2020年度全国体育单招数学测试题(十一)
2020届全国普通高校运动训练、民族传统体育单独招生模拟测数学试题
2020届体育单招数学模考试题一、选择题(本大题共10小题,每小题6分,共60分) 1. 已知集合{}2≥=x x A ,{}12>=xx B ,则=B A I ( ){}2.≥x x A {}1.>x x B {}1.->x x C {}21.≤<-x x D2. 已知等差数列{}n a 首项为1-,前n 项和为n S ,若16913-=S ,则公差=d ( )4.3.2.1.----D C B A3. 已知)(122Z k k ∈-=ππα,则=α2tan ( ) 33.3.33.3.--±±D C B A 4. 从1、2、3、4、5中任取两个数,其积为奇数的概率( ) 51.52.53.103.D C B A 5. 已知圆柱的母线长为2,表面积为π16,则圆柱体积为( ) ππππ32.16.8.4.D C B A6. 过椭圆1422=+y x 焦点作长轴垂线,交椭圆于B A ,,则=AB ( ) 4.3.2.1.D C B A7. 已知向量)3,1(-=,),2(x =,且//,那么=a 2( )104.103.102.10.D C B A8. 在ABC ∆中,AB=3,AC=4,BC=37,则AB 边上的高为( ) 3.32.22.2.D C B A9. 方程)1)(2()2()1(22-+=++-a a y a x a 表示的是双曲线,则a 的取值范围是( ) )1,2(.-A )2,1(.-B ),1(.∞+C ),1()2,(.∞+--∞Y D 10. 函数x x y 2cos sin -=的最小值是( ) 2.89.2.45.----D C B A二、填空题(本大题共6小题,每小题6分,共36分)班级 姓名 考场 考号密封 线 内 不 要 答 题11. 若抛物线px y 22-=的准线方程为1=x ,则=p .12. 62⎪⎭⎫ ⎝⎛-x x 的展开式中2x 的系数为 .13. 曲线32x x y +=在点)3,1(处的切线方程为 . 14. 已知等比数列ΛΛ,22,4,则数列的第9项为 .15. 已知正三棱锥ABC P -,2=AB ,3=PA ,侧棱PA 与底面ABC 所成角的余弦值为 .16. 已知点P 是椭圆15922=+y x 上一点,21,F F 是椭圆的左右焦点,若021=⋅PF ,则21F PF ∆的面积为 .选择题答案填写处三、解答题(本大题共3小题,每小题18分,共54分)17. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,a 、b 、c 成递增的等差数列,且AbB a cos cos =. (1)证明:△ABC 是直角三角形;(2)求.sin B18. 已知椭圆C 的中心在坐标原点O 处,焦点在x 轴上,离心率为23,且C 过点)23,1(-. (1)求C 的方程;(2)若直线l :0=+-t y x 与C 交于B A ,两点,且54=∆AOB S ,求l 的方程.19. 如图,在正三棱柱ABC-A 1B 1C 1中,AB=BB 1=1,D ,E 分别是A 1C 1,AB 1中点.(1)证明:DE ∥平面BB 1C 1C ;(2)求点B 到平面AB 1C 1的距离.A 1参考答案选择题ABDAB ADCDC填空题11. 2;12. 60;13. 5x-y-2=0;14.41;15. 932;16. 5.解答题17. (1)证明:由正弦定理得a=2RsinA,b=2RsinB (2R 为△ABC 外接圆半径) 于是由已知可得AbB a cos cos =,进而得B A 2sin 2sin =,因为a,b,c 成递增的等差数列,所以b a ≠,要使得B A 2sin 2sin =,只有π=+B A 22,所以2π=C ,所以△ABC 是直角三角形.(2)由已知得c a b +=2,进而得C A B sin sin sin 2+=,在AB C Rt ∆中,B A C cos sin ,1sin ==,所以1cos sin 2+=B B ,解得54sin =B . 18. (1)解:依题意可设)0(,2,3>==t t a t c ,所以22t b =,于是椭圆C 方程为142222=+t y t x 代入)23,1(-,得12=t ,所以C 的方程为1422=+y x .(2) 依题意设),(),,(2211y x B y x A ,联立⎪⎪⎩⎪⎪⎨⎧=+=+-14022y x t y x 得0448522=-++t tx x ,此时21680t -=∆,l 与C交于两点,只需5t 2<.于是544,5822121-=-=+t x x t x x ,进而得222552451616256411t t t AB -=--+=,原点O 到直线AB 的距离为2t d =,5421=⋅=∆d AB S AOB ,解得1±=t ,或2±=t . 所以直线l 方程为01=+-y x ,或01=--y x ,或02=--y x ,或02=+-y x .19. (1)证明:取A 1B 1中点为F ,连接DF ,EF.于是DF ,EF 分别为△A 1B 1C 1,△AA 1B 1中位线. 所以1111//21//,21//BB A A EF C B DF ,所以平面DEF ∥平面BB 1C 1C. 又DE 在平面DEF 内,所以DE ∥平面BB 1C 1C. (2)如图,1111C AB B C V V ABB -=-,,47sin ,43cos 1111=∠=∠AB C AB C 于是d ⋅⨯⨯⨯⨯=⨯⨯⨯⨯4722213123112131,解得721=d 即为所求距离.。
体育单招考试数学试题
体育单招考试数学试题一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合}4,3,2{},,3,2,1{==B A ,则=⋃B A ( )A 、}4,3,2,1{B 、}3,2,1{C 、}4,3,2{D 、}4,1{2、下列计算正确的是 ( ) A 、222log 6log 3log 3-= B 、22log 6log 31-=C 、3log 93=D 、()()233log 42log 4-=-3、已知(1,2),(1,)a b x =-= ,若a b ⊥ ,则x 等于 ( )A 、21 B 、 21- C 、 2 D.、-2 4、已知函数)1(156≠∈-+=x R x x x y 且,那么它的反函数为( ) A 、()1156≠∈-+=x R x x x y 且 B 、()665≠∈-+=x R x x x y 且 C 、⎪⎭⎫⎝⎛-≠∈+-=65561x R x x x y 且 D 、()556-≠∈+-=x R x x x y 且 5、不等式2113x x ->+的解集为( ) A 、x <-3或x >4B 、{x | x <-3或x >4}C 、{x | -3<x <4}D 、{x | -3<x <21} 6、满足函数x y sin =和x y cos =都是增函数的区间是( )A .]22,2[πππ+k k , Z k ∈ B .]2,22[ππππ++k k , Z k ∈C .]22,2[ππππ--k k , Z k ∈D .]2,22[πππk k - Z k ∈7、直线是y=2x 关于x 轴对称的直线方程为( )A 、12y x =-B 、12y x =C 、2y x =-D 、2y x =8、设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S 等于 ( ) A 、13 B 、35 C 、49 D 、 639、已知{}n a 为等差数列,且74321,0a a a -=-=,则公差d = ( )A 、-2B 、12-C 、12D 、210、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )种A 、90B 、180C 、270D 、540二、填空题:本大题共6小题,每小题6分,共36分。
