LTE理论速率计算
LTE速率计算
LTE速率计算下行峰值速率的计算:计算峰值速率一般米用两种方法:第一种:是从物理资源微观入手,计算多少时间内(一般采用一个TTI或者一个无线帧)传多少比特流量,得到速率;另一种:是直接查某种UE类型在一个TTI(LTE系统为1ms)内能够传输的最大传输块,得到速率。
下面以FDD-LTE为例,分别给出两种方法的举例。
【方法一】首先给出计算结果:20MHz带宽情况下,一个TTI内,可以算得最高速率为:总速率二,业务信道的速率=*75洽150Mbps数字含义:6:下行最高调制方式为64QAM 1个符号包含6bit信息;2和7:LTE系统的TTI为1个子帧(时长1mS,包含2个时隙,常规CP下,1 个时隙包含7个符号;因此:在一个TTI内,单天线情况下,一个子载波下行最多传输数据6X7X2bit ; 2:下行采用2X2MIMO两层空分复用,双流可以传输两路数据;1200:20MHz 带宽包含1200个子载波(100个RB每个RB含12个子载波)75%下行系统幵销一般取25% (下行幵销包含RS信号(2/21)、PDCCH/PCFICH/PHICH(4/21) SCH BCH等),即下行有效传输数据速率的比例为75%如果是TD-LTE系统,还要考虑上下行的时隙配比和特殊时隙配比,对下行流量对总流量占比的影响。
如在时隙配比3:1/特殊子帧配比10:2:2的情况下:一个无线帧内,各子帧依次为DSUDD??DSU,其中D为下行子帧U为上行子帧,每个子帧包含2个时隙共14个符号,S为特殊子帧,10:2:2的配置,表示DwPTS(Downlink Pilot TimeSlot) 、GP(Guard Period)和UpPTS(Uplink Pilot TimeSlot)各占10个、2个和2个符号。
那么所有下行符号等效在一个TTI内占的比例为(6*14+2*10)/14*10=74%,如果也粗略考虑75%勺控制信道幵销,那么TD-LTE 系统在3:1/10:2:2 的配置下,下行峰值速率可达:*75%*74躺112Mbps其他的时隙配比、特殊子帧配比,都可以参考这个方法来计算。
LTE速率计算
1、FDD理论计算公式:一个时隙(0.5ms)内传输7个OFDM符号,即在1ms内传输14个OFDM符号,一个资源块(RB)有12个子载波(即每个OFDM在频域上也就是15KHZ),所以1ms内(2个RB)的OFDM个数为168个(14*12),它下行采用OFDM技术,每个OFDM包含6个bits,则20M带宽时下行速速为:<OFDM的bits数>*<1ms内的OFDM数>*<20M带宽的RB个数>*<1000ms/s>=6*168*100*1000=100800000bits/s=100Mb2、TDD理论计算公式:假设:带宽为20MHZ,TDD配比使用配置为1,即DL:UL:S=4:4:2,特殊时隙配置为DwPTS : Gp : UpPTS=10:2:2,子帧中下行控制信道占用3个符号,传输天线为2。
总10ms周期内,下行子帧有效数为4+10/14*2=5.4320MHZ带宽下:每帧中下行符号数为14*12*100*(4+10/14*2)=91200每帧中下行控制信道所占用的符号数为(3*12-2*2)*100*5.43=17371.4每帧中下行参考信号数目为16*100*5.43=8685.7每帧中用于同步的符号数为288每帧中PBCH符号数为(4*12-2*2)*6=264则每帧中下行的PDSCH符号数为91200-17371.4-8685.7-288-264=64951假设采用64QAM,码率为5/6,则速率为:(6*5/6*64951*2)/10ms=64.951Mbits/s其中6为64 QAM时每符号的比特数,5/6为码率,2为天线数RE:资源粒子 RB资源块1RB=7*12=84RE一个RB=12个子载波20M带宽:12*15*100=18000Hz,加2M保护带宽,不就是20M了嘛,不同的带宽不同的资源粒子数OFDM符号是在时域上说的,一个RE就是OFDM符号。
LTE测试下载速率学习
LTE测试下载速率学习一、下载速率的计算1.1 帧结构1.2 RB and RE1.2.1 RBLTE空中接口分配资源的基本单位是物理资源块(physical Resource Block,PRB)。
一个物理资源块包括频域上的连续12个子载波,和时域上的7个连续的OFDM 符号周期。
一个RB对于的是带宽为180kHZ、时长为0.5ms的无线资源。
以20M带宽为例,一共有100个RB数。
