2015年希望杯复赛六年级试题+答案

合集下载

2015希望杯小学六年级二试(附答案)

2015希望杯小学六年级二试(附答案)

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第十三届小学“希望杯”全国数学邀请赛六年级第2试试题2015年4月12日上午9:00-----11:00一、填空题(每小题5分,共60分)1.计算:111...,1212312 (10)+++++++++得_____________。

2.某商品单价先上调,再下降20%才能降回原价。

该商品单价上调了_________%. 3.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是_____________。

2015年六年级希望杯培训100题

2015年六年级希望杯培训100题

2015年六年级希望杯培训100题1、若M =⨯⨯⨯⨯⨯201414131211 ,则201514131211÷÷÷÷÷ =_________(用M 表示) 2、计算:1+2+3+…+2015+2014+2013+…+3+2+13、计算:20153211432113211211++++++++++++++ 4、观察下面的数列,找出规律并填空。

3,8,15,24,35,48, ,80, ,1205、四位数92AB 能被7整除,则两位数AB 的最大值是多少?6、如果73892<<□,则□中可以填什么质数? 7、将9017化成小数后,第2015位是_____。

8、某品牌电视机,若9折销售,可盈利120元,若85折销售,就会亏损120元,则电视机的定价是 元。

9、下列图形中,既是轴对称图形,又是中心对称图形的是( )10、求最小自然数n ,使得131×n =123456789…11、一张比萨饼切1刀可分成两块,切2刀最多可分成4块。

切4刀最多可以分成几块?(只能从比萨饼的上方切下去)12、已知两个正整数的乘积是400,则这两个数的和的最大值与最小值的差是多少?13、如图所示的6个点,每三个点都不在同一直线上,可以确定多少条不同的直线?(注:过任意两点可以确定一条直线)14、小于24且与24互质的自然数(不含0)有几个?15、大于20且恰好有3个约数的自然数最小是几?16、1225=+=+d c b a ,,求bc ad bd ac +++的值。

17、计算!!n 2014所得的结果的个位数字不是0,求满足条件的n 的最小值。

(注n !=1×2×3×…×(2-n )×()1-n ×n )18、求个位数字和十位数字中至少有一个是0的三位数的个数。

19、用0、2、4、6、8 五个数字可以组成多少个三位数?20、在股票交易中,每买进或卖出一种股票,都须按成交额0.4%和0.6%缴纳印花税和佣金(通常所设的手续费)小李于3月15日以每股10元的价格买进一种教育股票1000股,4月12日又以每股12元的价格将这些股票全部卖出。

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。

2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。

3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。

第五届新希望杯6年级试题(A卷答案)

第五届新希望杯6年级试题(A卷答案)

第五届“希望杯”全国青少年数学大赛小六竞赛试题A 卷参考答案一、填空题(每小题6分,共72分。

)1、50992、C3、474、401725、726、97、40168、39、255(511) 10、100°或30° 11、23 12、170二、解答题(第13题到第16题如若有其他解法,只要方法合理,计算正确,均可参照给分。

每小题12分,共48分。

)13、第13题总面积“245.2”应更正为“684.8”。

解:设每一环内圆半径为r 厘米。

5×3.14×(102-r 2)-8×40=684.8 ………………………………………………8分r 2=36r =6 ……………………………………………………12分或:102-(684.8+8×40)÷5÷3.14=36=62 ……………………………………12分 答:每一环内圆半径为6厘米。

【不写“解”扣1分,不写“答”扣1分。

】没有及时更正的考场,总面积用245.2平方厘米做的也给分,设每一环内圆半径为r 厘米。

5×3.14×(102-r 2)-8×40=245.2 ………………………………………………8分r 2=64r =8 ……………………………………………………12分或:102-(245.2+8×40)÷5÷3.14=64=82 ……………………………………12分 答:每一环内圆半径为8厘米。

14、第一种方法:解:(300×20%+600×5%)÷300=30% …………………………………………………………12分第二种方法:解:设第三种盐水的浓度是x %。

(300x %-600×5%)÷300=20% ………………………………………………………………8分x =30 ………………………………………………………………12分第三种方法:解:设原来的盐水有a g ,浓度是b %,第三种盐水的浓度是x %。