体育单招数学试题及答案大全
体育单招数学试题及答案大全一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 2答案:B2. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 15C. 17D. 19答案:A3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A6. 一个等比数列的首项是2,公比是3,那么第4项是多少?A. 72B. 81C. 108D. 144答案:A7. 一个三角形的三个内角分别是30°、60°、90°,那么这个三角形是什么三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B8. 函数y=x^2-4x+4的最小值是多少?A. 0B. 1C. 4D. 8答案:A9. 一个圆的周长是2π,那么它的直径是多少?A. 1B. 2C. 3D. 4答案:B10. 一个等差数列的首项是5,公差是-1,那么第10项是多少?A. -4B. -5C. -6D. -7答案:C二、填空题(每题3分,共30分)11. 一个等差数列的首项是7,公差是-2,那么第10项是________。
答案:-512. 函数y=x^3-3x^2+2的导数是________。
答案:3x^2-6x13. 一个长方体的长、宽、高分别是5、4、3,那么它的表面积是________。
答案:9414. 一个圆的半径是4,那么它的周长是________。
答案:8π15. 一个三角形的三个内角分别是45°、45°、90°,那么这个三角形是________。
体育对口单招数学试试卷(答案)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.若集合2{|20},{|log (1)1},M x x N x x =->=-< 则M N =()A.{|23}x x <<B.{|1}x x <C.{|3}x x >D.{|12}x x <<2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a、b 满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=03.已知{}n a 为等差数列,3177,10,n a a a S =+=为其前n 项和,则使得n S 达到最大值的n 等于()A.4B.5C.6D.74.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.23B.33C.223D.2335、方程43)22(log =x 的解为()A.4=xB.2=xC.2=xD.21=x 6、下列各组函数是同一函数的是()①3()2()2f x x g x x x =-=⋅-与②2()()f x x g x x ==与③001()()f x x g x x ==与④22()21()21f x x xg x t t =--=--与A.①②B.①③C.③④D.①④7、下列命题是假命题的是()A.(0,),sin 2x x x π∀∈>B.000,sin cos 2x R x x ∃∈+=C.,30x x R ∀∈>D.00,lg 0x R x ∃∈=8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()9.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280B.-160C.160D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421 B.121 C.114 D.2711、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A、cb a <<B、b ac <<C、bc a <<D、a b c <<12、不等式152x x ---<的解集是()A、(,4)-∞B、(,1)-∞C、(1,4)D、(1,5)13、函数x x y 2cos sin =是()A、偶函数B、奇函数C、非奇非偶函数C、既是奇函数,也是偶函数14、若(12)a+1<(12)4-2a,则实数a 的取值范围是()A、(1,+∞)B、(12,+∞)C、(-∞,1)D、(-∞,12)15、化简3a a 的结果是()A、aB、12a C、41a D、83a 16、下列计算正确的是()A、(a3)2=a9B、log36-log32=1C、12a -·12a =0D、log3(-4)2=2log3(-4)17、三个数a=0.62,b=log20.3,c=30.2之间的大小关系是()A、a<c<bB、a<b<cC、b<a<cD、b<c<a 18、8log 15.021+-⎪⎭⎫⎝⎛的值为()A、6B、72C、16D、3719、下列各式成立的是()A、()52522n m n m +=+B、(b a )2=12a 12b C、()()316255-=-D、31339=20、设2a=5b=m,且1a +1b=3,则m 等于()A、310B、10C、20D、100二、填空题:(共20分)1.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________;2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________;3.已知m b a ==32,且211=+b a ,则实数m 的值为______________;4.若0>a ,9432=a ,则=a 32log ____________;三、解答题:(本题共3小题,共40分)1.计算:1033cos 3)27lg0.012p +-++2.等差数列{an}中,a2=13,a4=9.(1)求a1及公差d;(2)当n 为多少时,前n 项和Sn 开始为负?3.如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2)若2)nx 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的常数项等于多少?参考答案:一、选择题1-5题答案:DCBAA6-10题答案:BDDBA11-15题答案:BABAB;16-20题答案:BBCDA.二、填空题1.-3;2.),1( ;3.6;4.3;三、解答题1.参考答案.62.参考答案.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
2023年体育单招数学试卷