1.2.2 RELTE的下行物理资源可以看成是时域和频域资源组成的二维栅格,把一个常规的OFDM符号周期和一个子载波组成的资源成为一个资源单位(Resource Element,RE),那么一个RB包含12*7=84个RE。
每个RE都可以根据无线环境选择QPSK、16QAM或64QAM的调制方式,调制方式为QPSK时可以携带2bit信息,16QAM时可以携带4bit,而64QAM则可以携带6bit信息。
1.3 CP保护间隔中的信号与该符号尾部相同,即循环前缀(Cyclic Prefix,简称CP)。
Tcp的作用:既可以消除多径的ISI,又可以消除ICI。
一个OFDM的符号周期包括有用符号时间Tu和循环前缀Tcp,Tofdm=Tu+Tcp。
一般分为普通CP和扩展CP,普通CP配置情况下,一个时隙内有用符号为7个,扩展CP配置情况下为6个。
所谓有用符号就是可以携带有效数据的符号。
1.4 PCFICH、PHICH和PDCCH配置1.5 上下行理论计算1.5.1 下行峰值速率以20M带宽为例,可用RB为100。
1)以常用的双天线为例,RS的图案如下图所示。
可以看出每个子帧RS的开销为16/168=2/21。
2)PCFICH、PHICH占用的是每个子帧的第一个Symbol,PDCCH通常占用每个子帧的前三个Symbol,如下图所示。
考虑到和RS信号重复的部分,PCFICH、PHICH和PDCCH的开销为(36-4)/168=4/21。
TD-LTE理论速率计算方法
TD-LTE理论速率计算方法决定UE传输速率的因素有三个:1. RB数2. 调制编码方式3. Layer数(单流还是双流)1. 确定RB数和调制编码方式LTE一共有28种调制编码方式(MCS:Modulation and Coding Scheme),见下表最左边一列。
当UE处在不同的无线信道环境时,系统会以目标BLER值做参考,选择一个MCS。
关于RB数,系统会根据当前的资源以及UE承载的优先级,分配一定数量的RB。
在TS36.213的7.1.7.2.1节,可以查询给定MCS和RB数, 1ms内传输的bit。
举例:计算TD-LTE的峰值速率。
在峰值速率时,系统为UE选择最高阶调制编码方式MCS28(对应的TBS是26)并调度所有RB( 20M带宽下100个)。
在上面的表中,查出1ms传输75376 bit(标黄的那个)。
如果上下行时隙配比是2:2,一个5ms 的TD-LTE半帧里有2个下行时隙。
如果特殊时隙也传输数据,特殊时隙的数据按照0.75倍的正常时隙速率计算。
所以5ms内的下行速率是: 75376×(2 +0.75) = 207284 bit扩展到1秒,下行速率是,207284×200 = 41456800 bit = 41.4568Mbps2、确定单双流请注意,上面算出的是单流的速率。
如果是双流,需要查询TS36.213的7.1.7.2.2节另一个针对双流的速率表。
1个下行子帧可以发送75376 bit ,一个特殊子帧(比如10:2:2)可以发送55056 bit。
F:20MHZ,时隙配比1:3 2×2MIMO 特殊子帧3:9:2 10ms内6个下行子帧, 75376×6×100×2=90.45mbps 。
D:20MHZ,时隙配比1:3 2×2MIMO 特殊子帧10:2:2 10ms内6个下行子帧,2个特殊子帧(75376×6+55056*2)×100×2=112.5mbps20MHZ,时隙配比2:2 2×2MIMO 特殊子帧10:2:2 10ms内4个下行子帧,2个特殊子帧(75376×4+55056*2)×100×2=82.3mbps上行,3:1是10Mbps,2:2是20Mbps。
LTE帧结构与速率计算
#0
#1
#2
#3
#18
#19
One subframe
帧结构特点: 每个10ms无线帧,分为20个时隙,10个子帧 每个子帧1ms,包含2个时隙,每个时隙0.5ms 上行和下行传输在不同频率上进行
TDD帧结构
帧结构特点: 每个10ms无线帧,2个长度为5ms的半帧构成 ,每个半帧由5个长度为1ms 的子帧构成 普通子帧由两个0.5ms的时隙组成,特殊子帧由3个特殊时隙(DwPTS、GP 和UpPTS)组成 TD-LTE支持5ms和10ms的上下行转换点,转换周期为5ms时一个帧有两 个特殊时隙。
在常规CP上,一个资源块包括7个SC— FDMA符号(下行时OFDM符号)
LTE子载波间隔是15kHz,一个资源块占用 的带宽是180kHz.
