人教版八年级数学下册第十八章 勾股定理
八年级数学下册《勾股定理的应用》教学设计一等奖3篇
1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
八年级数学下《第18章 勾股定理》全章课件(11份)-5
12 12
D B
C
需要更完整的资源请到 新世纪教 育网 -
x E
16-x
小明手里有一块三角形的红色 彩旗,已知两边AC=8cm、 AB=8 2 cm,并且这两条边与 第三边的夹角分别为60°和 45°,求第三边的长。 A
B
45° D 60° C
通过今天的学习,用 你自己的话说说你的收获和体会?
1.Rt△ABC中, ∠A=90°, 3、直角三角形两边长分别为 a=17, b=8, 则 c=பைடு நூலகம்__ 15 9和12,则第三边长为( C ) 2. Rt△ABC中 , ∠ B=90 ° , B 3 7 A 15 a:c=5:12,a+c=34, 则 15或3 7 D 以上都不对 C 26 b=___
需要更完整的资源请到 新世纪教 育网 -
操场上的五星红旗在迎风飘扬, 旗杆从旗顶到地面的高度为1600cm, 在无风的天气里,彩旗自然下垂,如下图. 求彩旗下垂时最低处离地面的最小高度h. 彩旗完全展平时的尺 寸如下图的长方形 (单位:cm).
120
90
需要更完整的资源请到 新世纪教 育网 -
本节课主要是应用勾股定理来解决实际问 题,在应用定理时,应注意:1、要会把 实际问题转化成数学问题,2、没有图的 要按题意画好图并标上字母;3、必要时 要利用勾股定理列方程来解。 我学会了!
需要更完整的资源请到 新世纪教 育网 -
作业:
发下去的卷上没有 做完的题
需要更完整的资源请到 新世纪教 育网 -
a
a
a 勾股定理的应用
c
勾股定理 c a
b
需要更完整的资源请到 新世纪教 育网 -
b
c
人教版八年级数学下册《勾股定理》PPT精品教学课件
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
八年级数学下册第十八章勾股定理18
专训1.巧用勾股定理求最短路径的长名师点金:求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.(第1题)2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A,C之间的距离.(参考数据21≈4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)(第2题)用平移法求平面中最短问题3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( )A.13 cm B.40 cm C.130 cm D.169 cm(第3题)(第4题)4.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF 的长是________.用对称法求平面中最短问题5.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.(第5题)6.高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.(第6题)用展开法求立体图形中最短问题类型1圆柱中的最短问题(第7题)7.如图,已知圆柱体底面圆的半径为2π,高为2,AB,CD分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是________(结果保留根号).类型2圆锥中的最短问题8.已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?(4)SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.(第8题)类型3正方体中的最短问题9.如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.(第9题)类型4长方体中的最短问题10.如图,长方体盒子的长、宽、高分别是12 cm,8 cm,30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.(第10题)专训2.巧用勾股定理解折叠问题名师点金:折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合,解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律.利用勾股定理解答折叠问题的一般步骤:(1)运用折叠图形的性质找出相等的线段或角;(2)在图形中找到一个直角三角形,然后设图形中某一线段的长为x,将此直角三角形的三边长用数或含有x的代数式表示出来;(3)利用勾股定理列方程求出x;(4)进行相关计算解决问题.巧用全等法求折叠中线段的长1.(中考·泰安)如图①是一直角三角形纸片,∠A=30°,BC=4 cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为( )(第1题)A.83cm B.2 3 cmC.2 2 cm D.3 cm巧用对称法求折叠中图形的面积2.