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:,得.2.(5分)某商品单价先上调,再下降20%才能降回原价.该商品单价上调了%.3.(5分)请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.4.(5分)若(n是大于0的自然数),则满足题意的n的值最小是.5.(5分)小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.6.(5分)2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.7.(5分)已知两位数与的比是5:6,则=.8.(5分)如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.9.(5分)某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.10.(5分)将1至2015这2015个自然数依次写出,得到一个多位数123456789…20142015,这个多位数除以9,余数是.11.(5分)如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水立方分米.12.(5分)王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.二、解答题(每小题15分,共60分.)每题都要写出推算过程.13.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数11111011111 转化为十进制数,是多少?14.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?16.(15分)如图,点M、N分别是边长为4分米的正方形ABCD的一组对边AD、BC的中点,P、Q两个动点同时从M出发,P沿正方形的边逆时针方向运动,速度是1米/秒;Q沿正方形的边顺时针方向运动,速度是2米/秒.求:(1)第1秒时△NPQ的面积;(2)第15秒时△NPQ的面积;(3)第2015秒时△NPQ的面积.2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:,得.【分析】这道题比较难,根据拆项公式:,把各个加数进行变式然后计算.【解答】解:==)=2×()=2×()=【点评】本题比较难,考查了学生的综合能力.计算时要观察算式的特征,发现规律进行计算,计算量比较大,要细心计算.2.(5分)某商品单价先上调,再下降20%才能降回原价.该商品单价上调了25%.【分析】把原价看作单位“1”,设上调了x,上调后是1+x,再下降20%后是(1+x)×(1﹣20%),也就是原价1,据此解答.【解答】解:把原价是1.设单价上调了x.(1+x)×(1﹣20%)=1(1+x)×0.8=11+x=1.25x=1.25﹣1x=0.25x=25%.答:该商品单价上调了25%.故答案为:25.【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,根据求一个数是另一个数的方法求解.3.(5分)请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是3.【分析】设这个数是a,根据题意列出算式[(a+5)×2﹣4]÷2﹣a,计算出结果即可.【解答】解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.【点评】本题考查了有理数的加减,关键是根据题意列出代数式.4.(5分)若(n是大于0的自然数),则满足题意的n的值最小是3.【分析】当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;从而得解.【解答】解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:3【点评】本题主要考查对于2的次幂以及分数的计算.5.(5分)小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有100页.【分析】一本书中间的某一张被撕掉了,这两页的页码数字和应为奇数.余下的各页码数之和是4979,所以这本书的页码总和为偶数.设这本书n页,则n (n+1)÷2>4979,可推出n=100,据此解答即可.【解答】解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.【点评】根据等差数列公式列出关系式进行分析是完成本题的关键.6.(5分)2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是1.【分析】先列出算式为2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣),然后求出各个括号内的得数,这时可以通过约分,即可得出答案.【解答】解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.【点评】对于此类问题,应仔细审题,发现规律后再进行计算.7.(5分)已知两位数与的比是5:6,则=45.【分析】因为两位数与的比是5:6,即(10a+b):(10b+a)=5:6,根据比例的性质推出55a=44b,即a=b,所以b只能为5,则a=4.解决问题.【解答】解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.【点评】此题由所给的条件入手,推出a与b之间的关系,是解答此题的关键.8.(5分)如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于20.【分析】设D的面积为x,因为A和B,C和D的长一定,所以A和B,C和D 的面积之比相等,于是有9:12=15:x,解比例即可.【解答】解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.【点评】此题解答的关键在于根据“A和B,C和D的长一定”,推出A和B,C和D的面积之比也相等.9.(5分)某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用70天.【分析】应先算出一个人的工作效率,进而算出12个人的工作效率,还需要的天数=剩余的工作量÷12个人的工作效率,把相关数值代入即可求得还需要的天数,再加35天即可.【解答】解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.【点评】得到剩余工作量和12个人的工作效率是解决本题的关键;用到的知识点为:时间=工作总量÷工作效率.10.(5分)将1至2015这2015个自然数依次写出,得到一个多位数123456789…20142015,这个多位数除以9,余数是0.【分析】“连续n(奇数)个自然数的数字和必是n的倍数”,2015÷9=223…8,余数是8,先取出前8位,从9开始后面的数字和正好是9的倍数,12345678的数字和是36,也是9的倍数,所以这个多位数就是9的倍数,由此求解.【解答】解:连续9个自然数的数字和必是9的倍数,2015÷9=223…8,所以可以取出前8位,从9开始后面的数字和正好是9的倍数,12345678的数字和是:1+2+3+4+5+5+7+8=36,12345678也能被9整除,所以:多位数123456789…20142015除以9的余数是0.故答案为:0.【点评】本题主要是依据“连续n个自然数的数字和必是n的倍数”这个规律来完成的.11.(5分)如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.【分析】水面上升的体积是圆柱体积的(﹣),也就是三个半径都是1分米的小球的体积和,由此先求得半径都是1分米的小球的体积,再进一步利用分数除法的意义列式解答即可.【解答】解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.【点评】掌握球的体积计算公式,得出上升水的体积和圆柱体积之间的关系是解决问题的关键.12.(5分)王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距330千米.【分析】设总路程为x千米,已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=60千米/小时,可得去时用的时间为×x+×x=x;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时,可得返回用的时间为×x+×x=x;再由“结果返回时比去时少用31分钟”,列方程为x﹣x=,解方程即可.【解答】解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.【点评】此题解答的关键在于设出未知数,表示出往返的时间,再根据等量关系“结果返回时比去时少用31分钟”,列方程解答即可.二、解答题(每小题15分,共60分.)每题都要写出推算过程.13.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数11111011111 转化为十进制数,是多少?【分析】二进制转换为十进制方法:按权相加法,即将二进制每位上的数乘以权(即该数位上的1表示2的多少次方),然后相加之和即是十进制数,据此解答即可.【解答】解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.【点评】本题主要考查了十进制与二进制的相互转换,要熟练地掌握其转化方法,属于基础题.14.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?【分析】(1)互助啮合的两个齿轮转动方向是相反的,B与A转动的方向相反,C又与B转动的方向相反,即C与A转动的方向一致.(2)互助啮合的两个齿轮其半径(或直径或周长)与转速成反比,由A、B、C 的直径即可确定当A转动一圈时,C转动了几圈.【解答】解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.【点评】互助啮合的两个齿轮或交叉皮带链接的两个轮,转动方向都相反,平行皮带链接的两个轮转动方向相同,不论哪种情况,轮半径(或直径或周长)与转速成反比.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【分析】根据题意,可以切割成棱长为1~5的小正方体.大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.然后,分棱长为4、3、2、1的小正方体分类讨论,列方程组解答即可.【解答】解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.【点评】本题关键是根据表面积变化前后体积不变,确定小正方体的棱长的范围,然后分类讨论即可.16.(15分)如图,点M、N分别是边长为4分米的正方形ABCD的一组对边AD、BC的中点,P、Q两个动点同时从M出发,P沿正方形的边逆时针方向运动,速度是1米/秒;Q沿正方形的边顺时针方向运动,速度是2米/秒.求:(1)第1秒时△NPQ的面积;(2)第15秒时△NPQ的面积;(3)第2015秒时△NPQ的面积.【分析】(1)第1秒时,点P与点M的距离是1米,正方形的边长是分4分米,M为正方形边长的中点,点P运动到AM的中点,点Q运动到点D的位置,据此可求出三角形NPQ的底PQ,高是正方形边长,由此可求出此三角形的面积.(2)第15秒时,点P与点M的距离是1×15=15(分米),运动到MD的中点,点Q与点M的距离是2×15=30(分米),运动到点A的位置,此可求出三角形NPQ的底PQ,高是正方形边长,由此可求出此三角形的面积.(3)因为16÷1=16,16÷2=8,因此,第经过16秒,点P和点Q都回到出发点M,即16秒一个循环,用2015÷16,看有几个循环,又几秒,据此解答.【解答】解:(1)第1秒时,如图,△NPQ的面积:(1+2)×4÷2=3×4÷2=6(平方分米);(2)第15秒时,如图,△NPQ的面积:(2+1)×4÷2=3×4÷2=6(平方分米);(3)因为16÷1=16,16÷2=8,所以,第经过16秒,点P和点Q都回到出发点M,2015÷16=125…15(秒)所以第2015秒时点P、点Q与第15秒时相同,面积也是6平方分米.【点评】由题意比较容易看出点P、Q的位置,由已知条件即可求出三角形NPQ 的底PQ,高就是正方形的边长,由此即可求出此三角形的面积;经过的时间较多时,先规律,再根据规律解答.。