LLTE系统支持6种不同的传输带宽,分别为1.4 MHz、3 MHz、5 MHz、10 MHz、15 MHz、20 MHz对应RB数:
带宽
1.6
3
5
10
15
OFDM符合个数
3、采用QPSK调制,指示一个子帧中用于传输PDCCH的OFDM符号数、传输
格式;
4、小区级shift,随机化干扰
PDCCH QPSK
用于指示PDSCH相关的传 输格式,资源分配, HARQ信息等
1、频域:占用全带宽; 2、时域:占用每个子帧的前n个OFDM符号,n<=3 3、用于发送上/下行资源调度信息、功控命令等,通过下行控制信息块 DCI承载。不同用户使用不同的DCI资源。
LTE帧结构与速率计算
一、LTE帧结构
• FDD—LTE帧结构
频分双工,上下行用频率区分,上下行的资源在时间上 是连续的。
LTE理论峰值速率的计算方法与影响因素
LTE理论峰值速率的计算方法与影响因素1.计算公式:峰值计算公式=PRB的数量*12个子载波*14OFDMA符号数*调制阶数(下行最大是64QAM,上行Z最大是16QAM,调制符号效率:QPSK /16QAM /64QAM=2/ 4 /6bit)*MIMO复用率(2T2R的复用率是2,最大4T4R)*公共信道和参考信号开销(一般估算下行速率时,可以忽略)/1ms。
说明:算速率时只要考虑时隙配比就可以,其他量几乎不变。
(上面的3/5,当上下行时隙配比为1:3,特殊时隙配比为3:9:2时,表示可以用来传输数据的下行时隙在5ms半帧中的占比,占了3个子帧;当上下行时隙配比为1:3,特殊时隙配比为10:2:2时,这个占比应该是3.7/5左右;当上下行时隙配比为1:3,特殊时隙配比为9:3:2时,这个占比应该是3。
6/5左右;当上下行时隙配比为2:2,特殊时隙配比为10:2:2时,这个占比应该是2。
7/5左右。
)TDD—LTE下行最大速率= 100(无线帧)× 8(子帧)× 2(个时隙)×100(RB数,110)×12 (子载波数)×7(符号,正常循环头CP) ×6(bit)(QAM64)=80640000(bit/s)=76。
90Mbit/s上行最大速率=100(无线帧)×1(子帧)× 2(时隙)×100(RB数,110)×12 (子载波数)×7(符号,正常循环头CP) ×6(bit)(QAM64)=10080000(bit/s)=9。
690Mbit/s补充:PRB的数量和带宽有关系,因为LTE的带宽是比较灵活的.一个RB包含7个符号,同时包含12个子载波,也就是12个15KHz(180K)。
之所以除以1ms,因为这个公式计算的是一个无线帧,所以符号数是14个,采用常规CP。
FDD—LTE下行带宽=100(无线帧)×10(子帧)× 2(时隙)×100(RB数,110)×12 (子载波数)×7(符号,正常循环头CP) ×6(bit)(QAM64)=100800000(bit/s)=96.13Mbit/s下行数据的调制主要采用QPSK、16QAM和64QAM这3种方式;上行调制主要采用π/2位移BPSK、QPSK、8PSK和16QAM,同下行一样,上行信道编码还是沿用R6的Turbo编码;目前F频段上下行时隙配比为1:3,特殊时隙为3:9:2(SA2,SSP5);D\E频段上下行时隙配比为2:2,特殊时隙为10:2:2(SA1,SSP7);2.影响因素•UE级别:最大RB数、64QAM支持度;最大支持100RB•带宽、时隙配比,特殊子帧配比,如20M带宽,3:1时隙配置,3:9:2特殊时隙配比•天线数:MIMO技术,多发送,多接收•控制信道配置:控制信道资源占比情况影响下行吞吐率的基本因素(1)系统带宽系统的带宽不同决定了系统的总 RB 数不同。
LTE每日一课_LTE理论速度计算(根据帧结构计算)
1.基本概述LTE理论速度的计算,归根结底,还是要统计多少个RE传输下行数据,多少个传输上行数据,多少个RE是系统开销掉的,然后再根据调制方式计算传输块大小。
即吞吐率取决于MAC层调度的选择的TBS,理论吞吐率就是在一定条件下可选择的最大TBS 传输块。
TBS可有RB和MCS的阶数对应表中进行查询可得。
2.计算思路具体计算思路如下:2.1 计算每个子帧中可用RE数量这里要根据协议规定,扣除掉每个子帧中的PSS、SSS、PBCH、PDCCH、CRS等开销,然后可以得到可使用的RE数目。
在这里,PSS、SSS、PBCH是固定的,但是其他系统开销需要考虑到具体的参数配置,如PDCCH符号数、特殊子帧配比、天线端口映射等。
信道映射举例如下:TD-LTE帧结构图(信道、子载波、时隙)2.2 计算RE可携带比特数比特数=RE数*6(2.3 选择子帧TBS传输块依据可用RB数,选择CR(码率)不超过0.93的最大TBS。