如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,求△BED的面积.(第2题)巧用方程思想求折叠中线段的长3.(中考·东莞)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.(第3题)巧用折叠探究线段之间的数量关系4.如图,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC 于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.(第4题)专训3.利用勾股定理解题的6种常见题型名师点金:勾股定理建立起了“数”与“形”的完美结合,应用勾股定理可以解与直角三角形有关的计算问题,证明含有平方关系的几何问题,作长为n(n为正整数)的线段,解决实际应用问题及专训一、专训二中的最短问题、折叠问题等,在解决过程中往往利用勾股定理列方程(组),有时需要通过作辅助线来构造直角三角形,化斜为直来解决问题.利用勾股定理求线段长1.如图所示,在等腰直角三角形ABC 中,∠ABC=90°,点D 为AC 边的中点,过D 点作DE⊥DF,交AB 于E ,交BC 于F ,若AE =4,FC =3,求EF 的长.(第1题)利用勾股定理作长为n 的线段2.已知线段a ,作长为13a 的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为13a.利用勾股定理证明线段相等3.如图,在四边形ABFC 中,∠ABC=90°,CD⊥AD,AD 2=2AB 2-CD 2.求证:AB =BC.(第3题)利用勾股定理解非直角三角形问题4.如图,在△ABC 中,∠C=60°,AB =14,AC =10.求BC 的长.(第4题)利用勾股定理解实际生活中的应用5.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km /h ⎝ ⎛⎭⎪⎫即503 m /s ,并在离该公路100 m 处设置了一个监测点A.在如图的平面直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.另外一条公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15 s ,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:3≈1.7)(第5题)利用勾股定理探究动点问题6.如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,借助图①求t的值;(3)当△ABP为等腰三角形时,借助图②求t的值.(第6题)答案专训11.4(第2题)2.解:(1)如图,过点C作AB的垂线,交AB的延长线于点E.∵∠ABC=120°,∴∠BCE=30°.在Rt△CBE中,∵BC=20 km,∴BE=10 km.由勾股定理可得CE=10 3 km.在Rt△ACE中,∵AC2=AE2+CE2=(AB+BE)2+CE2=8 100+300=8 400,∴AC=20 21≈20×4.6=92(km ).(2)选择乘“武黄城际列车”.理由如下:乘客车需时间t 1=8060=113(h ),乘“武黄城际列车”需时间t 2≈92180+2040=1190(h ).∵113>1190,∴选择乘“武黄城际列车”. 3.C 点拨:将台阶面展开,连接AB ,如图,线段AB 即为壁虎所爬的最短路线.因为BC =30×3+10×3=120(cm ),AC =50 cm ,在Rt △ABC 中,根据勾股定理,得AB 2=AC 2+BC 2=16 900,所以AB =130 cm .所以壁虎至少爬行130 cm .(第3题)(第5题)4.105.解:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP. 易知BD⊥AC,且BO =OD ,∴BP=PD ,则BP +EP =ED ,此时最短. ∵AE=3,AD =1+3=4,由勾股定理得 ED 2=AE 2+AD 2=32+42=25=52, ∴ED=BP +EP =5.6.解:作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,则点P 即为所建的出口.此时A 、B 两城镇到出口P 的距离之和最小,最短距离为AC 的长.作AD⊥BB′于点D ,在Rt △ADC 中,AD =A′B′=8 km ,DC =6 km .∴AC=AD 2+DC 2=10 km ,∴这个最短距离为10 km .(第6题)(第7题)7.2 2 点拨:将圆柱体的侧面沿AD 剪开并铺平得长方形AA′D′D,连接AC ,如图.线段AC 就是小虫爬行的最短路线.根据题意得AB =2π×2π×12=2.在Rt △ABC 中,由勾股定理,得AC 2=AB 2+BC 2=22+22=8,∴AC=8=2 2.8.解:(1)圆锥 (2)扇形(3)把此立体图形的侧面展开,如图所示,AC 为蜗牛爬行的最短路线. (4)在Rt △ASC 中,由勾股定理,得AC 2=102+52=125, ∴AC=125=5 5.