2023年体育单招数学试卷一、选择题(本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2-3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域为()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),α∈<=ft(0,(π)/(2)),则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2=3(x - 1)B. y+2 = 3(x + 1)C. y - 1=3(x - 2)D. y+1=3(x + 2)5. 已知向量→a=(1,2),→b=(2,m),若→a∥→b,则m的值为()A. 1B. 2C. 3D. 46. 等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 10C. 11D. 127. 二次函数y=x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x=-2D. x = 28. 在ABC中,a = 3,b = 4,C = 60^∘,则c的值为()A. √(13)B. √(37)C. √(19)D. √(21)9. 若f(x)=log_2(x + 1),则f(1)的值为()A. 1B. log_22C. 0D. log_2310. 某单位有100名员工,其中45人喜欢篮球,25人喜欢足球,15人既喜欢篮球又喜欢足球,则既不喜欢篮球也不喜欢足球的人数为()A. 35B. 45C. 55D. 65二、填空题(本大题共6小题,每小题6分,共36分)11. 计算limlimits_x→1frac{x^2-1}{x - 1}=_2。
2020年体育单招数学试卷(解析版)
2020年体育单招数学试卷一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=_____________A. ∅B.{3}C.{9}D.{4,9}答案:C解析:x=n2,n∈N, N为自然数,故x=0,1,4,9,16...求交集找相同,故A∩B={9},选C.2.1, 3的等差中项是______________A.1B.2C.3D.4答案:B解析:等差中项为:若A、B、C成等差数列,则有A+C=2B。
设1和3的等差中项为x, 则1+3=2x=4,故x=2,选B.3.函数f(x)=sin2x+cos2x的最小正周期是_____________A.2πB.3π2C.π D.π2答案:C解析:f(x)=sin2x+cos2x=sin2x+cos2x−sin2x=cos2x=2cos 2x−12+12=12cos2x−12,T=2πω=2πz=π,故选C.4.函数f(x)=√3−4x+x2的定义域是____________A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]答案:C解析:函数定义域根号下大于等于0,则3−4x+x2≥0, 解不等式可得解集{x|x≤1或3≤x},故选C.5.函数y=√λ2−2x+2图象的对称轴为_____________A. x=1B. x=12C. x=−12D. x=-1答案:A。
体育单招数学试题与答案
一.选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
(1)设集合M = {x|0<x<1},集合N={x| -1<x<1},则【 】 (A )M ∩N=M (B )M ∪N=N (C )M ∩N=N (D )M ∩N= M ∩N(2)已知函数()f x 的图象与函数sin y x =的图象关于y 轴对称,则()f x =【 】 (A )cos x - (B )cos x (C )sin x - (D )sin x (3)已知平面向量(1,2),(1,3)a b ==-,则a 与b 的夹角是【 】(A )2π (B )3π (C )4π (D )6π (4)函数1(5)5y x x =≠-+的反函数是【 】(A )5()y x x R =-∈ (B )15(0)y x x=+≠ (C )5()y x x R =+∈ (D )15(0)y x x=-≠(5)不等式10x x-<的解集是 【 】(A ){x|0<x<1} (B ){x|1<x<∞} (C ){x|-∞<x<0} (D ){x|-∞<x<0}(6)已知函数1()cos sin 2222x x f x =+,则()f x 是区间 【 】 (A )28(,)33ππ上的增函数 (B )24(,)33ππ-上的增函数 (C )82(,)33ππ--上的增函数 (D )42(,)33ππ-上的增函数(7)已知直线l 过点(1,1)-,且与直线230x y --= 垂直,则直线l 的方程是【 】 (A )210x y +-= (B )230x y +-= (C )230x y --= (D )210x y --=(8) 已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是【 】 (A )6π (B )12π (C )18π (D )36π(9) n S 是等差数列{}n a 的前n 项合和,已知312S =-,66S =-,则公差d =【 】 (A )-1 (B )-2 (C )1 (D )2(10)将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有【 】(A )90中 (B )180种 (C )270种 (D )360种二.填空题:本大题共6 小题,每小题6 分,共36 分.把答案填在题中横线上。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷(答案解析)
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
2020年全国体育单招数学测试题(十二)含答案
2020年全国体育单招数学测试题(十二)考试时间:90分钟 满分150分一、单选题(6×10=60分)1.设集合()(){}|410?A x Z x x =∈-+<,集合B={}2,3,4,则A B =( )A .(2,4)B .{2.4}C .{3}D .{2,3} 2.函数22cos 1y x =-的最小正周期为( )A .2πB .πC .2πD .4π3.下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( )A .y x =-B .21y x =-C .cos y x =D .12y x =4.22cos sin 88ππ-=( )A .2B .2-C .12 D .12-5.设向量()111022a b ⎛⎫== ⎪⎝⎭,,,,则下列结论正确的是( )A .a b =B .22a b ⋅= C .()a b b -⊥ D .//a b6.已知数列{}n a 为等比数列,则“{}n a 为递减数列”是“12a a >”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.圆222210x y x y +--+=上的点到直线2x y -=的距离最大值是( )A .2B .1C .1+D .1+8.已知302x ≤≤,则函数2()1f x x x =++( ) A .有最小值34-,无最大值 B .有最小值34,最大值1 C .有最小值1,最大值194 D .无最小值和最大值9.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥①若//αβ,//βγ,m α⊥,则m γ⊥①若//m α,//n α,则//m n①若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A .①和①B .①和①C .①和①D .①和① 10.不等式22x x +≥的解集为( ) A .[]0,2B .(]0,2C .(][),02,-∞+∞D .()[),02,-∞+∞第II 卷(非选择题)二、填空题(6×6=36分)11.甲、乙等5人排一排照相,要求甲、乙2人相邻但不排在两端,那么不同的排法共有_______种.12.若双曲线22154x y -=的左焦点在抛物线22y px =的准线上,则p 的值为________. 13.