希望杯模拟考六年级答案

希望杯模拟考六年级答案
丙在 A 仓库做了 6 小时.
16. 有 4 位朋友的体重都是整千克数,他们两两合称体重,共称了 5 次,称得的千克数分别是 99, 113,125,130, 144.其中有两人没有一起称过,那么这两个人中体重较重的人的体重是_____ 千克。 解析:在已称出的五个数中,其中有两队之和,恰好是四人体重之和是 243 千克,因此没有称过的 两人 体重之和为 243-125=118(千克). 设四人的体重从小到大排列是 a 、 b 、 c 、 d ,那么一定是 a + b =99, a + c :=113. 因为有两种可能情况: a + d =118, b a + d =125. 因为 99 与 113 都是奇数, b =99- a , c =113- a ,所以 b 与 c 都是奇数,或者 b 与 c 都是偶数, 于是 b + c 一定是偶数,这样就确定了 b + c =118. a 、 b 、 c 三数之和为:(99+113+118)÷2=165. b 、 c 中较重的人体重是 c , c =( a + b + c )-( a + b )=165-99=66(千克). 没有一起称过的两人中,较重者的体重是 66 千克.
1 1 1 1 = , 10 12 15 4
1 ×16=4,即第二天的 4 1 8 每个仓库的工作总量为 4÷2=2.于是甲工作了 16 小时只完成了 16× = 的工程量,剩下的 10 5 8 2 2 1 2- = 的工程量由丙帮助完成,则丙需工作 ÷ =6(小时). 5 5 5 15
小明上学的时间是:
100 200 100 475 3 2 4 3 100 200 100 400 3 4 2 3

(完整)“希望杯”全国小学六年级数学大赛决赛题附答案[C]

(完整)“希望杯”全国小学六年级数学大赛决赛题附答案[C]

“希望杯”全国数学大赛决赛题(小六)附答案(时间:90分钟 满分:120分)一、填空题。

(每题6分,共72分。

)1.计算: 4.5-13×8.13.6= 。

2.计算:34 +316 +364 +3256 +31024 +34096= 。

3.若10.5x -10=36-3y =14+ ,则x = ,y = 。

4.有一类自然数,从第四个数字开始每个数字都恰好等于它前面三个数字的和,直到不能再写为止,如2169,21146等等。

那么这类数中最大的一个数是____________。

5.下面是一串字母的若干次变换。

A B C D E F G H I J第一次变换后为 B C D A F G H I J E 第二次变换后为 C D A B G H I J E F 第三次变换后为 D A B C H I J E F G 第四次变换后为 A B C D I J E F G H……………………………………………………x 214至少经过次变换后才会再次出现“A、B、C、D、E、F、G、H、I、J”。