故蜗牛爬行的最短路程为5 5.(第8题)(第9题)9.解:(1)蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC 1. (2)如图,AC′1=42+(4+4)2=4 5.AC 1=(4+4)2+42=4 5.所以蚂蚁爬过的最短路径的长是4 5. 10.解:分为三种情况:(1)如图①,连接EC ,在Rt △EBC 中,EB =12+8=20(cm ),BC =12×30=15(cm ).(第10题)由勾股定理,得EC =202+152=25(cm ). (2)如图②,连接EC.根据勾股定理同理可求CE =673 cm >25 cm . (3)如图③,连接EC.根据勾股定理同理可求CE =122+(30+8+15)2= 2 953(cm )>25 cm .综上可知,小虫爬行的最短路程是25 cm . 专训2 1.A2.解:由题意易知AD∥BC,∴∠2=∠3. ∵△BC′D 与△BCD 关于直线BD 对称, ∴∠1=∠2.∴∠1=∠3.∴EB=ED. 设EB =x ,则ED =x ,AE =AD -ED =8-x. 在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x)2=x 2.∴x=5.∴DE=5.∴S △BED =12DE·AB=12×5×4=10.3.(1)证明:在正方形ABCD 中,AD =AB ,∠D=∠B=90°. ∵将△ADE 沿AE 对折至△AFE, ∴AD=AF ,DE =EF ,∠D=∠AFE=90°. ∴AB=AF ,∠B=∠AFG=90°.又∵AG=AG ,∴Rt △ABG≌Rt △AFG(HL ). (2)解:∵△ABG≌△AFG,∴BG=FG. 设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CE=DE =EF =3,∴EG=3+x. ∴在Rt △CEG 中,32+(6-x)2=(3+x)2,解得x =2. ∴BG=2.4.(1)证明:由题意知,AF =CF ,AE =CE ,∠AFE=∠CFE,又四边形ABCD 是长方形,故AD∥BC,∴∠AEF=∠CFE.∴∠AFE=∠AEF. ∴AE=AF =EC =CF.(2)解:由题意知,AE =EC =a ,ED =b ,DC =c ,由∠D=90°知,ED 2+DC 2=CE 2,即b 2+c 2=a 2.专训3(第1题)1.解:如图,连接BD.∵等腰直角三角形ABC 中,点D 为AC 边的中点,∴BD⊥AC,BD 平分∠ABC(等腰三角形三线合一),∴∠ABD=∠CBD=45°,又易知∠C =45°,∴∠ABD=∠CBD=∠C.∴BD=CD.∵DE⊥DF,BD⊥AC,∴∠FDC+∠BDF=∠EDB+∠BDF.∴∠FDC=∠EDB.在△EDB 与△FDC 中,⎩⎪⎨⎪⎧∠EBD=∠C,BD =CD ,∠EDB=∠FDC,∴△EDB≌△FDC(ASA ), ∴BE=FC =3.∴AB=7,则BC =7.∴BF=4.在Rt △EBF 中,EF 2=BE 2+BF 2=32+42=25,∴EF=5.2.2a ;3a3.证明:∵CD⊥AD,∴∠ADC=90°,即△ADC 是直角三角形.由勾股定理,得AD 2+CD 2=AC 2.又∵AD 2=2AB 2-CD 2,∴AD 2+CD 2=2AB 2.∴A C 2=2AB 2.∵∠ABC=90°,∴△ABC 是直角三角形.由勾股定理,得AB 2+BC 2=AC 2,∴AB 2+BC 2=2AB 2,故BC 2=AB 2,即AB =BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.4.解:如图,过点A 作AD⊥BC 于点D.∴∠ADC=90°.又∵∠C=60°,∴∠CAD=90°-∠C=30°,(第4题)∴CD=12AC =5. ∴在Rt △ACD 中,AD =AC 2-CD 2=102-52=5 3.∴在Rt △ABD 中,BD =AB 2-AD 2=11.∴BC=BD +CD =11+5=16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.5.解:(1)在Rt △AOB 中,∵∠BAO=60°,∴∠ABO=30°,∴OA=12AB. ∵OA=100 m ,∴AB=200 m .由勾股定理,得OB =AB 2-OA 2=2002-1002=100 3(m ).在Rt △AOC 中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA =100 m .∴B(-100 3,0),C(100,0).(2)∵BC=BO +CO =(100 3+100)m ,100 3+10015≈18>503,∴这辆汽车超速了.6.解:(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4 cm .(2)由题意知BP =t cm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,即t =4;[第6题(2)]②如图②,当∠BAP 为直角时,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=32+(t -4)2,在Rt △BAP 中,AB 2+AP 2=BP 2,即52+[32+(t -4)2]=t 2,解得t =254.故当△ABP 为直角三角形时,t =4或t =254.(3)①如图①,当BP =AB 时,t =5;②如图②,当AB =AP 时,BP =2BC =8 cm ,t =8;[第6题(3)]③如图③,当BP =AP 时,AP =BP =t cm ,CP =|t -4|cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,所以t 2=32+(t -4)2,解得t =258.综上所述:当△ABP 为等腰三角形时,t =5或t =8或t =258.。