()10x a +的展开式中,7x 的系数为15,则a=________.(用数字填写答案) 14.曲线324y x x =-+在点(1,3)处的切线的倾斜角为__________.15.已知A ,B ,C 是球O 球面上的三点,AC =BC =6,AB =OABC 的体积为24.则球O 的表面积为_____.16.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________.三、解答题(3×18=54分)17.已知等比数列{}n a 各项都是正数,其中3a ,23a a +,4a 成等差数列,532a =. ()1求数列{}n a 的通项公式;()2记数列{}2log n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .18.已知椭圆C :()222210x y a b a b+=>>的上顶点与椭圆左、右顶点连线的斜率之积为14-. (1)求椭圆C 的离心率;(2)若直线()112y x =+与椭圆C 相交于A 、B 两点,若AOB (O 为坐标原点),求椭圆C 的标准方程.19.如图,在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形.(1)证明:A1C1//平面ACD1;(2)求异面直线CD与AD1所成角的大小;(3)已知三棱锥D1﹣ACD的体积为23,求AA1的长.参考答案1.D ;2.B ;3.B ;4.A ;5.C ;6.A ;7.B ;8.C ;9.A ;10.B 11.24;12.6;13.12;14.45°;15.136π;16.2027 17.解:()1设等比数列{}n a 的公比为q ,由已知得()23345232a a a a a ⎧+=+⎨=⎩,即2311141232a q a q a q a q ⎧+=⎨=⎩.0n a >,∴0q >,解得122q a =⎧⎨=⎩.∴2n n a =.()2由已知得,()212221log log log 2n n n n S a a a +=+++=, ∴()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和11111221()22311n n T n n n ⎡⎤⎛⎫⎛⎫=-+-++-= ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦ 18.解:(1)由题,椭圆上顶点的坐标为()0,b ,左右顶点的坐标分别为(),0a -、(),0a ,①14b b a a ⎛⎫⋅-=-⎪⎝⎭,即224a b =,则2a b =, 又222a b c =+,①=c ,所以椭圆的离心率c e a == (2)设()11,A x y ,()22,B x y ,由()222214112x y b b y x ⎧+=⎪⎪⎨⎪=+⎪⎩得:2222140x x b ++-=,2123280,1b x x ∴∆=->+=-,212142b x x -=, ①A B === 又原点O 到直线的距离d =①124AB d ⋅⋅== ①21b =,满足204a ∆>∴=,①椭圆C 的方程为2214x y +=. 19.解:(1)证明:在长方体中,因A 1A =CC 1,A 1A //CC 1,可得A 1C 1//AC , A 1C 1不在平面ACD 1内,AC ①平面ACD 1,则A 1C 1//平面ACD 1;(2)解:因为CD ①平面ADD 1A 1,AD 1①平面ADD 1A 1,可得CD ①AD 1, 所以异面直线CD 与AD 1所成角90°(3)解:由三棱锥D 1﹣ACD 的体积为23, 由于1D D ⊥平面ACD ,且11D D A A =可得111222323AA ⨯⨯⨯⨯=, ①AA 1=1.。
(完整版)体育单招数学模拟试卷
全国普通高等学校体育院校系部分专业统一招生考试数学试卷时间:100分钟满分:150分一.每大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在题目的括号内。
1.下列说法正确的个数是()①任何一条直线都有唯一的倾斜角;②倾斜角为30的直线有且仅有一条;③若直线的斜率为tan θ,则倾斜角为θ;④如果两直线平行,则它们的斜率相等(A )0个(B )1个(C )2个(D )3个2.若直线x =1的倾斜角为α,则α=()0A .0Bπ4Cπ2D 不存在3.直线l 1:2x +3y +1=0与直线l 2:3x +2y -4=0的位置关系是()(A )平行(B )垂直(C )相交但不垂直(D )以上情况都不对4..直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则a 的值等于(A ).-1或3()(B ).1或3(C ).-3(D ).-15.正三棱锥的底面边长为2,体积为3,则正三棱锥的高是()A. 2B. 3C. 4D. 66.已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为()A.3B.-2C. 2D.不存在7.直线l 1:ax +(1-a )y =3,l 2:(a -1)x +(2a +3)y =2互相垂直,则a 的值为()3A.-3B.1C.0或2D.1或-3-8.如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有(A ).k 1<k 3<k2(B ).k 3<k 1<k 2(C ).k 1<k 2<k3(D )k 3<k 2<k19.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是()A. B.y-y1x-x1=y2-y1x2-x1 y-y1x-x1=y2-y1x1-x2C.(y2-y1)(x-x1)-(x2-x1)(y-y1)=0D.(x2-x1)(x-x1)-(y2-y1)(y-y1)=010.直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()A.a=2,b=5;B.a=2,b=-5;C.a=-2,b=5;D.a=-2,b=-5.二.填空题:本大题共7小题,每小题5分,共35分,把答案填在题中横线上。
2020年度全国体育单招数学测试题(十一)含解析
考试时间:90分钟
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题
1.已知集合 , ,则 ()
A. B. C. D.
2.函数 的定义域是()
A. B.
C. D.
3.下列函数中,既是奇函数又在区间 上单调递减的是()
8.A
【解析】
由余弦定理可得: ,即: ,
整理可得: ,结合 可得: .
本题选择A选项.
9.C
【解析】
【分析】
由 , , 成等比数列,可得 ,解得 或 ,再结合等比数列求和公式,即可求解.
【详解】
由题意,因为 , , 成等比数列,可得 ,
所以 ,整理可得 ,解得 或 ,
当 时,则 ,
当 时,可得 ,则 .
【详解】
设底面半径为r,则 ,所以 .
所以圆锥的高 .
所以体积 .
故选:C.
【点睛】
本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.
6.A
【解析】
点 的中点为(0,2),
试题解析:
(1)设等差数列{an}的公差为d.因为a4-a3=2,所以d=2.
又因为a1+a2=10,所以2a1+d=10,故a1=4.
所以an=4+2(n-1)=2n+2(n=1,2,…).
(2)设等比数列{bn}的公比为q.因为b2=a3=8,b3=a7=16,
所以q=2,b1=4.所以b6=4×26-1=128.