2.3.1 码率下表是CQI与码资源利用率的关系,可以看到,即使是使用64QAM调制,最大的码字也不能达到6,最多达到0.926,这里也算是修正我们上一步乘以6bit的一些差值。
2.3.2 MCS与TBS对应关系以20M带宽,100RB计算,对应关系如下表:这里我们根据RE*6*CR的值,在下表中找出比这个值小,但是最接近的TBS块大小,就是该子帧能达到的最大理论速度。
全部的MCS、RB、和TBS的对应关系如附件:MCS与TBS映射.xlsx2.4 累加各子帧的TBS根据时隙配比,累计各个子帧的TBS;如果是双流,还需要乘以2,就可以计算出最高的吞吐量了。
3.下行理论速度计算举栗子配置为:20M带宽,2x2 MIMO,子帧配比1,特殊子帧配比7, PDCCH符号1,所以下行传数的子帧有:0, 1, 4,5, 6, 9。
子帧0:可用RE=(((符号数-PDCCH-PBCH-辅同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)*每RB12个子载波-CRS)*剩余RB)*调制系数=(((14-1-4-1)*12-8)*6+((14-1)*12-12)*(100-6))*6=84384,乘以码率0.93,得78477,查询100RB 对应的TBS,可以选择75376(MCS28)子帧1:可用RE=(((符号数-PDCCH-主同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)*每RB12个子载波-CRS)*剩余RB)*调制系数=(((10-l-l)*12-8)*6+((10-l)*12-8)*(100-6))*6=59568, 乘以码率0.93,得55398,TBS 选择55056(MCS24)子帧4:可用RE=(((符号数-PDCCH)*每RB12个子载波-CRS)*RB)*调制系数=(((14-1)*12-12)*100)*6=86400, 乘以码率0.93,得80352,TBS 选择75376(MCS28)子帧5:可用RE=(((符号数-PDCCH-辅同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)* 每RB12个子载波-CRS)*剩余RB)*调制系数=(((14-l-l)*12-12)*6+((14-l)*12-12)*(100-6))*6=85968, 乘以码率0.93,得79950,TBS 选择75376(MCS28)子帧6与子帧1计算相同,子帧9与子帧4计算相同所以下行吞吐率=(子帧0+子帧1+子帧4+子帧5+子帧6+子帧9)*2*100/1000000=(75376+55056+75376+75376+55056+75376)*2*100/1000000=82.323Mbps理论速度对应表如下:4.上行理论速度计算上行计算思路和下行基本一样,只不过上行需要考虑扣除的开销没有下行那么复杂,只需要在时域考虑每个子帧扣除2个符号的DMRS,频域考虑扣除PUCCH占用的RB数,和PRACH周期到来时,再扣除6个RB。
LTE每日一课_LTE理论速度计算(根据帧结构计算)
1.基本概述LTE理论速度的计算,归根结底,还是要统计多少个RE传输下行数据,多少个传输上行数据,多少个RE是系统开销掉的,然后再根据调制方式计算传输块大小。
即吞吐率取决于MAC层调度的选择的TBS,理论吞吐率就是在一定条件下可选择的最大TBS 传输块。
TBS可有RB和MCS的阶数对应表中进行查询可得。
2.计算思路具体计算思路如下:2.1 计算每个子帧中可用RE数量这里要根据协议规定,扣除掉每个子帧中的PSS、SSS、PBCH、PDCCH、CRS等开销,然后可以得到可使用的RE数目。
在这里,PSS、SSS、PBCH是固定的,但是其他系统开销需要考虑到具体的参数配置,如PDCCH符号数、特殊子帧配比、天线端口映射等。
信道映射举例如下:TD-LTE帧结构图(信道、子载波、时隙)2.2 计算RE可携带比特数比特数=RE数*6(2.3 选择子帧TBS传输块依据可用RB数,选择CR(码率)不超过0.93的最大TBS。
2.3.1 码率下表是CQI与码资源利用率的关系,可以看到,即使是使用64QAM调制,最大的码字也不能达到6,最多达到0.926,这里也算是修正我们上一步乘以6bit的一些差值。
2.3.2 MCS与TBS对应关系以20M带宽,100RB计算,对应关系如下表:这里我们根据RE*6*CR的值,在下表中找出比这个值小,但是最接近的TBS块大小,就是该子帧能达到的最大理论速度。