6.把一个棱长为2厘米的正方体在同一平面上的四条棱的中点用线段连接起来(如右图所示),然后再把正方体所有顶点上的三角锥锯掉。

那么最后所得的立方体的体积是立方厘米。

7.有一列数,第一个数是5,第二个数是2,从第三个数起每个数都等于它前面两个数中较大数减去较小数的差。

则这列数中前100个数之和等于。

8.在钟面上,当指针指示为6︰20时,时针与分针所组成的较小的夹角为度。

9.小明把五颗完全相同的骰子拼摆成一排(如右图所示),那么这五颗骰子底面上的点数之和是。

10. 有四个房间,每个房间里不少于4人。

如果任意三个房间里的总人数不少于14人,那么这四个房间里的总人数至少有人。

11.如果用符号“[a]”表示数字a的整数部分,例如[5.1]=5,[ 53]=1,那么[112000+12001+……+12019]=。

12.雨,哗哗不停的下着。

第十四届小学“希望杯”全 国数学邀请赛六年级第二试试 题及解析

第十四届小学“希望杯”全    国数学邀请赛六年级第二试试    题及解析

第十四届小学“希望杯”全国数学邀请赛六年级 第2试试题1、 填空题.1. 计算:________.【答案】6【考点】计算,提取公因数【解析】2. 已知,,则是的_______倍.【答案】13【考点】计算,分数【解析】,3. 若,则自然数的最小值是_______.【答案】3【考点】计算,分数【解析】,,则最小为3.4. 定义:如果,那么称为和的比例中项.如,则2是1和4的比例中项.已知0.6是0.9和的比例中项,是和的比例中项,则=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:,,解得:,,则5. A、B、C三人单独完成一项工程所用的时间如图所示.若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工程的时刻是______时______分.Image【答案】9时57分【考点】应用题,工程问题【解析】如图得A、B、C的工作效率分别是,27分钟为小时,则A单独的工作量:,三人合作时间:(小时),共花时间:(小时),(分钟),即完成这工程时刻为9时57分.6. 如图,A,B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A盘的数字是,指针指向B盘的数字是b,则两位数是质数的概率是________.Image【答案】【考点】数论,质数【解析】根据乘法原理可得:组成两位数共有:(个),两位数是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数是质数的概率为:.7. 在算式“”中,不同的汉字代表不同的数字,则所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】,,所以得:当时,结果不是六位偶数,当,符合要求;当扩大4倍时,出现重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:.8. 如图,正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC,则△BFE的面积与正方形ABCD的面积的比值是_______.Image【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD为1,连接BD、AC,,,,,.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:;剩余阴影面积:阴影部分面积:10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是.则在这三个最简真分数中,最大的数是_______.【答案】【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为,则三个最简真分数为, ,,则分析得三个最简真分数为:,最大为.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,,将100个乒乓球分成6组余2个盒子,,.12. 两根粗细相同,材料相同的蜡烛,长度比是,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的原来现在原来现在第一根2115第二根1611差542020,较长那根还能燃烧:(分钟)2、 解答题13. 如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1) 图⑥由多少个棱长为1的小正方体堆成?(2) 图⑩所示的立体图形的表面积.① ② ③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:(个)(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;前后左右:上下:总表面积:14. 解方程:,其中表示的整数部分,表示的小数部分,如,.(要求写出所有的解)【答案】、、、【考点】计算【解析】 因,原式可化简为:,整理得,,,因为,则,.当,;当;当;当;当不满足;则符合题意取值有:.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16. 甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走,乙以上山的速度可以走,则;在第二个过程中,甲下山的S可以转化成上山的,则甲以上山的速度可以走,乙以上山的速度可以走,则.,计算得,米.。

希望杯六年级真题及解析

希望杯六年级真题及解析

第十三届小学“希望杯”全国数学邀请赛六年级第 1 试试题2015 年 3 月 15 日上午 8:30 至以下每题 6 分,共 120 分. 1. 计算:1 + 1 + 1 + 1+ 1 ________. 2 4 8 1632【出处】2015 年希望杯六年级初赛第 1 题【考点】借来还去——分数计算【难度】☆31【答案】 32【解析】原式 =12 + 14 + 18 + 161 + ( 321 + 321 ) - 321= 12 +14 +18 + (161 + 161 ) - 321= 12 + 14 + ( 18 + 18 ) - 321= 12 + ( 14 + 14 ) - 321 =12 + 12 - 321= 1 - 321= 32312. 将 99913化成小数,小数部分第 2015 位上的数字是________.【出处】2015 年希望杯六年级初赛第 2 题【考点】循环小数与分数——计算【难度】☆【答案】1【解析】 99913= 0.013 , 2015 ÷ 3 = 671 2 ,所以数字为 1.13.若四位数2AB7能被13整除,则两位数AB的最大值是________.【出处】2015年希望杯六年级初赛第3题【考点】整除问题——数论【难度】☆☆【答案】97【解析】13 2AB7⇒13AB0+2007,2007÷135,所以AB0÷138 ,13 AB5 ,利用数字谜或倒除法,可确定AB=97。

数字谜方法如下:根据乘积的个位,可确定第二个因数的个位为5,因为构造最大值,所以十位为最大为7,积为9751 3 1 3 1 3⇒ 6 5 6 55 5 9 7 54.若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了________%.【出处】2015年希望杯六年级初赛第4题【考点】分数应用题——应用题【难度】☆☆【答案】37.5a a ⨯1 - 20% ) a 5 5 ⎛ 5 ⎫= ⨯ - ÷ 1 ⨯ 100% = 37.5% 【解析】设原分数为,则新分数为,所以新分数为原分数的⎪b b ⨯(1 + 28% ) b8 8 ⎝ 8 ⎭5. 若a< 1 < a +1 ,则自然数a=________.1 + 1 + 1 + 1 + 12011 2012 2013 2014 2015【出处】2015年希望杯六年级初赛第5题【考点】比较与估算——计算【难度】☆☆【答案】402【解析】设x= 1 x> 1 = 2011 = 402 1 x < 1 = 2015 = 403 ,所1+ 1+1+1+1 1⨯ 51⨯ 52011 2012 2013 2014 2015 2011 2015 以402 1 < x <403, a =4025x 3.14 = 0.14 0.5 = 0.5 ⎧ 2015 ⎫ + ⎧ 315 ⎫ + ⎧412 ⎫ =6. .那么,⎨ ⎬ ⎨ ⎬ ⎬5⎩ 3 ⎭ ⎩ 4 ⎭ ⎩ ⎭ ________.(结果用小数表示)【出处】2015年希望杯六年级初赛第6题【考点】高斯记号与循环小数——计算2【难度】☆☆【答案】1.816⎧ 2015 ⎫ ⎧ 315 ⎫ ⎧ 412 ⎫ 2 3 2【解析】⎨ ⎬ + ⎨ ⎬ + ⎨ ⎬ = + + = 0.6 + 0.75 + 0.4 =1.8164 5 3 4 5⎩ 3 ⎭ ⎩ ⎭ ⎩ ⎭7.甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了________件.【出处】2015年希望杯六年级初赛第7题【考点】比例应用题——应用题【难度】☆☆【答案】15【解析】甲制作了总数的30%,乙、丙制作的件数是总数的1-30%=70%,乙、丙制作的件数之比是3:4,则乙做了30%,丙做了40%,则甲:乙:丙= 3 : 3 : 4,甲制作了20÷4⨯3=15(件)。