人教版义务教育教科书八下数学教材介绍
人教版义务教育教科书数学八年级下册介绍一、整体概略第十六章二次根式第十七章勾股定理第十八章平行四边形第十九章一次函数第二十章数据的剖析涵盖“数和代数”“图形和几何”、“统计和概率”、“综合和实践”所有四个领域。
全书需约 62 课时,详细以下:第十六章二次根式约9课时二次根式、最简二次根式的看法二次根式的四则运算第十七章勾股定理约9课时勾股定理勾股定理的逆定理、抗命题第十八章平行四边形约 15课时一般平行四边形和特别平行四边形(矩形、菱形和正方形)的看法、性质和判断三角形中位线定理、平行线间的距离第十九章一次函数约17课时常量和变量的意义函数的看法和三种表示法一次函数的看法、图象、性质一次函数和方程、不等式的关系一次函数模型第二十章数据的剖析约12课时、中位数、众数刻画数据集中趋向的统计量——均匀数(加权均匀数)刻画数据失散(颠簸)程度的统计量——方差用样本的均匀数、方差预计整体的均匀数、方差,进一步领会用样本预计整体的思想别的,本书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,经过这些课题学习和数学活动进一步落实“综合和实践”的要求。
二、教科书内容的整体变化原八年级下册( 61)新八年级下册( 62)第 16章分式(14)第 16 章二次根式(9)第 17 章反比率函数(8)第 17章勾股定理(9)第 18章勾股定理(8)第 18章平行四边形(15)第 19章四边形(16)第 19章一次函数(17)第 20章数据的剖析(15)第 20 章数据的剖析(12)“分式”由八下提早至八上第 14 章整式的乘法和因式分解;第15章分式;第 16 章二次根式。
三章式的内容相对集中,表现式之间的联系,它们组成式的有机整体。
“二次根式”从九上提早至八下“勾股定理”从前用勾股定理进行计算时常常波及二次根式的化简,便于计算、进一步稳固二次根式的运算,有利于全面表现勾股定理的教育价值“反比率函数”移到九下,便于学生理解波及的一些物理等有关知识;“一次函数”由八上移到八下,这一调整鉴于函数内容学习的以下三个难点:(1)函数的看法比较抽象;(2)从数和形双方面考虑问题;(3)用函数解决实质问题比较难。
人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结
八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
新课标人教版八年级数学第十八章勾股定理知识点总结
A CB D 新课标人教版八年级数学知识点总结 第十八章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC =21AB ∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。
∠ACB=90° 可表示如下: ⇒CD =21AB = BD = AD D 为AB 的中点5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB = 90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=26、常用关系式由三角形面积公式可得:A B ·CD=AC ·BC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
8、命题、定理、证明⑴命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
人教版八年级下册数学课本知识点归纳
人教版八年级下册数学课本知识点归纳第十六章 分式一、分式1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 )2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。
用式子表示如下:(C ≠0) 其中A,B,C 是整式3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。
这个过程叫通分。
(分母为多项式时要分解因式)5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。
二、分式的运算1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