全部的MCS、RB、和TBS的对应关系如附件:MCS与TBS映射.xlsx2.4 累加各子帧的TBS根据时隙配比,累计各个子帧的TBS;如果是双流,还需要乘以2,就可以计算出最高的吞吐量了。
3.下行理论速度计算举栗子配置为:20M带宽,2x2 MIMO,子帧配比1,特殊子帧配比7, PDCCH符号1,所以下行传数的子帧有:0, 1, 4,5, 6, 9。
子帧0:可用RE=(((符号数-PDCCH-PBCH-辅同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)*每RB12个子载波-CRS)*剩余RB)*调制系数=(((14-1-4-1)*12-8)*6+((14-1)*12-12)*(100-6))*6=84384,乘以码率0.93,得78477,查询100RB 对应的TBS,可以选择75376(MCS28)子帧1:可用RE=(((符号数-PDCCH-主同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)*每RB12个子载波-CRS)*剩余RB)*调制系数=(((10-l-l)*12-8)*6+((10-l)*12-8)*(100-6))*6=59568, 乘以码率0.93,得55398,TBS 选择55056(MCS24)子帧4:可用RE=(((符号数-PDCCH)*每RB12个子载波-CRS)*RB)*调制系数=(((14-1)*12-12)*100)*6=86400, 乘以码率0.93,得80352,TBS 选择75376(MCS28)子帧5:可用RE=(((符号数-PDCCH-辅同步)*每RB12个子载波-CRS)*中间6RB+((符号数-PDCCH)* 每RB12个子载波-CRS)*剩余RB)*调制系数=(((14-l-l)*12-12)*6+((14-l)*12-12)*(100-6))*6=85968, 乘以码率0.93,得79950,TBS 选择75376(MCS28)子帧6与子帧1计算相同,子帧9与子帧4计算相同所以下行吞吐率=(子帧0+子帧1+子帧4+子帧5+子帧6+子帧9)*2*100/1000000=(75376+55056+75376+75376+55056+75376)*2*100/1000000=82.323Mbps理论速度对应表如下:4.上行理论速度计算上行计算思路和下行基本一样,只不过上行需要考虑扣除的开销没有下行那么复杂,只需要在时域考虑每个子帧扣除2个符号的DMRS,频域考虑扣除PUCCH占用的RB数,和PRACH周期到来时,再扣除6个RB。
LTE速率计算
TD-LTE的最高下行速率计算LTE TDD帧结构在TDD帧结构中,一个特殊子帧的大小是1ms,就是两个资源模块RB,一个RB占7个OFDM符号,所以一个特殊子帧占14个OFDM符号,但是不管特殊子帧内部结构如何变换,其大小都是1ms。
1、计算方法:根据TD-LTE的帧结构,采用5ms的周期,最大是3个下行子帧+1个上行子帧,另外DwPTS也可以承载下行数据,最多是12个符号。
因此,5ms周期最多可以传3*14+12=54个符号,当使用20M带宽时,有1200个子载波,以最高效的64QAM计算,5ms周期内可传 54*1200*6=0. 3888M比特的数据,也就是最高下行速率为77.76Mbps。
注意,这是没有使用MIMO。
使用MIMO后,最高下行速率为 155.52Mbps。
当然,大家都知道每个子帧控制信息都占用至少一个符号,因此业务数据最多可占用50个符号,也就是不使用MIMO,最高下行速率为72Mbps;使用MIMO后,最高下行速率为144Mbps。
这还只是粗略计算,因为参考信号以及同步信号都会占用符号的部分或全部,因此最终的最高下行速率低于144Mbps。
据中兴宣称,其最高速率为1 30Mbps。
2 参考信号的占用情况与MIMO是否使用有关。
a. 没有MIMO,每个RB中会分布有8个参考信号,因为第一个符号已经用于控制部分,不用重复计算,因此会占用6个调制符号的位置,也就是每个子帧占用的比特数为:6*6(64QAM)*4(3下+DwPTS)*100(RB数量)=14.4kb而1秒有200个子帧,对应速率为2.88Mbpsb. 有MIMO,每个RB中会分布有16个参考信号,因为第一个符号已经用于控制部分,不用重复计算,因此会占用12个调制符号的位置,也就是每个子帧占用的比特数为:12*6(64QAM)*2(MIMO)*4(3下+DwPTS)*100=57.6kb对应速率为11.52Mbps。
LTE小区物理层速率计算方法
LTE小区物理层速率计算方法第一步,理解LTE系统中数据的传递方式。
