(完整版)体育单招考试数学试题2
2023年体育单招数学试卷
2023年体育单招数学试卷一、选择题(本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2-3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域为()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),α∈<=ft(0,(π)/(2)),则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2=3(x - 1)B. y+2 = 3(x + 1)C. y - 1=3(x - 2)D. y+1=3(x + 2)5. 已知向量→a=(1,2),→b=(2,m),若→a∥→b,则m的值为()A. 1B. 2C. 3D. 46. 等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 10C. 11D. 127. 二次函数y=x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x=-2D. x = 28. 在ABC中,a = 3,b = 4,C = 60^∘,则c的值为()A. √(13)B. √(37)C. √(19)D. √(21)9. 若f(x)=log_2(x + 1),则f(1)的值为()A. 1B. log_22C. 0D. log_2310. 某单位有100名员工,其中45人喜欢篮球,25人喜欢足球,15人既喜欢篮球又喜欢足球,则既不喜欢篮球也不喜欢足球的人数为()A. 35B. 45C. 55D. 65二、填空题(本大题共6小题,每小题6分,共36分)11. 计算limlimits_x→1frac{x^2-1}{x - 1}=_2。
体育单招数学试题及答案2024
体育单招数学试题及答案2024一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)答案:C2. 已知等差数列的首项为a1=2,公差为d=3,求第10项a10的值。
A. 25B. 29C. 31D. 35答案:B3. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B4. 已知三角形ABC的三边长分别为a=3,b=4,c=5,判断三角形的形状。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B5. 函数f(x) = 2x - 3在区间[1,4]上的最大值和最小值分别是多少?A. 最大值:5,最小值:-1B. 最大值:5,最小值:-1C. 最大值:7,最小值:-1D. 最大值:7,最小值:-5答案:C6. 已知一个正方体的体积为27,求其边长。
A. 3B. 6C. 9D. 27答案:A7. 将一个圆分成4个相等的扇形,每个扇形的圆心角是多少度?A. 30°B. 45°C. 90°D. 360°答案:C8. 已知等比数列的首项为a1=2,公比为q=2,求第5项a5的值。
A. 32B. 64C. 128D. 256答案:A9. 抛物线y = x^2 - 4x + 4的顶点坐标是什么?A. (2,0)B. (2,2)C. (2,4)D. (0,4)答案:A10. 已知向量a = (3, 4)和向量b = (-1, 2),求向量a与向量b的点积。
A. 10B. 8C. 6D. 2答案:B二、填空题(每题3分,共15分)1. 若sinθ = 0.5,则cosθ的值为________。
答案:±√3/22. 一个直角三角形的两条直角边分别为3和4,其斜边的长度为________。
2022年全国体育单招数学试题(含答案解析)
2022年全国体育单招数学试题一、单选题1.若集合,,则A. B.C. D.2.不等式的解集为A. B.C. D.3.若,则等于A. B.C. D.4.函数的零点是A. B.C. D.5.若直线过圆的圆心,则的值为A. B.1C. D.6.设数列的前项和,则的值为A. B.C. D.7.设,用二分法求方程在近似解的过程中得,,,,则方程的根落在区间A. B.C. D.8.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.6B.12C.18D.249.设双曲线2213yx-=,22125x y-=,22127y x-=的离心率分别为1e,2e,3e,则()A.321e e e <<B.312e e e <<C.123e e e <<D.213e e e <<10.若函数()lg(f x x mx =+为偶函数,则m =()A.-1B.1C.-1或1D.0二、填空题11.不等式01xx ≤+的解集为___________________.12.已知椭圆的一个焦点为()1,0F ,离心率为12,则椭圆的标准方程为_______.13.已知向量a ,b 满足2a = ,||b = ,若()b a b ⊥- ,则a 与b 的夹角为______.14.在6212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为__________(用数字作答).15.