上述法则可以用式子表示:C B C A B A ⋅⋅=C B C A B A ÷÷=bcad c d b a d c b a bd ac d c b a =⋅=÷=⋅;3分式乘方法则:一般地,当n 为正整数时 这就是说, 分式乘方要把分子、分母分别乘方4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
上述法则可用以下式子表示:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 5.整数指数幂1.任何一个不等于0的数的0次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a ,也就是说a n (a≠0)是a -n 的倒数。
正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a +=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn b a ba =)(( n 是正整数);(b ≠0) 三、分式方程1. 分式方程:分母中含未知数的方程叫分式方程。
数学八年级下人教版18.1勾股定理课件人教版八年级下
b
米;
3、蚂蚁沿图中的折线从A点爬到D点,一 共爬了多少厘米?(小方格的边长为1厘 米)A G
B
E
C
F
D
⒈ 勾股定理是几何中最重要的定理之 一,它揭示了直角三角形三边之间的 数量关系. ⒉勾股定理: 直角三角形两直角边a、b 平方和, 等于斜边c平方
a2+b2 =c2
⒊勾股定理的主要作用是 在直角三角形 中,已知任意两边求第三边的长
2、已知: Rt∆ABC中c =10,a=6,求b
3、已知: 如图c =13,a
c
=5,
a
求阴影总分面积
▪ 一个门框的尺寸如图所示,一块长3米,宽2.2米的 薄木板能否从门框内通过
门框能横着或竖着通过 吗
∵ 木板的宽2.2米大于1米
∴横着不能从门框通过
2.2米
∵ 木板的宽2.2米大于2米 ∴竖着也不能从门框通过
勾股定理的内容是什么
勾股定理:直角三角形两条直角边 a,b的平方和,等于斜边c的平方
a2+b2=c2
练一练
1、已知:∠C=90°,a:b= 3:4,c=10,求a和b
2、已知:△ABC,AB=AC A
=17,BC=16,则高 AD=_,S△ABC=___
B DC
学以致用
1、已知:Rt∆ABC中a=3, b=4, 求c
好奇是人你能用三角形的边长 表示正方形的面积吗?
2.你能发现直角三角形三
如果直角三角 形两直角边分 别为a, b,斜边 为c,那么
边长度之间存在什么关系 a2+b2=c2
吗? 3.分别以5cm,12cm为直
角边作出一个直角三角形, 并测量斜边的长度,上面 a
c
人教版数学八年级下册17.1勾股定理课件(36张PPT) (1)
图1
9
9 18
8
B 图1
C A
图2
A,B,C 面积关
系
44
SA+SB=SC
B 图2
(图中每个小方格代表一个单位面积)
直角三 角形三 边关系
两直角边的平方和 等于斜边的平方
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
探究二:在一般 的直角三角形中, SA+SB=SC 还成立吗?
A
B C
A
B C
用了“补”的方法
用了“割”的方法
如图,小方格的边长为1.
(1)你能求出正方形C的面积吗?
观察所得到的各组数据,你有什么发现?
A
SA+SB=SC
a
Bb c
C
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
SA+SB=SC
a
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
我们也来观察右图的地面, 你能发现A、B、C面积之间 有什么数量关系吗?
AB C
SA+SB=SC
每块砖都是等腰直角三角形哦
二、探究新知
探究一:你能发现图1中正方形A、B、C的面积之间有 什么数量关系吗?
C A
B 图1
(图中每个小方格是1个单位面积)
(1)观察图1-1
正方形A中含有 9 个
C
小方格,即A的面积是
A
9 个单位面积。
正方形B的面积是
B
C
9 个单位面积。
图1-1
A
正方形C的面积是
新人教版八年级下第18章第一节 勾股定理(第一课时)
(2)想一想,怎样利用小方格计算正方形P、Q、R面积?
P的面积
Q的面积
R的面积
图
(3)正方形P、Q、R面积之间的关系是什么?
(4)直角三角形三边之间的关系用命题形式怎样表述?
教师出示图表.
学生独立观察并计算图中正方形P、Q、R的面积并完成填表.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.
或者用割补的方法将正方形A、B中小等腰直角三角形补成一个大正方形得到:正方形A、B的面积之和等于大正方形C的面积.
教师引导学生,由正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.
通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态.
“问题是思维的起点”,通过层层设问,引导学生发现新知.