LTE系统中下行发射端的信号处理过程是:一个数字信号源(有效数据,即bit流)经过编码加扰、速率适配后称为复制信号;复制信号经过“比特到符号”的映射(基带调制)成为频域信号;频域信号经过IFFT后由频域信号变为时域信号,时域信号加上循环前缀,然后进行射频调制,最后通过天线发射出来。
整个LTE系统中传递的信号分为两种形态:数字信号和模拟信号。
空中传递的是模拟信号,模拟信号其实就是电磁波,电磁波是物理层(传播媒介)的概念,无法直接衡量;我们可衡量的是上层的数据包——既帧。
第二步:理解LTE系统的帧结构。
帧的定义来源于OSI系统模型。
OSI模型分为7层,即物理层、数据链路层、网络层、传输层、会话层、表示层、应用层,每一层都定义了针对不同通信级别的协议;其中底层的1~4层关注的是原始数据的传输,而帧就是数据链路层的概念,用来管理和统计传输的数据。
在LTE系统中,一个无线帧为10ms;一个无线帧包含10个子帧,每个子帧1ms。
每个LTE 子帧分为2个slot(时隙),每个时隙包含7个symbol(一个时隙中OFDM 符号个数取决于循环前缀长度和子载波间隔,普通循环前缀下一个时隙包含7个symbol)。
协议中,将每个时隙周期内占用的M个子载波和N个OFDM符号组成称为一个资源格。
资源格的一个元素称为资源单元(RE),物理意义是LTE系统中一个时隙内某个子载波上的一个调制符号。
时域上的7个符号与频域上的12个子载波确定的84个RE定义为1个RB,RB是调度的最小单位;而RE是调制(QPSK、16QAM、64QAM)的最小单位。
当LTE系统中采用64QAM调制时效率最高,为6bit/RE。
另外,我们实际的调制效率还与码率有关。
第三步,理解吞吐量的概念。
计算吞吐量就是计算每秒可承载多少bit的数据。
我们只要知道了每秒的可用RE个数就可以计算系统速率了。
LTE速率计算资料讲解
1、FDD理论计算公式:一个时隙(0.5ms)内传输7个OFDM符号,即在1ms内传输14个OFDM符号,一个资源块(RB)有12个子载波(即每个OFDM在频域上也就是15KHZ),所以1ms内(2个RB)的OFDM个数为168个(14*12),它下行采用OFDM技术,每个OFDM包含6个bits,则20M带宽时下行速速为:<OFDM的bits数>*<1ms内的OFDM数>*<20M带宽的RB个数>*<1000ms/s>=6*168*100*1000=100800000bits/s=100Mb2、TDD理论计算公式:假设:带宽为20MHZ,TDD配比使用配置为1,即DL:UL:S=4:4:2,特殊时隙配置为DwPTS : Gp : UpPTS=10:2:2,子帧中下行控制信道占用3个符号,传输天线为2。
总10ms周期内,下行子帧有效数为4+10/14*2=5.4320MHZ带宽下:每帧中下行符号数为14*12*100*(4+10/14*2)=91200每帧中下行控制信道所占用的符号数为(3*12-2*2)*100*5.43=17371.4 每帧中下行参考信号数目为16*100*5.43=8685.7每帧中用于同步的符号数为288每帧中PBCH符号数为(4*12-2*2)*6=264则每帧中下行的PDSCH符号数为91200-17371.4-8685.7-288-264=64951 假设采用64QAM,码率为5/6,则速率为:(6*5/6*64951*2)/10ms=64.951Mbits/s其中6为64 QAM时每符号的比特数,5/6为码率,2为天线数RE:资源粒子 RB资源块1RB=7*12=84RE一个RB=12个子载波20M带宽:12*15*100=18000Hz,加2M保护带宽,不就是20M了嘛,不同的带宽不同的资源粒子数OFDM符号是在时域上说的,一个RE就是OFDM符号。
LTE速率计算
计算举例:以上我做的修正是基于CFI=3,下面的表格中我未细算,应该是有CFI=1的情况,如112M的情况,这里统一按CFI=3来计算吧:以2U:2D 10:2:2 UE等级3,CFI=3配置,按36.306协议规定,CAT3时,终端在一个TTI (1ms)内单流时能处理75376bit,双流时能处理102048bit的数据,在一个5ms内,下行有2个普通子帧和一个特殊子帧,2个普通子帧可传102048*2的数据,特殊子帧终端也可以处理102048bit的数据,但由于特殊子帧只有10个symbol,按码率不能超过0.93的规定,此时只能传送(46888*2=93776bits)的数据,因此在5ms内可传102048*2+46888*2=297872bits数,在一秒内,共200个5ms,因此峰速为297872*200=59.57Mbits。