2023年全国高考体育单招考试数学模拟试卷试题(含答案详解)
2023年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学试卷一、单选题1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}2.不等式23180x x -++<的解集为()A .{6x x >或3}x <-B .{}36x x -<<C .{3x x >或6}x <-D .{}63x x -<<3.已知角α终边上一点P 的坐标为()512-,,则sin α的值是A .1213-B .1213C .513D .513-4.函数2y x=在区间[2,4]上的最大值、最小值分别是()A .14,12B .12,1C .12,14D .1,125.函数11y x =+的定义域为()A .[)4,1--B .[)()4,11,---+∞ C .()1,-+∞D .[)4,-+∞6.在ABC 中,已知120B =︒,2AB =,则BC =()A .1BC D .37.若0a >、0b >,且411a b+=,则ab 的最小值为().A .16B .4C .116D .148.直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为()A .B .4C .D .二、填空题9.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是______.10.已知向量()3,2a = ,()1,b λ= ,若a b ⊥,则λ=_____.11.已知函数()sin2f x x x =-,则它的单调递增区间是_________12.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.三、解答题13.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c cos sin B b A =,π4A =,b .(1)求角B ;(2)求ABC 的面积.14.若数列{}n a 的前n 项和22n n S a =-,N*n ∈.(1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T .15.已知圆C 过点(M -,(N ,且圆心在x 轴上.(1)求圆C 的方程;(2)设直线:10l mx y -+=与圆C 相交于A ,B 两点,若MA MB ⊥,求实数m 的值.参考答案:1.B【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.2.A【分析】根据二次不等式的解法求解即可.【详解】23180x x -++<可化为23180x x -->,即()()630x x -+>,即6x >或3x <-.所以不等式的解集为{6x x >或3}x <-.故选:A 3.A【解析】根据三角函数定义,sin yx r=,即可求解【详解】由题意,13r ==∴12sin 13y x r ==-故选:A【点睛】本题考查三角函数定义,属于基本题.4.D【分析】根据反比例函数的单调性即可解得最值.【详解】易知函数2y x=在区间[2,4]是单调递减函数,因此当2x =时,函数2y x=的最大值为1,当4x =时,函数2y x=的最小值为12.故选D .【点睛】本题考查函数单调性的应用,对于反比例函数ky x=当0k >时为减函数,当0k <时为增函数,是基础题.5.B【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞ .故选:B .6.D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯ ,即:22150a a +-=,解得:3a =(5a =-舍去),故3BC =.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.7.A【分析】根据基本不等式计算求解.【详解】因为0a >、0b >,所以41+≥a b 1≥4,即16ab ≥,当仅当41a b=,即82a b ==,时,等号成立.故选:A.8.A【分析】直接利用直线被圆截得的弦长公式求解即可.【详解】由题意圆心()1,2C ,圆C 的半径为3,故C 到:3410l x y +-=2=,故所求弦长为=故选:A.9.32n a n =+【分析】根据给定条件,判定数列{}n a 是等差数列,再求出通项公式作答.【详解】数列{}n a 中,因13n n a a +=+,即13n n a a +-=,因此,数列{}n a 是等差数列,公差d =3,所以数列{}n a 的通项公式是1(1)32n a a n d n =+-=+.故答案为:32n a n =+10.32-【分析】根据向量的垂直的坐标表示求解即可.【详解】解:因为a b ⊥ ,()3,2a =,()1,b λ= ,所以320a b λ⋅=+=,解得32λ=-故答案为:32-11.7[,)1212k k k Z ππππ-+-∈【分析】先把函数化简变形成余弦型函数,利用余弦型函数的性质求出结果.【详解】函数()sin 2cos 22cos(2)6f x x x x π=-=+,令222()6k x k k Z ππππ-++∈,整理得:7()1212k x k k Z ππππ-+-∈,所以函数的单调递增区间为:7[,)1212k k k Z ππππ-+-∈.故答案为:7[,)1212k k k Z ππππ-+-∈.12.【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得;【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴214n si F PF ∠=,则12181224PF F S =⨯⨯⨯△.故答案为:13.(1)π3B =;【分析】(1)根据正弦定理结合特殊角的三角函数即得;(2)根据正弦定理,三角形面积公式进行求解即可.(1)cos sin B b A =,cos sin sin A B B A =,又sin 0A ≠,所以tan B =()0,πB ∈,所以π3B =;(2)由正弦定理可知:sin sin 22a b a A B =⇒又5ππ12C A B =--=,所以5πππππ1sin sinsin cos cos sin 12464622224C ==⨯+⨯=,所以113sin 22346ABC S ab C +==⨯=.14.(1)2n n a =;(2)2n T n =.【分析】(1)根据公式11(2,),(1)n n n S S n n N a a n *-⎧-≥∈=⎨=⎩,结合等比数列的定义、通项公式进行求解即可;(2)根据对数的运算性质,结合等差数列的定义、等差数列前n 项和公式进行求解即可.【详解】(1)数列{}n a 的前n 项和22n n S a =-,N*n ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2.2n n a ∴=.(2)221log 21n n b a n -==-.因为12n n b b +-=,∴数列{}n b 是等差数列,首项为1,公差为2,所以21()(1+21)22n n n a a n n T n +-∴===.15.(1)()2229x y ++=(2)12m =【分析】(1)设圆C 的半径为r ,圆心(),0C a ,由距离公式得出圆C 的方程;(2)由MA MB ⊥得出直线l 过圆心()2,0C -,从而得出m 的值.(1)设圆C 的半径为r ,圆心(),0C a ,由题意得()2222224,,r a r a ⎧=++⎪⎨⎪=+⎩解得2,3,a r =-⎧⎨=⎩∴圆C 的方程为()2229x y ++=.(2)∵点M 在圆上,且MA MB ⊥,∴直线l 过圆心()2,0C -,∴2010m --+=,解得12m =.。