不等式22lg lg 0x x -<的解集是_______.16.关于x 的不等式()()222log 1log 2x x ->-的解集为______.三、解答题17.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.18.过点()2,0P -的直线l 与抛物线2:4C y x =交于不同的两点A ,B.(Ⅰ)求直线l 斜率的取值范围;(Ⅱ)若F 为C 的焦点,且0FA FB ⋅=,求ABF 的面积.19.如图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.参考答案1.C2.A【解析】不等式可化为:,所以,所以,所以不等式的解集为.注:先保证x2前的系数为正,才有“大于取两边,小于取中间的规律”3.D4.A【解析】令得,或.5.B【解析】圆化为标准方程为,所以圆心为,代入直线得.6.C【解析】.(想想S4表示什么?前4项的和!所以S4=a1+a2+a3+a4,S3=a1+a2+a3)7.C8.D【解析】【分析】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A⋅种可能;再由分步计数原理的运算法则求得结果.【详解】第一步:从2,4中选一个数字,从1,3,5中选两个数字,共有1223C C⋅种可能;第二步:从所选的2个奇数中选一个放在个位,然后把余下的两个数在百位与十位全排列,共有1222C A⋅种可能;所以可以组成无重复数字的三位奇数有1212232224C C C A⋅⋅⋅=种.故选:D【点睛】本题考查排列组合的综合应用,属于基础题.9.D【解析】【分析】已知双曲线标准方程,根据离心率的公式,直接分别算出1e ,2e ,3e ,即可得出结论.【详解】对于双曲线2213y x -=,可得222221,3,4a b c a b ===+=,则22124c e a==,对于双曲线22125x y -=,得222222,5,7a b c a b ===+=,则222272c e a ==,对于双曲线22271x y -=,得222222,7,9a b c a b ===+=,则223292c e a ==,可得出,221322e e e <<,所以213e e e <<.故选:D.【点睛】本题考查双曲线的标准方程和离心率,属于基础题.10.C 【解析】【分析】由f (x)为偶函数,得((lg lg x mx x mx --+=+,化简成xlg (x 2+1﹣m 2x 2)=0对x ∈R 恒成立,从而得到x 2+1﹣m 2x 2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即((lg lg x mx x mx --=;得((()222lg lg lg 10x mx x mx x x m x -+++=+-=对x ∈R 恒成立,∴x 2+1﹣m 2x 2=1,∴(1﹣m 2)x 2=0,∴1﹣m 2=0,∴m=±1.故选C.【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.11.(1,0]-【解析】由01xx ≤+得:(1)0(1)x x x +≤≠-,解得:10x -<≤,故填(]1,0-.12.22143x y +=【解析】【分析】根据焦点和离心率构造关于,,a b c 的方程组,求解得到,,a b c ,从而可得椭圆的标准方程.【详解】设椭圆的标准方程为:()222210x y a b a b +=>>.椭圆的一个焦点为()1,0F ,离心率12e =222112c c a a b c=⎧⎪⎪∴=⎨⎪=+⎪⎩,解得:223a b =⎧⎨=⎩∴椭圆的标准方程为:22143x y +=本题正确结果:22143x y +=【点睛】本题考查椭圆标准方程的求解问题,属于基础题.13.30°【解析】【分析】由已知可得()0b a b ⋅-=,利用向量的数量积即可求解.【详解】由已知()0b a b ⋅-= 知,20b a b -⋅= ,则3a b ⋅= ,所以3cos ,2a b = ,故夹角为30°.故答案为:30°【点睛】本题考查了向量的数量积,需掌握向量垂直数量积等于零,属于基础题.14.154【解析】【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.【详解】因为66316621122rrr r r r r T C x C x x --+⎛⎫⎛⎫=⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令630r -=,所以2r =,3154T =.故答案为:154.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.15.()1100,【解析】【分析】运用对数恒等式,将2lg x 转化成2lg x ,对lg x 进行因式分解,可求lg x 的范围,即可求出解集.【详解】22lg lg 0x x -< ,即()2lg 2lg 0x x -<()lg lg 20x x ∴-<0lg 2x ∴<<1100x ∴<<故答案为:()1100,【点睛】本题考查了对数恒等式log log na a M n M =,是常考题型.16.(,1-∞--.【解析】【分析】由对数函数的性质化对数不等式为一元二次不等式组求解.