得到教科书66页图18.1—3图1,构造了以a、b为直角边的直角三角形,令斜边为c,沿直角三角形的斜边分割从而拼得边长为c的正方形,完成拼图. 学生容易想到:未剪之前,图形面积是a +b ,在拼图过程中,构造了以a、b为直角边的直角三角形,得到斜边为c.拼接之后新的正方形边长是c,面积为c .从而得到直角三角形三边的关系:a +b =c ,即验证了命题1.
课题
18.1勾股定理(第一课时)
学校
嘉积中学海桂学校
上课教师
刘红军
项目
内 容
理论依据或意图
教
材
分
析
教材地位与作用
《勾股定理》是人教版八年级(下册)第十八章第一节的内容。它是在学生已经掌握了直角三角形有关性质的基础上进行学习的,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一。它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,在数学的发展中起着重要的作用,它可以解决许多直角三角形的计算问题,在生产,生活中用途很大。
18人教版八年级数学下册:第十八章 勾股定理
全国中考信息资源门户网站
全国中考信息资源门户网站
18.2
勾股定理的逆定理
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
第十八章
勾股定理
全国中考信息资源门户网站
m
全国中考信息资源门户网站
18.1
勾股定理
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
数学活动
全国中考信息资源门户网站
全国中考信息资源门户网站
小结
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
阅读与思考
勾股定理的证明
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
全国中考信息资源门户网站
新课标人教版初中数学八年级下册第十八章《勾股定理》精品教案
新课标人教版初中数学八年级下册第十八章《勾股定理》精品教案18.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗? 五、例习题分析例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
第18章 勾股定理-认识勾股定理拓展课件 2022--2023学年沪科版数学八年级下册
(2)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得
到一个直角三角形(在图2中,只需画出示意图.)
分析:
3²+4²=5²
5
∠C是直角
4
10
8
3 C
6
O
图1
图2
例2:古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉
(填A或B)
A.勾股定理:直角三角形两直角边的平方和等于斜边的平方
B.勾股定理逆定理:如果三角形的三边长a、b、c满足:a2+b2=c2,那么这个三角形是直角三角形
(2)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得
到一个直角三角形(在图2中,只需画出示意图.)
+−
=
2
++
即2ab=(a+b+c)(a+b-c)
化简得a2+b2=c2.
B
E
F
C
例3:如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形
A
ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x
(1)小明发明了求正方形边长的方法:
+−
2
D
因为AB=BD+AD,所以a-x+b-x=c,解得x=
I
(2)小亮也发现了另一种求正方形边长的方法:
利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他
第十八章 勾股定理 (人教版)
• • • • •
勾股定理
本章的内容设计和编排 本章的教学目标 本章的教学重点、难点、关键点 本章安排了多少个数学史料,共用意各是什么 设计一套本章测试题 本章的教材中给了多少种(定理)的证明 方法
本章的内容设计和编排
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性(看到直角三 角形后便能联想到直角三角形的一些性质以及勾股定理:a^2+b^2=c^2), 使数学教育面向全体学生,实现: --人人学有价值的数学; --人人都能获得必需的数学; --不同的人在数学上得到不同的发展。 2.数学是人们生活、劳动和学习必不可少的工具(68页练习2),能够帮助人们 处理数据、进行计算、推理和证明(67页探究2),数学模型可以有效地描 述自然现象和社会现象(66页探究1 70页练习5 73页古埃及人测量问题); 数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数 学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用 (75页例2);数学是人类的一种文化,它的内容、思想、方法和语言是现 代文明的重要组成部分(73页黄色卡片)。 3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要 有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动 (78页活动2)。内容的呈现应采用不同的表达方式,以满足多样化的学习 需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探 索与合作交流是学生学习数学的重要方式(在教材中由史料 思考 探究 猜想 得证这样的安排得以体现“不同的表达方式以满足多样的学习需求”)。由 于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习 活动应当是一个生动活泼的、主动的和富有个性的过程(71页选学)。
人教版数学八年级下册《勾股定理》
C A
B
C A
B
这两幅图中A,B的 面积都好求,该 怎样求C的面积呢?