【2020】年全国普通高等学校运动训练、民族传统体育专业体育单招数学试卷含解析
2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=()A. ∅B.{3}C.{9}D.{4,9}2.1, 3的等差中项是()A.1B.2C.3D.43.函数f(x)=sin2x+cos2x的最小正周期是()A.2πB.3π2C.π D.π24.函数f(x)=√3−4x+x2的定义域是()A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]5.函数y=1√x2−2x+2图象的对称轴为()A. x= 1B. x=12C. x= −12D. x= -16.已知,则()A. 35B.310C.−310D. −357.函数f(x)=ln(-3x2+1)的单调递减区间为()A.(0,√33) B.(−√33,0) C.(−√32,√32) D.(−√33,√33)8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为()A. B. C. D.9.双曲线x2a2−y2b2=1(a>0,b>0)的两条渐近线的倾斜角分别为α和β,则cosα+β2=()A.1B.√32C.12D.010.已知a=0.20.3,b=0.30.3,c=0.2−0.2,则()A. a<b<cB. b<a<cC. b<c<aD. a<c<b二、填空题:本大题共6小题,每小题6分,共36分。
把答案填在题中横线上。
11.从1,2,3,4,5中任取3个不同数学,这3个数字之和是偶数的概率为____________12.已知向量a, b满足|a|=2,|a+b|=1,且a与b的夹角为150°,则|b|=___________13.不等式log1x>2的解集是____________214.等比数列{an}中,若a1+a2=3,a4+a5=12,则a3=____________215.(x−3y)5的展开式中x2y3的系数为______________16.若平面α, β, r满足α⊥γ,α∩r=a,β⊥γ,β∩r=b,有下列四个判断:①a//β②当α//β时,a//b③a⊥β④当α∩β=c时,c⊥γ其中,正确的是_____________(填写所有正确判断的序号)三、解答题:本大题共3小题,每小题18分,共54分。
体育单招数学试题及答案解析视频
体育单招数学试题及答案解析视频一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-6x+8,求f(1)的值。
A. 3B. -1C. 5D. 72. 已知向量a=(2,3),向量b=(1,-1),求向量a与向量b的数量积。
A. -1B. 1C. 5D. -53. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x4. 若a, b, c是等差数列,且a+c=10,b=5,则a和c的值分别是多少?A. a=2, c=8B. a=3, c=7C. a=4, c=6D. a=5, c=55. 已知椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a>b>0,若该椭圆的离心率为\(\frac{\sqrt{2}}{2}\),求a和b 的关系。
A. \(a^2 = 2b^2\)B. \(a^2 = b^2\)C. \(a^2 = \frac{1}{2}b^2\)D. \(a^2 = \frac{2}{1}b^2\)6. 已知双曲线的方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\),其中a>0, b>0,若该双曲线的渐近线方程为y=±2x,求a和b 的关系。
A. \(a = 2b\)B. \(a = \frac{1}{2}b\)C. \(b = 2a\)D. \(b = \frac{1}{2}a\)7. 若函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. x^2-3C. 3x^2+3D. x^2+38. 已知直线l的方程为y=2x+1,求该直线的斜率。
A. 1B. 2C. -2D. -19. 若圆的方程为(x-2)^2+(y-3)^2=9,求该圆的半径。
A. 1B. 3C. 5D. 910. 已知抛物线y^2=4x的焦点坐标为(1,0),求该抛物线的准线方程。
2020年全国高校体育单招数学真题解析PDF
选 A。
3
11. 5总共 5 个数字,挑 3 个,总共53 种挑法,3 个数之和是偶数的情况有①1,2,3;②1,2,5;③1,3,4;
④1,4,5;⑤2,3,5;⑥3,4,5 这 6 种,故从这 5 个数中挑 3 个不同的数且和为偶数的概率为
2
= √22 + (√2) = √6,∴ ∠ =来自√2√6=
√3
3
3
5. = √ 2
1
−2=2
=
1
,令 − 1 = 0可得 = 1为对称轴,故选 A。
√(−1)2 +1
1
6. = = − 3,故 = −3 ,故 2 = 9 2 ,又2 + 2 = 1 = 10 2 ,
1 +2
当2 = 2√3时,由
2
1 +2
= 0得1 = −2√3;当2 = −2√3时,由
2
= 0得1 = 2√3;
−
∴ 点(1,2√3)或(1, − 2√3);∴ = 2−1 = −√3
2
1
∴ 直线方程√3 + − 3√3 = 0 或√3 + + √3 = 0
√3+√15
2
√3+√15
8
18. (1)由题可设抛物线方程为 2 = −2,又∵ 焦点(−1,0)可得 − 2 = −1
∴ = 2,∴ 2 = −4
(2)设点 P 坐标为(1, 1 ),Q(2 , 2 ),∵ 为中点,∴
体育单招数学试题及答案2024
体育单招数学试题及答案2024一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,下列哪个选项是f(-1)的值?A. -1B. 1C. 5D. 7答案:A2. 一个等差数列的首项是2,公差是3,那么这个数列的第五项是多少?A. 14B. 17C. 20D. 23答案:B3. 一个圆的半径是5厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C4. 一个直角三角形的两条直角边分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 8答案:A5. 已知集合A={1,2,3},B={2,3,4},那么A∩B等于?A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B6. 一个数列的前三项分别是1,2,4,那么这个数列的第四项是多少?A. 6B. 7C. 8D. 9答案:C7. 一个等比数列的首项是2,公比是2,那么这个数列的第四项是多少?A. 8B. 16C. 32D. 648. 如果一个函数y=f(x)在区间[a,b]上是增函数,那么下列哪个选项是正确的?A. f(a) ≤ f(b)B. f(a) > f(b)C. f(a) = f(b)D. f(a) < f(b)答案:A9. 一个长方体的长、宽、高分别是2,3,4,那么这个长方体的体积是多少?A. 24B. 26C. 28D. 30答案:A10. 已知函数f(x) = x^2 - 4x + 3,下列哪个选项是f(2)的值?A. -1B. 1C. 3D. 5答案:A二、填空题(每题4分,共20分)11. 一个等差数列的首项是5,公差是2,那么这个数列的第十项是________。
12. 一个圆的直径是10厘米,那么这个圆的周长是________厘米。
答案:31.413. 一个直角三角形的两条直角边分别是5和12,那么这个三角形的面积是________平方厘米。
2020年单招体育专业数学模拟题
15.在△ABC 中,若 a 7, b 3, c 8 ,则其面积等于
.