【详解】由()()222log 1log 2x x ->-,得21220x xx ⎧->-⎨->⎩,解得1x <-.∴不等式()()222log 1log 2x x ->-的解集为(,1-∞--.故答案为:(,1-∞--.【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题.17.(1)0.46.(2)0.2352.【解析】【分析】【详解】(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46.(2)P 2=[0.6(1-0.6)]·[(0.7)2(1-0.7)0]=0.2352.18.(Ⅰ)22,00,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.(Ⅱ)9【解析】【分析】(Ⅰ)利用点斜式写出直线l 的方程,将直线与抛物线联立消去y ,利用>0∆即可求解.(Ⅱ)设1122(,),(,)A x y B x y ,由(Ⅰ)知1212244,4x x x x k +=-=,(1,0)F ,利用向量数量积的坐标运算可得24170FA FB k⋅=-= ,从而1211(1)(1)22ABF S FA FB x x △=×=++,代入即可求解.【详解】(Ⅰ)由题意知直线斜率存在且不为0,设直线l 的方程为(2)y k x =+,将直线l 的方程和抛物线2:4C y x =联立,消去y 得2222(44)40k x k x k +-+=由题意知,2016(12)0k k ≠⎧⎨∆=->⎩解得2102k <<,所以直线l 的斜率的取值范围是22,00,22⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.(Ⅱ)设1122(,),(,)A x y B x y ,由(Ⅰ)知1212244,4x x x x k+=-=,又(1,0)F ,所以212121212(1)(1)(1)(1)(2)(2)FA FB x x y y x x k x x×=--+=--+++2221212(1)(21)()41k x x k x x k =++-+++2417k =-因为0FA FB ⋅= ,所以24170k -=,即2417k =.()121212211114(1)(1)144192222ABF S FA FB x x x x x x k△骣琪=×=++=+++=+-+=琪桫所以ABF 的面积为9.【点睛】本题考查了直线与抛物线的位置关系、焦点三角形的面积问题,考查了抛物线的焦半径公式,属于中档题.19.(1)证明见解析(2)5-【解析】【分析】(1)证明四边形EFBC 是平行四边形,可得CE BE ∥,进而得证.(2)首先取AB 的中点O ,连接PO ,根据题意易证PO ⊥底面ABCD ,再建立空间直角坐标系,求出两平面的法向量,利用向量的夹角公式即可求得余弦值.【详解】(1)取PA 的中点F ,连接FE ,FB ,∵E 是PD 的中点,∴1//2FE AD ,又1//2BC AD ,∴//FE BC ,∴四边形EFBC 是平行四边形,∴//CE BF ,又CE 不在平面PAB 内,BF 在平面PAB 内,∴//CE 平面PAB .(2)取AB 的中点O ,连接PO .因为PA PB =,所以PO AB⊥又因为平面PAB ⊥底面ABCD AB =,所以PO ⊥底面ABCD .分别以AB 、PO 所在的直线为x 轴和z 轴,以底面内AB 的中垂线为y 轴建立空间直角坐标系,令122AB BC AD ===,则4=AD ,因为PAB △是等边三角形,则2PA PB ==,O 为AB的中点,PO =,则(P ,()1,0,0B ,()1,2,0C ,()1,4,0D -∴(1,2,PC = ,()0,2,0BC =uu u r,()2,2,0CD =- ,设平面PBC 的法向量为(),,m x y z = ,平面PDC 的法向量为(),,n a b c =,则200200m PC x y m BC y ⎧⋅=+=⎪⎨⋅=++=⎪⎩,令x =)m =,202200n PC a b n CD a b ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令1a =,故可取(n = ,∴cos ,=5m n m n m n ⋅<>=,经检验,二面角B PC D --的余弦值的大小为5-.【点睛】本题第一问考查线面平行的证明,第二问考查向量法求二面角的余弦值,同时考查了学生的计算能力,属于中档题.答案第9页,总9页。
体育单招数学试题与答案
一.选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