2020年第十三届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

2020年第十三届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

件.
8.(6 分)已知
都是最简真分数,并且他们的乘积是 ,则 x+y+z=

9.(6 分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来 到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成 3 份,他拿了自己的一份.第 二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒 后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?
12.(6 分)有 80 颗珠子,5 年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再
次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大 2 岁,那么,姐姐两次分到
的珠子相差
颗.
13.(6 分)如图,分别以 B,C 为圆心的两个半圆的半径都是 1 厘米,则阴影部分的周长是
厘米.(π取 3)
14.(6 分)一个 100 升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出
第 4页(共 13页)
则新分数为
= × ,所以新分数为原分数的 ,
(1﹣ )÷1= =37.5%. 故答案为:37.5. 5.(6 分)若 a<
<a+1,则自然数 a= 402 .
【解答】解:因为

+
+
+
+



+
+
+
+
=s,

<<

所以
<s<

即 402.2<s<403,
因此 a=402. 故答案为:402.
10.(6 分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作 圆,

第四届小学“希望杯”全国数学邀请赛六年级第二试试题及答案解析

第四届小学“希望杯”全国数学邀请赛六年级第二试试题及答案解析
小书灯家长社区

第四届小学“希望杯”全国数学邀请赛 六年级 一、填空题(每小题 4 分,共 60 分) 第2试
1. 8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。
【解析】:原式=(8.1+1.9)×1.3+(11.9-8)÷1.3 =13+3 =16
【解析】 :若每个正方形中数的和都是 18, 那么总和为 54, 而这 10 个数的和为 45, 其中 A、
B 各多算了一次,故 A+B=9。
6.磁悬浮列车的能耗很低。它的每个座位的平均能耗是汽车的 70%,而汽车每个座位的平 均能耗是飞机的 ________倍。 【解析】:磁悬浮列车每个座位的平均耗能是飞机每个座位的平均耗能的 每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的 3 倍。
小书灯家长社区整理发布
3/7
小书灯家长社区

【解析】:
如图,连结 DF、CF,那么显然△DHG 与△DHF 同底等高,两者面积相等,我们容易知道又四 边形 BCFD 是平行四边形, 由蝴蝶定理可知△DHF 与△BHC 面积相等, 那么阴影部分的面积恰 好为正方形 ABCD 的一半即 18 平方厘米。
19.40 名学生参加义务植树活动,任务是:挖树坑,运树苗。这 40 名学生可分为甲、乙、 丙三类, 每类学生的劳动效率如下表所示。 如果他们的任务是: 挖树坑 30 个, 运树苗不限, 那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?
【解析】:比较一下甲乙丙三人运树苗与挖树坑的效率比:
小书灯家长社区整理发布
7/7
2 3 2. 一个数的 比 3 小 ,则这个数是________。 3 7
3 2 27 6 【解析】:该数为 (3 ) 3 。 7 3 7 7

2015希望杯六年级100题含答案

2015希望杯六年级100题含答案

小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名54
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054
小升初名校杯赛群 302847054