UE能力表格:3.CRS共4列,每列4个,共4*4=16个RE,其中第一列包含在PDCCH中,余下三列:3*4=12,相当于一个symbol不能用于传数据,因此,数据部分还剩10个symbol因此数据部分共有10*12=120个RE4.按照64QAM调制,一个prb能传输120*6=720个bit5.下行1个子帧(1ms)100个PRB,共能传72000个bit6.按协议规定,终端接收数据的码率不能超过0.93,因此最多能传72000*0.93=66960个bit7.查协议36.213 Table 7.1.7.2.1-1:,100prb,Itbs=25(MCS=27)时,可传送的数据块大小为63776,Itbs=26(MCS=28)时为75376,因此,只能传得下MCS=27时的数据块63776,62776*2=127552,但由上面表格,CAT3时最大能处理102048bit,因此,普通子帧在CAT3时只能最大处理102048的数据,CAT4时能处理150752的数据,但由于受上面码率的限制,cat4时只能传输63776的数据块.8.因此普通子帧在CAT3时的的速率:102048*400(5ms内2个普通子帧)=40.8192Mbps9.特殊子帧10:2:2时,相当于0.75个子帧,20M带宽时相当于75个prb,同理按上面的几个步骤的计算,最大能传MCS=27时的46888bit,因此特殊子帧速率:46888*2*200=18.7552Mbps10.总速率:=40.8192+18.7552=59.57Mbps。
LTE速率计算
/ 特殊子帧配比乘上比例,
1、 Cat3 因为最大传输块为 102048 ,所以 FDD-LTE 中峰值速率最高只能到 100Mbps 。 2、控制信道开销的计算,受 RS 信号、 PDCCH/PCFICH/PHICH 、 SCH、 BCH 等因素影响, 前两部分占比较高(分别 2/21 和 14/21 ), SCH 和 BCH 占比较少(两者相加不足 1% ), 篇幅有限,抱歉不做详细介绍。
96*12 : 20MHz 带宽共 100 个 RB,假设 PUCCH 占用 2 个 RB,上行 RB 数要遵循 “ 2/3/5的” 原则,所以 PUSCH 最多用 96 个 RB,每个 RB 含 12 个子载波;
79% :系统开销一般取 25% (考虑 RS 消耗 1/7 、SRS 消耗 1/14 ),即上行有效传输数据速 率的比例为 79% 。 【方法二】 直接用最大传输块来计算,可见 Cat3 和 Cat4 的上行峰值速率为 51Mbps (最高调制方式
150752/0.001=150Mbps 。Cat5 因为可以采用了 4*4 高阶 MIMO , 4 层空分复用在一个 TTI
内传 299552bit ,因此能达到 300Mbps 的下行峰值速率。
FDD-LTE 系统,计算可到此为止, TD-LTE 系统需要再根据时隙配比 Cat3 和 Cat4 的下行峰值吞吐率分别为 75Mbps 和 111Mbps 。 超级啰嗦:
总速率 =
,
业务信道的速率 =201.6*75%≈150Mbps 数字含义: 6:下行最高调制方式为 64QAM ,1 个符号包含 6bit 信息; 2 和 7: LTE 系统的 TTI 为 1 个子帧(时长 1ms ),包含 2 个时隙,常规 CP 下, 1 个时隙 包含 7 个符号;因此:在一个 TTI 内,单天线情况下, 一个子载波下行最多传输数据 6×7×2bit ;
TD-LTE理论下行速率计算方法
名称:TD-LTE理论下行速率计算方法应用场景分析:TD-LTE(Long Term Evolution)是我国拥有核心自主知识产权的国际3G标准TD-SCDMA 的后续演进技术,是一种专门为移动高宽带应用而设计的无线通信标准。
在学习LTE基本原理的过程中,普遍遇到难点就是原理系统知识架构不容易找到切入点下手学习以及知识点太零散不便原理整体性了解。
通过一些原理的具体问题的了解可以迅速找到突破点,方便大家学习掌握LTE的基本原理体系。
其中对TD-LTE理论下行速率计算方法就是比较好的一个实例。
使用方法说明:1、概念LTE系统理论峰值速率(Peak Data Rate,PDR)是指移动通信系统根据已有的系统规范,空口最大可发送的速率极限。
这部分数据是指经过物理层的编码和交织处理后,由空口实际承载并传送的数据部分的速率。
理论峰值速率体现了LTE系统空口承载数据的能力。
LTE对上行和下行峰值频谱效率的定义为2.5bps/Hz和5bps/Hz,对应20MHz带宽,速率的要求分别为50Mbps和100Mbps。
其中下行使用双流传输,上行使用单流传输。