16. 抛物线 y 1 x 2 9 的开口
,对称轴是
,顶点坐标是
。
4
17.(本小题满分 18 分) 在一块耕地上种植一种作物,每季种植成本为 1000 元,此作物的市场价格和这块地上
的产量具有随机性,且互不影响,其具体情况如下表:
AB 4 3 ,求直线 l 的方程和椭圆方程。
16.(本小题满分 12 分)
如 图 , 在 △ ABC 中 , ∠ ABC= 60 , ∠ BAC 90 ,AD 是 BC 上的高,沿 AD 把△ABD 折起,使∠BDC 90 .
(1)证明:平面 ADB⊥平面 BDC;
(2)设 E 为 BC 的中点,求 AE 与 DB 夹角的余弦值.
A、90 B、180 C、270 .. D、540
11.已知 4a 2, lg x a, 则 x =________.
12、
x
2 x
n
展开式的第 5 项为常数,则 n
。
13.圆锥的轴截面是等腰直角三角形,侧面积是16 2 ,则圆锥的体积是
14.半径为 R 的半圆卷成一个圆锥,则它的体积为________________.
C、 log3 9 3
D、 log3 42 2 log3 4
3、函数 y x2 1 1(x 0) 的反函数是( )
A. y x2 2x (x 0)
B. y x2 2x (x 0)
C. y x2 2x (x 2)
D. y x2 2x (x 2)
-3<x< 1 } 2
体育对口单招数学试卷(最后答案)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分)1.一次选拔运动员,测得7名选手的身高(单位cm )分布茎叶图如图,测得平均身高为177cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为( )A .5B .6C .7D .8 2、在下列区间中,函数-的零点所在的区间为( )A .(0,1) B.(1,2) C.(2,3) D.(3,4)3.已知则等于( )A .B .C .D .4.已知抛物线上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( )A .x=8B .x=-8C .x=4D .x=-4 5.不等式23x +>的解集是( ) A. ()(),51,-∞-+∞ B. ()5,1- C. ()(),15,-∞-+∞ D.()1,5-6.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )1801170389x sin()sin 0,32ππααα++=-<<2cos()3πα+45-35-354522y px=7.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( )A. A ′C ⊥平面DBC ′B. 平面AB ′D ′//平面BDC ′C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1} B. {-2} C. {3} D. ∅ 9.已知θ是三角形的一个内角,且1sin cos 2θθ+=,则方程22sin cos 1x y θθ-=表示( )(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆(C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 10.已知边长为a 的菱形ABCD ,∠A=3π,将菱形ABCD沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是( )(A )a 23 (B )a 43 (C )a23(D )a 4311. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD ⃗⃗⃗⃗⃗ B. DB ⃗⃗⃗⃗⃗ C. AC ⃗⃗⃗⃗⃗ D. CA ⃗⃗⃗⃗⃗ 12. 下面函数以π为周期的是( )A.y =sin (x −π8) B. y =2cos x C. y =sin x D. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法总数是( ) A. 420 B. 200 C. 190 D. 240 14、设全集3{|05},{1,3},{|log ,}U x z x A B y y x x A =∈≤≤===∈集合,则集合C ∪(A ∪B )=( )A .{0,4,5}B .{2,4,5}C .{0,2,4,5}D .{4,5} 15、cos20°·cos40°·cos60°·cos80°=( )A .14B .18C .116D .132二、填空题:(本题共5小题,每小题6分,共30分.) 1、A={x|x>O},B={x-2<x<1},那么A ⌒B=________ 2、A={1,3},B={0,1},那么集合AUB=________.4.已知函数: c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,则事件A 发生的概率为________.5.002012sin )212cos 4(312tan 3--=________6.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……则前n 个图形的边数的总和为____________.三、解答题:(本题共2小题,每小题10分,共40分) 1、已知抛物线的顶点在原点,焦点坐标为F(3,0). (1)求抛物线的标准方程(2)若抛物线上点M 到焦点的距离为4,求点M 的坐标. 2、如图,正三棱锥P-ABC 的侧棱长为2√3,底面边长为4. (1)求正三棱锥P-ABC 的全面积;(2)线段PA 、AB 、AC 的中点分别为D 、E 、F ,求二面角D-EF-A 的余弦值.参考答案: 一、选择题: 1-5题答案:DAABA 6-10题答案:DCABD 11-15题答案:CDCCC 二、填空题: 1.答案:{x|0<x<1} 2.答案: {0,1,3}4. 855.34-6.41n-三、问答题:1、参考答案.(1)212y x ;(2)(1,23)M2、参考答案.(1)43;(2。
2024年体育单招文化考试数学试题及答案
2024年体育单招文化考试数学试题及答案一、选择题(每题4分,共40分)1. 有七名同学站成一排拍毕业照,其中甲必须站在中间,则不同的站法一共有()A. 180种B. 360种C. 720种D. 1260种答案:B2. 已知函数$f(x) = 2x^3 - 3x^2 - 12x + 8$,则$f(-1)$的值为()A. -5B. -3C. 1D. 3答案:A3. 若$x^2 + y^2 = 4$,则$x + y$的最大值为()A. 2B. $\sqrt{2}$C. 4D. $\sqrt{8}$答案:D4. 若$a^2 + b^2 = 1$,则$a + b$的取值范围是()A. $[-1, 1]$B. $[-\sqrt{2}, \sqrt{2}]$C. $[-2, 2]$D. $[-\sqrt{3}, \sqrt{3}]$答案:B5. 若函数$f(x) = \sqrt{1 - 2x}$的定义域为$A$,函数$g(x) = \frac{1}{x - 2}$的定义域为$B$,则$A \cap B$的取值范围是()A. $(-\infty, 0]$B. $(-\infty, 1]$C. $(-\infty, 2]$D. $(-\infty, 1)$答案:D二、填空题(每题4分,共40分)6. 若$a = 3 + \sqrt{5}$,$b = 3 - \sqrt{5}$,则$a - b$的值为_________。
答案:$2\sqrt{5}$7. 已知$a$,$b$是方程$x^2 - (a + b)x + ab =0$的两根,则$a^2 + b^2$的值为_________。
答案:$a + b$8. 若$f(x) = 2x^3 - 3x^2 - 12x + 8$,则$f'(x)$的值为_________。
答案:$6x^2 - 6x - 12$9. 若$a$,$b$,$c$成等比数列,且$a + b + c = 14$,$abc = 48$,则$a$,$b$,$c$分别为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年度全国体育单招数学测试题(十一)
考试时间:90分钟 满分:150分
一、单选题(6×10=60分)
1.已知集合{}|12A x x =-<<,{}2,0,1,2B =-,则A B =I ( ) A .{}0,1 B .{}1,0,1-
C .{}0,1,2
D .{}1,0,1,2-
2.函数()()1
lg 11f x x x
=++-的定义域是( ) A .(),1-∞- B .()1,+∞ C .()()1,11,-+∞U
D .(),-∞+∞
3.下列函数中,既是奇函数又在区间()0,∞+上单调递减的是( ) A .22y x =-+
B .2x y -=
C .ln y x =
D .1y x
=
4.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A .12
B .10
C .8
D .32log 5+
5.半径为R 的半圆卷成一个圆锥,则它的体积是( ) A
.
