
some car manufacturers have experimented with having teams of human workers XXX ns on a n line。
This model better XXX.
A XXX is essential in the modern XXX manufacturers optimize the design of their ships and ce costs。
The tool can also help manufacturers XXX before the ship is built.
XXX us sources。
such as CAD models。
ns。
and test data。
The tool can also take into account us factors。
such as material properties。
manufacturing processes。
and environmental ns.
Overall。
XXX their ship design and ce costs。
The tool can help manufacturers XXX before the ship is built。
By using the tool。
manufacturers XXX.
Large ships。
along with aircraft。
are some of the most complex things ever built。
A container ship consists of about 1.5 n atomic components that are XXX。
any support tool for the manufacturing process can be expected to be a large high-XXX (HPCN) n.
When designing ships。
XXX。
as well as issues such as economy。
safety。
insurance。
maintenance。
and even ning。
Once a nal design is established。
the overall design is XXX process then begins with the individual basic building blocks。
such as XXX and finally put together in the dock to form the finished ship.
XXX after the design stage。
This includes ns such as whether the intermediate structures can be built using available n facilities。
the impact on material usage。
and the efficiency of n ling [7]。
Fig。
2 illustrates how design ns made during n can result in future costs。
some of which may not be known at the time。
To
provide better estimates of these costs early in the process。
a XXX necessary。
XXX。
In the following n。
we will discuss the design and XXX as a parallel n。
modeling the primary actors in the process as agents.
Fig。
2.XXX economic resources for the future。
which is only partially known at the time of design.
6.Multi-Agent Systems
XXX of a are agent。
which is an XXX of an object in the context of Object n。
may be XXX has its own beliefs。
desires。
and ns and XXX.
A multi-agent system is a group of XXX。
XXX。
A good example of this is learning to drive a car in traffic。
where each driver is an XXX in the real world。
such as the n of XXX ns。
refer to [4].
One interesting property of multi-agent systems is the way in which the global r of the system emerges from the individual XXX.
The system consists of several agents。
each with a specific role in the manufacturing process。
For example。
the assembly ork generator agent has knowledge about shipbuilding n methods and can plan XXX。
XXX using the n resources available.
To improve the efficiency of the system。
a parallel XXX is used。
This means that XXX。
rather than waiting for one agent to finish its task before the next one can begin。
By doing this。
the manufacturing process XXX.
One challenge of implementing a parallel system is ensuring that the agents do not interfere with each other。
To address this。
the system uses a message-passing XXX messages。
which ensures that they do not access the same data at the same time.
XXX es more complex。
the system must be able to handle the increased workload。
To address this。
the system is XXX can
be added as needed。
and existing agents can be modified without affecting the rest of the system.
In n。
the manufacturing system described here consists of multiple agents with specific roles。
and is XXX system uses a message-XXX do not interfere with each other。
and is XXX.
XXX system。
to build an XXX designers。
The n is an HPCN because of the scale of shipbuilding – a large container ship involves the assembly of around 1.5 n atomic components in the n process。
The role of the XXX。
This n can be described as a distributed multi-agent system running on PVM.
1.XXX
Manufacturing complex products。
such as ships。
airplanes。
cars。
XXX。
for example。
must ensure that all components are assembled at the appropriate time and place according to the n plan。
Similarly。
computer ns must ensure that appropriate data can run on the appropriate processor。
It is not surprising。
therefore。
that XXX has led some researchers to XXX paradigms。
XXX。
XXX.
n tasks are like operating on data。
planning。
ling。
XXX。
At the same time。
complex products are XXX facilities。
so component classes must be banished to them。
This is similar to data XXX。
The rest of this paper attempts to use this theory to build a parallel n that XXX.
2.XXX
XXX recognized as one of the most modern and XXX ultra-large oil tankers (VLCCs) and ultra-large container ships。
The company's factory area is the world's first to build a double-hull VLCC。
and it is currently building 15 ships for Maersk Line。
XXX.