(1)设集合M = {x|0<x<1},集合N={x| -1<x<1},则【 】 (A )M ∩N=M (B )M ∪N=N (C )M ∩N=N (D )M ∩N= M ∩N(2)已知函数()f x 的图象与函数sin y x =的图象关于y 轴对称,则()f x =【 】 (A )cos x - (B )cos x (C )sin x - (D )sin x (3)已知平面向量(1,2),(1,3)a b ==-,则a 与b 的夹角是【 】(A )2π (B )3π (C )4π (D )6π (4)函数1(5)5y x x =≠-+的反函数是【 】(A )5()y x x R =-∈ (B )15(0)y x x=+≠ (C )5()y x x R =+∈ (D )15(0)y x x=-≠(5)不等式10x x-<的解集是 【 】(A ){x|0<x<1} (B ){x|1<x<∞} (C ){x|-∞<x<0} (D ){x|-∞<x<0}(6)已知函数1()cos sin 2222x x f x =+,则()f x 是区间 【 】 (A )28(,)33ππ上的增函数 (B )24(,)33ππ-上的增函数 (C )82(,)33ππ--上的增函数 (D )42(,)33ππ-上的增函数(7)已知直线l 过点(1,1)-,且与直线230x y --= 垂直,则直线l 的方程是【 】 (A )210x y +-= (B )230x y +-= (C )230x y --= (D )210x y --=(8) 已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是【 】 (A )6π (B )12π (C )18π (D )36π(9) n S 是等差数列{}n a 的前n 项合和,已知312S =-,66S =-,则公差d =【 】 (A )-1 (B )-2 (C )1 (D )2(10)将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有【 】(A )90中 (B )180种 (C )270种 (D )360种二.填空题:本大题共6 小题,每小题6 分,共36 分.把答案填在题中横线上。
2023全国体育单招数学试卷
2023全国体育单招数学试卷一、选择题(每题3分,共30分)已知函数f(x)=4−x2的定义域为:A. [−2,2]B. [−2,∞)C. (−∞,2]D. (−∞,∞)下列命题中,真命题的个数是:①若a>b,则a2>b2;②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④若a>b,c>d>0,则ca>db。
A. 1B. 2C. 3D. 4已知等比数列{an}的前n项和为Sn,若a2+a4=10,a3+a5=5,则S6的值为:A. 15 B. 31 C. 63 D. 127若直线l与平面α平行,直线m在平面α内,则直线l与直线m的位置关系是:A. 平行B. 垂直C. 平行或异面D. 相交或异面已知点P(1,2)在椭圆C:a2x2+b2y2=1(a>b>0)上,且椭圆C的离心率为22,则椭圆C的方程为:A. 4x2+2y2=1B. 6x2+3y2=1C. 8x2+4y2=1D. 3x2+y2=1已知a,b,c为正数,且a+b+c=1,则a1+b1+c1的最小值为:A. 3B. 6C. 9D. 12设随机变量X的分布列为P(X=k)=k(k+1)a(k=1,2,3),则P(X=2)的值为:A. 41B. 31C. 21D. 32设F1,F2为双曲线a2x2−b2y2=1(a>0,b>0)的两个焦点,P为双曲线右支上一点,且满足∠F1PF2=90∘,△F1PF2的面积为2b2,则双曲线的离心率为:A. 2B. 3C. 5D. 6。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷(答案解析)
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
体育对口单招数学卷(答案) (2)
体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称()(A )62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 2.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k的值为()(A )-6(B )6(C )3(D )-33.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为()(A )0(B )-1(C )1(D )24、函数)32(log )(22-+=x x x f 的定义域是()A.[]1,3- B.()1,3-C.(][)+∞-∞-,13, D.()()+∞-∞-,13, 5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.b c a <<C.ca b << D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()GD31GD34GD32GD337.在ABC △中,若2AB BC CA === ,则AB BC ⋅等于()A.3- B.3C.-2D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为()(A )240(B )120(C )60(D )3010.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba 11<成立的充分条件的个数是()(A )1(B )2(C )3(D )311、已知54cos ,0,2=⎪⎭⎫⎝⎛-∈x x π,则x tan =()A 、34B 、34-C 、43D 、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A 、76B 、28C 、7D 、12913、直线012=+-y x 的斜率是();A 、-1B 、0C 、1D 、214、点P(-3,-2)到直线4x-3y+1=0的距离等于()A 、-1B 、1C 、2D 、-215、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是()。