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、每题6分,共120分1.(6分)++++.2.(6分)将化成小数,小数部分第2015位上的数字是.3.(6分)若四位数能被13整除,则两位数的最大值为.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了%.5.(6分)若a<<a+1,则自然数a=.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}=.(结果用小数表示)7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了件.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z=.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差颗.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是厘米.(π取3)14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是升.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是厘米.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有个.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是平方米.(π取3)18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了小时.2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、每题6分,共120分1.(6分)++++.【分析】把算式中的改写成(1﹣)、改写成()、改写成(﹣)、改写成(﹣)、改写成(﹣),进而去括号得解.【解答】解:++++,=(1﹣)+()+(﹣)+(﹣)+(﹣),=1﹣++﹣+﹣+﹣,=1﹣,=.【点评】解决此题关键是根据数据的特点,把每一个数据进行适当的改写,进而找出简便方法.2.(6分)将化成小数,小数部分第2015位上的数字是1.【分析】因为化成0.013013013013013013013013013013013…它的循环节是013,是3位数,2015÷3=671…2,所以小数部分的第2015位数字是672个循环节上的第2个数字,所以小数部分的第2015位置上的数字是1,据此解答.【解答】解:=13÷999=0.013013013013013013013013013013013…2015÷3=671 (2)所以小数部分的第2015位置上的数字是:1.故答案为:1.【点评】本题重点要确定循环节有几位小数,用2015除以循环节的位数,得出是第几个循环节,然后看余数是几就是循环节的第几个数字,没有余数就是循环节的最后一个数字.3.(6分)若四位数能被13整除,则两位数的最大值为97.【分析】要使四位数能被13整除,那么﹣2=的差能被13整除,最大是995,然后判断995能否被13整除,若不是则再调整比995小的数即可得出答案.【解答】解:要使四位数能被13整除,那么﹣2=的差能被13整除,最大是995,995÷13=76…7,所以995不合要求,则,985÷13=75…10,所以985不合要求,则,975÷13=75,能被13整除,所以,=2975,那么的最大值为97.答:的最大值为97.故答案为:97.【点评】本题考查了数位知识和数的整除的综合应用,关键是明确能被13整除的数的特征,即一个数的后三位数与前面的数的差能被13整除,这个数就能被13整除.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了37.5%.【分析】先求出这个分数分子减少20%,而分母增加28%的新分数是多少,再据这个新分数的值,求出新分数比原来分数减少的百分比.可设原分数为,然后据此计算即可.【解答】解:设原分数为,则新分数为=×,所以新分数为原分数的,(1﹣)÷1==37.5%.故答案为:37.5.【点评】完成本题要注意是求新分数比原来分数减少的百分率是多少,而不是新分数占原来分数的百分比.5.(6分)若a<<a+1,则自然数a=402.【分析】由题意,可得<++++<,设++++=s,则<<,进而推出s的取值范围,进一步解决问题.【解答】解:因为<++++<,设++++=s,则<<,所以<s<,即402.2<s<403,因此a=402.故答案为:402.【点评】此题看起来有一定难度,但采取灵活的方法,可化难为易,轻而易举解决问题.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}= 1.82.(结果用小数表示)【分析】通过分析{3.14}=0.14,{0.5}=0.5,计算出{}+{}+{}的小数部分,然后相加即可.【解答】解:{}+{}+{}≈{671.66}+{78.75}+{82.4}=0.66+0.75+0.4=1.81故答案为:1.81.【点评】解答本题的关键是求出{}+{}+{}的值.7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了15件.【分析】由“乙、丙制作的件数之比是3:4.已知丙制作了20件”可求出乙制作的件数,再求出乙丙共制作的件数;甲制作了总数的30%,那么乙丙制作了总数的70%,然后用乙丙制作的件数除以乙丙制作总数的70%,求出零件总数,最后即可求出甲制作的件数.【解答】解:20÷4×3=15(件)15+20=35(件)35÷(1﹣30%)=35÷70%=50(件)50×30%=15(件);答:甲制作了15件.故答案为:15.【点评】首先根据乙丙两人加工的个数比及丙加工的个数求出乙丙两人加工的总数是完成本题的关键.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z= 21.【分析】首先根据三个最简真分数的乘积是,可得xyz=9×15×14÷6=3×3×5×7;然后根据最简真分数的特征,可得3不是x,y的因数,5不是y的因数,7不是z的因数,则x=5,y=7,z=3×3=9,相加即可.【解答】解:根据题意,可得××=则,xyz=9×15×14÷6=3×3×5×7,根据最简真分数的特征,可得x=5,y=7,z=9,所以x+y+z=5+7+9=21.故答案为:21.【点评】此题主要考查了用字母表示数,解答此题的关键是熟练掌握最简真分数的特征.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?【分析】假设最后一个老鼠拿了1,2,3…粒花生,分别计算【解答】解:(1)最后一只老鼠取走1粒,最后一位老鼠取前有:1×3+1=4(粒);第二只老鼠取前有:4×3÷2+1=7(粒);第一只老鼠取前有:7×3÷2+1=12.5(粒)不能整除,舍去.(2)最后一只老鼠取走2粒,最后一位老鼠取前有:2×3+1=7(粒);第二只老鼠取前有:7×3÷2+1=12.5不能整除,舍去.(3)最后一只老鼠取走3粒,最后一位老鼠取前有:3×3+1=10(粒);第二只老鼠取前有:10×3÷2+1=16(粒);第一只老鼠取前有:16×3÷2+1=25(粒),符合题意.所以,最初这堆花生至少有25粒.答:这堆花生至少有25粒.【点评】此题解答的关键是从后向前进行推算,逐步推出初始结果,解决问题.10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.【分析】由题意可知:图中的两个阴影部分的面积相等,则两个圆的面积和就等于长方形的面积,于是可以设长方形的长和宽分别为a和b,依据长方形和圆的面积公式分别表示出各自的面积,再根据比的意义即可求解.【解答】解:设长方形的长和宽分别为a和b,则×π×b2×2=abb=a所以=.