方法1:补形法(把正方形C补成各边都在网格线上 的正方形):
C A
B
C A
B
左图: 右图:
SC
55
4
1 2
2 3
13
SC
77
4
1 2
4 3
25
方法2:分割法(把正方形C分割成易求出面积的三 角形和四边形):
C A
B
C A
B
左图:
SC
4
1 2
2 3
11
13
右图:
SC
4
1 2
4 3
11
25
根据前面求出的C的面积直接填出下表:
C A
B
C A
B
S正方形A S正方形B S正方形C
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
一直角边2 + 另一直角边2 =
斜边2
也就是说,由这三个正方形围成的直角三角形的三边也满足 两直角边的平方和等于斜边的平方这种关系。
a
c
数学上,经过证明被确认为正确的命题叫做定理, 所以我们刚刚猜想的命题1在我国叫做勾股定理.
Cb
A 勾股定理: 如果直角三角形两直角边长分别为a,b,
斜边长为c,那么a2+b2=c2.(即直角三角形两直角 边的平方和等于斜边的平方).
公式变形:
a c2 - b2 , b c2 - a2 , c a2 b2
证法3 美国第二十任总统伽菲尔德的“总统证法”. 如图,图中的三个三角形都是直角三角形,求证: a2 + b2 = c2.
初中数学勾股定理(精选课件)
初中数学勾股定理聚智堂学科教师辅导讲义年级:课时数:学科教师:学员姓名:辅导科目:数学辅导时间:课题勾股定理教学目的1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。
3、满足的三个正整数,称为勾股数。
教学内容一、日校回顾二、知识回顾1。
勾股定理如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方。
说明:(1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。
(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
在没有特殊说明的情况下,直角三角形中,a,b是直角边,c是斜边,但有时也要考虑特殊情况。
(3)除了利用a,b,c表示三边的关系外,还应会利用AB,BC,CA表示三边的关系,在△ABC中,∠B=90°,利用勾股定理有。
2. 利用勾股定理的变式进行计算ﻩ由,可推出如下变形公式:(1);(2)(3)(4)(5)(平方根将在下一章学到)说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。
三、知识梳理1、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。
求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2、如何判定一个三角形是直角三角形(1)先确定最大边(如c)(2)验证与是否具有相等关系(3)若=,则△ABC是以∠C为直角的直角三角形;若≠则△ABC不是直角三角形。
人教版八年级数学下册第十八章勾股定理测试【精品4套】
勾股定理测试卷(1)一、选择题(每题2分,共30分)1.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组A .1 B. 2 C. 3 D. 4 2.下列说法中, 不正确的是 ( )A . 三边长度之比为5:12:13的三角形是直角三角形 B. 三个角的度数之比为1:3:4的三角形是直角三角形 C. 三个角的度数之比为3:4:5的三角形是直角三角形 D. 三边长度之比为3:4:5的三角形是直角三角形3.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地.B ,在AB 间建一条直水管,则水管的长为( ) A .40cm B .45cm C .50cm D .56cm西南北东4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30ο夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.ABC ∆中,90B ο∠=,两直角边7,24AB BC ==,三角形内有一点P 到各边的距离相等,30°则这个距离是( )A .1B .3C .4D .56.已知一直角三角形的木板,三边的平方和为21800cm ,则斜边长为( ). A .80cm B .30cm C .90cm D .120cm.7.若三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A .12 cm B. 10 cm C. 8 cm D. 6 cm 8.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或79.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A .12米 B. 13米 C. 14米 D. 15米10.在直角三角形中,斜边与较小直角边的和.差分别为8,2,则较长直角边长为( ) A .5 B .4 C .3 D .211.ABC ∆的三条边长分别是a b c ,,,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 12.如图,正方形网格中的ABC ∆,若小方格边长为1,则ABC ∆是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对CBA13.如图,小方格都是面积为1的矩形,则图中四边形的面积是 ( ) A .25 B. 12.5 C. 9 D. 8.514.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.B15.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m; B. 2.5m; C. 2.25m; D. 3m.二、填空题(每空3分,共30分)16.已知,如图中字母B.M分别代表的正方形的面积分别为__________.___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
第十八章 勾股定理
18.1 勾股定理(1)
知识领航
1.勾股定理:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角
三角形中两直角边的平方和等于斜边的平方.