2、计算需要考虑到下列基本因素:1)系统带宽;2)调制方式与编码率;3)天线端口数目(决定上下行实际传输的最大码字数目);4)CP类型(常规,扩展);3、计算过程以下计算为系统最理想情况下:一个RB占12个子载波宽度(一个时隙中,频域上连续的宽度为180kHz的物理资源称为一个RB;一般一个子载波带宽为15k);20Mhz的系统有100个RB资源。
每个1ms的子帧有两个长度一样的时隙。
由此在考虑常规CP的情况下,正常子帧有14个symbol,特殊子帧有10个symbol。
每一个天线端口,一个OFDM或者SC-FDMA符号上的一个子载波对应的一个单元叫做RE;特殊子帧的RB(配置7下面是10个symbol,配置5下面是3个symbol)刨掉PDCCH和参考信号后的RE个数为12*10-12-6=102,每帧TD-LTE有2个特殊子帧。
LTE速率计算
1、FDD理论计算公式:一个时隙(0.5ms)内传输7个OFDM符号,即在1ms内传输14个OFDM 符号,一个资源块(RB)有12个子载波(即每个OFDM在频域上也就是15KHZ),所以1ms内(2个RB)的OFDM个数为168个(14*12),它下行采用OFDM技术,每个OFDM包含6个bits,则20M带宽时下行速速为:<OFDM的bits数>*<1ms内的OFDM数>*<20M带宽的RB个数>*<1000ms/s>=6*168*100*1000=100800000bits/s=100Mb2、TDD理论计算公式:假设:带宽为20MHZ,TDD配比使用配置为1,即DL:UL:S=4:4:2,特殊时隙配置为DwPTS : Gp : UpPTS=10:2:2,子帧中下行控制信道占用3个符号,传输天线为2。
总10ms周期内,下行子帧有效数为4+10/14*2=5.4320MHZ带宽下:每帧中下行符号数为14*12*100*(4+10/14*2)=91200每帧中下行控制信道所占用的符号数为(3*12-2*2)*100*5.43=17371.4每帧中下行参考信号数目为16*100*5.43=8685.7每帧中用于同步的符号数为288每帧中PBCH符号数为(4*12-2*2)*6=264则每帧中下行的PDSCH符号数为91200-17371.4-8685.7-288-264=64951假设采用64QAM,码率为5/6,则速率为:(6*5/6*64951*2)/10ms=64.951Mbits/s其中6为64 QAM时每符号的比特数,5/6为码率,2为天线数RE:资源粒子 RB资源块1RB=7*12=84RE一个RB=12个子载波20M带宽:12*15*100=18000Hz,加2M保护带宽,不就是20M了嘛,不同的带宽不同的资源粒子数OFDM符号是在时域上说的,一个RE就是OFDM符号。
LTE计算汇总范文
LTE计算汇总范文LTE是一种高速无线通信技术,可以提供高质量和低延迟的移动宽带连接。
本文将对LTE的计算问题进行汇总,涵盖了系统容量、覆盖范围、速率和功耗等方面的计算。
1.系统容量计算:LTE系统容量的计算主要涉及下行链路容量和上行链路容量的估算。
下行链路容量可以通过以下公式计算:下行链路容量=(子载波数量)*(每个子载波的比特速率)*(调度单位长度)*(时隙帧利用率)上行链路容量可以通过以下公式计算:上行链路容量=(子载波数量)*(每个子载波的比特速率)*(调度单位长度)*(时隙帧利用率)*(用户数)2.覆盖范围计算:LTE的覆盖范围可以通过以下公式计算:覆盖半径=(信号传输速度)*(信号传输时间)/(传输信号的损耗因子)其中,信号传输速度可以根据传输介质和信号传输模式进行估算,信号传输时间是信号从发送端到接收端所需的时间,传输信号的损耗因子主要考虑传输过程中的信号衰减和干扰。
3.速率计算:LTE的速率可以通过以下公式计算:速率=(每个OFDM符号的比特数)*(子载波数量)*(OFDM符号数)/(TTI长度)其中,OFDM符号是LTE中的基本单位,由若干子载波组成,TTI (Transmission Time Interval)长度是处理无线通信数据的时间窗口。
每个OFDM符号的比特数可以根据调制方式和编码方式进行计算。
4.功耗计算:LTE的功耗主要包括基站的功耗和终端设备的功耗。
功耗=(传输功率)*(信号传输时间)+(待机功耗)*(基站总数)终端设备的功耗可以通过以下公式估算:功耗=(传输功率)*(信号传输时间)+(待机功耗)*(用户数)其中,传输功率是指发送端所需要的功率,信号传输时间是指信号从发送端到接收端所需的时间,待机功耗是终端设备在待机状态下的功耗。
以上是LTE计算的汇总,涵盖了系统容量、覆盖范围、速率和功耗等方面的计算问题。
这些计算可以帮助我们了解和评估LTE系统的性能和效率,以及进行网络规划和优化工作。