答:长方形的长和宽的比值是.故答案为:.【点评】解答此题的关键是明白:两个圆的面积和就等于长方形的面积,从而解决问题.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.【分析】把男生人数看作单位“1”,则女生人数的分率为,则总人数分率为1+,参加演出人数的分率为×+1×,用参加演出的人数分率除以全班人数分率即可.【解答】解:(×+1×)÷(1+)=()÷=×=答:参加演出的人数占全班人数的.故答案为:.【点评】解答本题的关键是找准单位“1”,求出参加演出人数的分率.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差4颗.【分析】设5年前妹妹的年龄是x,那么:5年前和今年分别按照年龄的比例分配,且恰好分完,所以2x+2与2x+12均为80的因数,且这两个因数的差为10;80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,求得x=4.然后根据表格中的数据进行分配,分别求得5年前和今年姐姐分到的颗数解决问题.【解答】解:设5年妹妹的年龄是x,那么:5年前和今年分别按照年龄的比例分配,且恰好分完,所以2x+2与2x+12均为80的因数,且这两个因数的差为10;80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,求得x=4.那么x+2=4+2=6,即5年前按照4:6的比例分配,姐姐分到:80÷(4+6)×6=80÷10×6=48(颗);x+5=9,x+7=11,即今年按照9:11的比例分配,姐姐分到:80÷(9+11)×11=80÷20×11=4×11=44(颗);两次分配相差:48﹣44=4(颗).答:姐姐两次分到的珠子相差4颗.故答案为:4.【点评】分别求出5年前和今年姐姐的年龄,是解答此题的关键.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是3厘米.(π取3)【分析】由题意可知,三角形BCE为等边三角形,则其边长等于半径,每个角的度数都是60度,再依据弧长公式即可求阴影部分的周长.【解答】解:连接BE、CE,则BE=CE=BC=1(厘米)故三角形BCE为等边三角形.于是∠EBC=∠ECB=60°于是弧BE=弧CE=3×1×=1(厘米)则阴影部分周长为1×2+1=3(厘米)答:阴影部分周长是3厘米.故答案为:3.【点评】考查了巧算周长,此题关键是连接BE、CE,将阴影部分进行变形,再利用弧长公式即可作答.14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是50升.【分析】若设第一次倒出的纯酒精是x升,根据最后水的体积是纯酒精体积的3倍,可得溶质是溶液的列方程求解.因为一开始容器内装的都是纯酒精,所以第一次倒出的x是溶质,当用水加满后的溶液的浓度是,第二次倒出的溶质是,然后根据已知条件即可列出方程.【解答】解:设第一次倒出的纯酒精是x升,则100﹣x﹣=×100整理得x2﹣200x+7500=0解得x1=150>100,舍去,x2=50,所以x=50答:第一次倒出的纯酒精是50升.故答案为:50.【点评】此题要求学生能够熟练运用公式:溶液的浓度=溶质÷溶液×100%.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是27厘米.【分析】半径分别为2厘米和3厘米,从而可以分别求得它们的底面积.设容器的高度为x厘米,则容器乙中的水深就是(x﹣6)厘米,根据等量关系:水的体积前后没有改变,利用圆柱的体积公式即可列出方程解决问题.【解答】解:设容器的高为x厘米,则容器B中的水深就是(x﹣6)厘米,根据题意可得方程:3.14×22×x=3.14×32×(x﹣6)3.14×4×x=3.14×9×(x﹣6),4x=6x﹣542x=54x=27答:甲容器的高度是27厘米.故答案为:27.【点评】此题考查圆柱体积计算公式的运用,掌握圆柱体积计算公式是解决问题的关键.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有68个.【分析】1~99:10,20,…90共9个101~109,201~209,301~309共:9x3=27个110,120,…190;210~290;310~380共2x9+8=26个100,200,300共6个,所以共有0为:9+27+26+6=68,据此解答即可.【解答】解:9+27+26+6=68(次).答:则这本书的页码中数字0共有68次.故答案为:68.【点评】解答此题应结合题意,进行分段分析,进而根据分析,得出结论.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是0.84平方米.(π取3)【分析】从半径为7分米的圆开始,用大圆的面积减相邻小圆的面积,再加半径为1分米圆的面积,即为阴影部分的面积.【解答】解:(3×72﹣3×62)+(3×52﹣3×42)+(3×32﹣3×22)+3×12=39+27+15+3=84(平方分米)84平方分米=0.84平方米答:图中阴影部分的面积是0.84平方分米.故答案为:0.84.【点评】解答本题的关键是将图形分为4部分,根据圆的面积公式解答即可.18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是3.【分析】因为切割成若干个相同的棱长为整数的小正方体,所以需要平行于前面、右面、上面所切的次数是相同的,由于切割后的表面积之和是切割前的大正方体的表面积的2倍,所以增加的面积等于原表面积,又因为“切一刀多两面”,所以增加的部分为两个前面,两个后面和两个右面,即平行于三个面各切一刀,由此求出棱长.【解答】解:因为切一刀多两面;小正方体的表面积之和是切割前的大正方体的表面积的2倍;所以增加的面积等于原表面积;所以平行于三个面各切一刀;所以切割成的小正方体的棱长是:6÷2=3答:切割成的小正方体的棱长是3.故答案为:3.【点评】关键是明确如何切,才能够使这些小正方体的表面积之和是切割前的大正方体的表面积的2倍.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?【分析】先确定取3根木棒的可能情况有几种,再利用三角形三边关系判断是否能构成三角形,从而得出结果.【解答】解:(1)1厘米,1厘米,1厘米;(2)1厘米,2厘米,2厘米;(3)1厘米,3厘米,3厘米;(4)1厘米,4厘米,4厘米;(5)1厘米,5厘米,5厘米;(6)5厘米,5厘米,5厘米;(7)2厘米,2厘米,2厘米;(8)2厘米,2厘米,3厘米;(9)2厘米,3厘米,3厘米;(10)2厘米,3厘米,4厘米;(11)2厘米,4厘米,4厘米;(12)2厘米,4厘米,5厘米;(13)2厘米,5厘米,5厘米;(14)3厘米,3厘米,3厘米;(15)3厘米,3厘米,4厘米;(16)3厘米,3厘米,5厘米;(17)3厘米,4厘米,4厘米;(18)3厘米,4厘米,5厘米;(19)3厘米,5厘米,5厘米;(20)4厘米,4厘米,4厘米;(21)4厘米,4厘米,5厘米;(22)4厘米,5厘米,5厘米.答:最多可以组成22个不同的三角形.【点评】考查了组合图形的计数,三角形的三边关系和发散思维的能力,解答的思想是分类讨论的思想.20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了0.6小时.【分析】根据路程÷速度=时间,由路程比1:2:3和速度比3:4:5,求出时间比::=10:15:18,则下坡路用的时间占总时间的,已知总时间是1小时26分=86分,根据一个数乘分数的意义用乘法解答.【解答】解:1÷3=2÷4=3÷5=::=10:15:181小时26分=86分86×=86×=36(分)=0.6(小时);答:小羊经过下坡路用了0.6小时.故答案为:0.6.【点评】此题条件比较多,理解题意是关键,除了用到按比例分配的知识,还要掌握路程,速度,时间之间的关系.。