324
R B
.
38
R C
.
324
R D
.
38
R 6.已知点(2,1),(2,3)A B -,则线段AB 的垂直平分线的方程是( ) A .220x y -+= B .240x y +-=
C .220x y +-=
D .210x y -+=
7.若3
sin(),25
π
αα-=-为第二象限角,则tan α= A .43-
B .
43
C .34
-
D .
34
8.设ABC n 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 1=
,c =2
cos 3
C =
,则a =( ) A .3 B .4
C .5
D .6
9.已知等比数列{}n a 中,23a ,32a ,4a 成等差数列,设n S 为数列{}n a 的前n 项和,则
3
3
S a 等于( ).
A .
139
B .3
C .3或
139
D .
79
10.若关于x 的不等式220ax bx +->的解集为11,,23⎛⎫⎛⎫
-∞-+∞ ⎪ ⎪⎝⎭⎝⎭
U ,则ab 等于( )
. A .24-
B .24
C .14
D .14-
二、填空题(6×6=36分) 11.计算10
2
1
24
lg lg 254
-++-=______.
12.在今年的疫情防控期间,某省派出5个医疗队去支援武汉市的4个重灾区,每个重灾区至少分配一个医疗队,则不同的分配方案共有_____________种.(用数字填写答案) 13.
的展开式中x 3项的系数为20,则实数a =.
14.在平面直角坐标系xOy 中,已知双曲线22
221x y a b
-=(0a >,0b >)的右焦点为F ,过点F 作双曲
线的一条渐近线的垂线,垂足为E .若2EF OE =,则双曲线的离心率______.
15.已知,a b r
v 为单位向量,其夹角为120︒,则a b -=r v ______.
16.曲线cos y x x =在3
x π
=处的切线的斜率为________.
三、解答题
17.已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;
(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等?
18.已知椭圆()2222:10x y C a b a b +=>>的离心率为2
,其中左焦点为()2,0F -.
(1)求椭圆C 的方程;
(2)若直线y x m =+与椭圆C 交于不同的两点A 、B ,且线段AB 的中点M 在圆2
2
1x y +=上,求m 的
值.
19.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,E 为棱1AA 的中点,2AB =,13AA =.
(1)求证:1//AC 平面BDE ; (2)求证:1BD A C ⊥; (3)求三棱锥A BDE -的体积.
参考答案
选择题ACDBC AAACB 填空题11.2
1-;12.240;13.4;14.5;15.3;16.6321π
-.
17.【解】(1)设等差数列{a n }的公差为d.因为a 4-a 3=2,所以d =2.
又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).
(2)设等比数列{b n }的公比为q.因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4.所以b 6=4×26-1=128. 由128=2n +2得n =63.
所以b 6与数列{a n }的第63项相等. 18.【解】(1
)由题意可得
22
a =
,a ∴=
2b =, 因此,椭圆C 的方程为22
184
x y +=;
(2)设点()11,A x y 、()22,B x y ,
将直线AB 的方程与椭圆C 的方程联立22184y x m
x y =+⎧⎪
⎨+=⎪⎩,得2234280x mx m ++-=,
()2221612289680m m m ∆=--=->
,解得m -<由韦达定理得1243m
x x +=-,则12223x x m +=-,
1212223
y y x x m m ++=+=. 所以,点M 的坐标为2,33m m ⎛⎫-
⎪⎝
⎭, 代入圆的方程得2
2
2133m m ⎛⎫⎛⎫-+= ⎪ ⎪
⎝⎭⎝⎭
,解得5m =±,合乎题意.
综上所述,5
m =±.
19.(1)证明:设AC BD O ⋂=,连接OE ,
在1ACA V 中,O Q ,E 分别为AC ,1AA 的中点,1//OE A C ∴,
1A C ⊄Q 平面BDE ,OE ⊂平面BDE , 1//A C ∴平面BDE ;
(2)证明:Q 侧棱1AA ⊥底面ABCD ,BD ⊂底面ABCD ,1AA BD ∴⊥,
Q 底面ABCD 为正方形,AC BD ∴⊥,
1AA AC A ⋂=Q ,BD ∴⊥平面11ACC A ,
1A C Q ⊂平面11ACC A ,1
BD AC ∴⊥; (3)解:Q 侧棱1AA ⊥底面ABCD 于A ,E 为棱1DD 的中点,且13AA =,
32AE ∴=
,即三棱锥E ABD -的高为3
2
. 由底面正方形的边长为2,得1
2222
ABD S V =⨯⨯=.
113
21332A BDE E ABD ABD V V S AE --∴==⋅=⨯⨯=V .。