2.关于勾股定理的证明方法有很多.赵爽的证法是一种面积证法,其中的依据是图形经过
割补拼接后,只要没有重叠,没有空隙,面积不会改变.“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲。
正因为此,这个图案被选为2002年在北京召开的世界数学家大会的会徽。
e 线聚焦
【例】 如图所示,可以利用两个全等的直角三角形拼出一个梯形.借助这个图形,你能用面积法来验证勾股定理吗?
分析:面积法验证勾股定理关键是要找到一些特殊图形
(如直角三角形,正方形,梯形)的面积之和等于另一些特殊
图形的面积,从而达到验证的目的.
解:此图可以这样理解,有三个Rt △其面积分别为21ab ,21ab 和21c 2.还有一个直角梯形,其面积为2
1(a +b )(a +b ). 由图形可知:21 (a +b )(a +b )= 21ab +21ab +2
1c 2 整理得(a +b )2
=2ab +c 2, a 2+b 2+2ab =2ab +c 2, ∴ a 2+b 2=c 2 .
由此得到勾股定理.
这正是美国第20任总统茄菲尔德证明勾股定理的方法. 双基淘宝
仔细读题,一定要选择最佳答案哟!
1. 下列说法正确的是( )
A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2
B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2
C.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠A ,则a 2+b 2=c 2
D.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠C ,则a 2+b 2=c 2 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )
c a b a
c b b c b
a a
c A .c b a =+ B.c b a >+ C.c b a <+ D.222c b a =+
3.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )
A .斜边长为25
B .三角形周长为25
C .斜边长为5
D .三角形面积为20
4.在Rt ABC ∆中, ο90=∠C , (1)如果a =3,b =4,则c = ; (2)如果a =6,b =8,则c = ;
(3)如果a =5,b =12,则c = ; (4) 如果a =15,b =20,则c = .
5.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.
综合运用
认真解答,一定要细心哟!
6.利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,
验证:c 2=a 2+b 2.
7.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,
不计墙的厚度,请计算阳光透过的最大面积.
8.下面是数学课堂的一个学习片段, 阅读后, 请回答下面的问题: 学习勾股定理有关内容后, 张老师请同学们交流讨论这样一个问题: “已知直角三角形ABC 的两边长分别为3和4, 请你求出第三边.”
同学们经片刻的思考与交流后, 李明同学举手说: “第三边长是5”; 王华同学说: “第三边长是7.” 还有一些同学也提出了不同的看法……
(1)假如你也在课堂上, 你的意见如何? 为什么?
(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)
9.蚂蚁沿图中的折线从A 点爬到D 点,一共爬了多少厘米?(小方格的边长为1厘米)
拓广创新
3m
试一试,你一定能成功哟!
10.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如图,
火柴盒的一个侧面ABCD 倒下到AB ′C ′D ′的位置,连接CC ′,设AB=a,BC=b,AC=c ,请利用四边形BCC ′D ′的面积验证勾股定理:a 2+b 2=c 2.
参考答案
1.D
2.B
3.C
4.5; 10; 13; 25
5.169
6.中空正方形的面积为2)(a b -,也可表示为ab c 2142⨯
-,∴2)(a b -=ab c 2142⨯-,整理得222c b a =+. 7.100m 2 8.(1)分两种情况:当4为直角边长时,第三边长为5;当4为斜边长
时,第三边长为7.(2)略 9.28cm 10.∵ 四边形BCC ′D ′为直角
梯形,∴S 梯形BCC ′D ′=2
1(BC+C ′D ′)·BD ′=2)(2b a +.∵Rt △ABC ≌Rt △AB ′C ′, ∴∠BAC =∠BAC ′. ∴∠CAC ′=∠CAB ′+∠B ′AC ′=∠CAB ′+∠BAC =90°. ∴S 梯形BCC ′D ′=S △
ABC +S △CAC ′+S △D ′AC ′= 21ab +21c 2+2
1ab =222ab c +. ∴2)(2b a +=222ab c +. ∴a 2+b 2=c 2. D ' B C D A C ' B ' a b c。