六年年级希望杯试题及答案版

六年年级希望杯试题及答案版

六年年级希望杯试题及答案版LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】第十七届小学希望杯全国数学邀请赛六年级第1试试题解答题目1-应用题Ax比300少30%,y比x多30%,则x y+= 483 。

题目2-计算A如果,那么?所表示的图形可以是下图中的 3 。

(填序号)题目3-计算B计算:12113114115=++ ++++43 114。

题目4-应用题A一根绳子,第一次剪去全长的13,第二次剪去余下部分的30%。

若两次剪去的部分比余下的部分多米,则这根绳子原来长 6 米。

题目5-应用题A根据图中的信息可知,这本故事书有 25 页。

题目6-应用题B已知三个分数的和是1011,并且它们的分母相同,分子的比是234::。

那么,这三个分数中最大的是 4099。

题目7-行程B从12点整开始,至少经过 55513分钟,时针和分针都与12点整时所在位置的夹角相等。

(如图中的12∠=∠)。

题目8-数论B若三个不同的质数的和是53,则这样的三个质数有 11 组。

题目9-数论B被11除余7,被7除余5,并且不大于200的所有自然数的和是 351 。

题目10-方程B在救灾捐款中,某公司有110的人各捐200元,有34的人各捐100元,其余人各捐50元。

该公司人均捐款 元。

题目11-几何B如图,圆P 的直径OA 是圆O 的半径,OA BC ⊥,10OA =,则阴影部分的面积是 75 。

(π取3)OBP题目12-几何B如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置。

在这个过程中,圆面覆盖过的区域(阴影部分)的面积是 11 平方厘米。

( 取3)题目13-方程A如图,一个长方形的长和宽的比是5:3。

如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形。

原长方形的面积是 240 平方厘米。

题目14-组合A一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五届小学六年级“希望杯”全国数学邀请赛第2试试题
一、 填空题(每小题5分,共60分.)
1. 计算:
11112123123410+++++++++++ ,得__________. 2. 某商品单价先上调后,再下降20%才能降回原价.该商品单价上调了__________%.
3. 请你想好一个数,将它加5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想
好的那个数,最后的计算结果是__________.
4. 八进制数12345654321转化为十进数是N ,那么在十进制中,N ÷7与N ÷9的余数的和为
__________.
5. 小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书
中缺了一张(连续两个页码).那么,这本书原来有__________页.
6. 2015在N 进制下是AABB 形式的四位数,这里A ,B 是N 进制下的不同数码,则N 的值是
__________.
7. 方程{}{}210x x x x ⎡⎤+=+⎣⎦的所有解的和是__________(其中x ⎡
⎤⎣⎦表示不超过x 的最大整数,{}x 表示x 的小数部分).
8. 如图1,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别
为9,15和12,则第4个角上的小长方形的面积等于__________.
9. 一个魔法钟,一圈有12个大格,每个大格有3个小格,时针每魔法
时走一个大格,分针每魔法分走1个小格,每魔法时走两圈.那么,
从时针与分针成90º角开始到时针和分针第一次重合,经过了
__________魔法分.
10. 将1至2015这2015个自然数依次写出,得到一个多位数123456789…20142015,这个多
位数除以9,余数是__________.
11. 如图2,向装有13
水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,
且水面上升到容器高度的25
处,则圆柱形容器最多可以装水__________立方分米.(π取3.14)
12. 王老师开车从家出发去A 地,去时,前12
的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前13
的路程以50千米/小时的速度行驶,余下的路程行驶速度提高32%,结果返回时比去时少用31分钟,则王老师家与A 地相距__________千米.
二、 解答题(每小题15分,共60分.)每题都要写出推算过程.
13. 二进制是计算技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:
210210
(101)120212(5)=⨯+⨯+⨯=; 43210210
(11011)1212021212(27)=⨯+⨯+⨯+⨯+⨯=; 6543210210
(1110111)12121202121212(119)=⨯+⨯+⨯+⨯+⨯+⨯+⨯=; 876543210210(111101111)121212120212121212(495)=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=那么,将二进制数11111011111转化为十进制数,是多少?
(注:02
2222,21n n ↑=⨯⨯⨯=

14. 已知寒假一共有29天,小明10天可以完成寒假作业.小明每天可以选择做作业或者不做作
业.如果小明在寒假作业完成之前就连续3天不做作业,或者寒假没完成作业,爸爸就会惩罚他.那么小明在不被爸爸惩罚的情况下有多少种度过寒假的安排方式?
15. 一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的
103
倍,求切割成的小正方体中,棱长为1的小正方体的个数.
16. 如图3,点M 、N 分别是边长为4米的正方形ABCD 的一组对边AD 、BC 的中点,P 、Q 两
个动点同时从M 出发,P 沿正方形的边逆时针方向运动,速度是1米/秒;Q 沿正方形的边顺时针方向运动,速度是2米/秒.求:
(1) 第1秒时△NPQ 的面积;
(2) 第15秒时△NPQ 的面积;
(3) 第2015时△NPQ 的面积.。

相关文档
最新文档