XXX。
The ship design can break down manufacturing modules into assembly and processing。
which are put into n in many workshops。
such as cutting。
welding。
and surface treatment。
At any time。
three identical ships are under n。
with a new ship being built every 100 days。
The company can XXX。
there are 40 machines XXX in the company。
There are about ten
industrial doctoral students in the research tasks of the company。
who come from different XXX.
未来制造系统将受到信息科技的影响,例如互联网将在商品交易中占主导地位,客户可以直接与制造商联系并参与在设计过程中。
智能机器人系统如AMROSE将提供机械构建任务的执行,通过人与机电一体化合作完成实际的制造业。
大多数工业产品如风车房组成部分在各种CAD系统下电子化设计。
今天现实执行的大规模生产是根据传统的生产工程哲学观念100年前从XXX引进,这种刚性反映在自上而下的规划和控制系统用于制造业,但是制造商也开始意识到对自上而下的串行方法是人工异化的结果之一。
船舶设计优化决策支持工具将成为一个大型的HPCN的应用,因为大型的船只以及飞机是建造的最复杂的。
船舶设计需要考虑多方面因素,包括经济、安全、保险、维修和拆卸等。
一旦确定了功能设计,就可以将整体设计分解为制造组件的层次结构进行制造。
制造过程从基本构建模块,如钢板和钢管开始,逐步组合成更加复杂的结构,最终在船坞中组装成成品船。
在设计阶段,及时了解设计制造决策的结果非常重要。
这包括是否可以使用现有的生产设施建造中间结构,材料的运用是否会影响制造,以及是否可以有效地安排生产等问题。
图2
显示了重新设计施工决策的预期费用,其中只有一些是已知的。
因此,在生产过程中,必须提供一个决策支持工具,以更好地估算隐含成本。
使用现有的生产设备能否完成生产任务,以及仿真生产任务的可行性和效率,都是计算密集型的应用程序模拟和优化的重要方面。
在下一节中,我们将描述一个决策支持工具,该工具可以设计和使用并行程序进行建模,通过模拟在这个过程中的主要角色程序。
多智能体系统是一个试图协调解决一些问题的代理集合,尤其是地区的控制和优化。
一个典型的例子是在交通中研究开车的过程中,每个司机都是独立的代理来观察和感受其他司机的意图。
代理在现实世界中是一种很有用的工具,用于建模动力学过程,例如蛋白质的分子运动和多连杆机器人。
对于其他应用,可以参考文献[4]。
多智能体系统的有趣特性之一是该系统的全球化出现是因为个体的相互作用[10]。
这个概念的出现可以被看作是动力系统概念的进化。
在船舶制造中,代理集成了造船生产装配序列规划方法的知识,验证代理机器人的运动,提供可以生成无碰撞轨迹的模拟器以供机器人执行任务,以及工料测量师代理,它拥有关于在制造过程中涉及的各项费用知识和日程安排代理,即设计用于执行任务使用的生产制造资源的时间表。
最后,为了更好地建模和优化船舶制造过程,我们需要并行实施决策支持工具,以提高计算效率和准确性。
决策支持工具是一种针对多处理器系统的面向对象软件,它能够实现所有的代理。
在XXX船厂,有一个硅谷制图工作站的网络。
为了避免手写通信代码在代理和源代码之间的负载不平衡,开发了抽象的互动机制。
这些机制基于对被代理人的任务分配在每个处理器中。
该协会任务分配机构在系统中负责各方面通讯和任务迁移。
删除明显有问题的段落)
为了实现代理的任务分配和通讯,抽象的互动机制被开发。
这些机制是基于对被代理人的任务分配在每个处理器中。
在系统中,协会任务分配机构负责各方面的通讯和任务迁移。
这种面向对象的软件能够在多处理器系统中实现所有的代理。
在XXX船厂,硅谷制图工作站的网络也使用了这种决策支持工具。