2022年全国普通高校运动训练、民族传统体育专业单招考试数学试卷含答案
2022年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试 数学一、选择题:本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将所选答案的字母在答题卡上涂黑。
1. 若集合=-<<∈=-<<∈A x x x Z B x x x Z {|14,},{|21,},则A B 的元素共有( ) A .1个 B .2个 C .3个 D .4个 2.函数f x x x =-++22()log 23的定义域是( )A.(-1,3)B.[-1,3]C.(-3,1)D.[-3,1]3.下列函数中,为增函数的是( )A.y x =-+ln(1)B.y x =-21 C.=y e x2D.y x =-14.函数y x x =++3sin 4cos 1的最小值是( )A.-7B.-6C.-5D.-45.已知O 为坐标原点,点A (2,2),M 满足|AM |=2|OM |,则点M 的轨迹方程为( )A.3x 2+3y 2+4x+4y-8=0B.3x 2+3y 2-4x-4y-8=0C.x 2+y 2+4x+4y-4=0D.x 2+y 2-4x-4y-4=06.从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方法共有( ) A .6种 B .9种 C .12种 D .15种 7.ΔABC 中,已知A =60°,AC =2,BC =7,则AB =( ) A.4 B.3 C.2 D.18.长方体ABCD-A 1B 1C 1D 1中,O 是AB 的中点,且OD =OB 1,则( ) A. AB=CC 1 B. AB=BC C.∠CBC 1=45° D.∠BDB 1=45°二、填空题:本题共4小题,每小题8分,共32分。
请将各题的答案填入答题卡上的相应位置。
9. 若θθ-=-22sin cos 13,则cos2θ=______; 10. 不等式x ->|1|2的解集是_______.11. 若向量a ,b 满足a b ==2,3,且a 与b 的夹角为120o ,则a b ⋅=_______12. 设,,αβγ是三个平面,有下列四个命题: ①若⊥⊥αββγ,,则⊥αγ ②若αββγ//,//,则//αγ ③若⊥αββγ,//,则⊥αγ ④若⊥αββγ//,,则//αγ 其中所有真命题的序号是_________三、解答题:本题共3小题,每小题18分,共54分。
【2020】年全国普通高等学校运动训练、民族传统体育专业体育单招数学试卷含解析
2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=()A. ∅B.{3}C.{9}D.{4,9}2.1, 3的等差中项是()A.1B.2C.3D.43.函数f(x)=sin2x+cos2x的最小正周期是()A.2πB.3π2C.π D.π24.函数f(x)=√3−4x+x2的定义域是()A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]5.函数y=1√x2−2x+2图象的对称轴为()A. x= 1B. x=12C. x= −12D. x= -16.已知,则()A. 35B.310C.−310D. −357.函数f(x)=ln(-3x2+1)的单调递减区间为()A.(0,√33) B.(−√33,0) C.(−√32,√32) D.(−√33,√33)8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为()A. B. C. D.9.双曲线x2a2−y2b2=1(a>0,b>0)的两条渐近线的倾斜角分别为α和β,则cosα+β2=()A.1B.√32C.12D.010.已知a=0.20.3,b=0.30.3,c=0.2−0.2,则()A. a<b<cB. b<a<cC. b<c<aD. a<c<b二、填空题:本大题共6小题,每小题6分,共36分。
把答案填在题中横线上。
11.从1,2,3,4,5中任取3个不同数学,这3个数字之和是偶数的概率为____________12.已知向量a, b满足|a|=2,|a+b|=1,且a与b的夹角为150°,则|b|=___________13.不等式log1x>2的解集是____________214.等比数列{an}中,若a1+a2=3,a4+a5=12,则a3=____________215.(x−3y)5的展开式中x2y3的系数为______________16.若平面α, β, r满足α⊥γ,α∩r=a,β⊥γ,β∩r=b,有下列四个判断:①a//β②当α//β时,a//b③a⊥β④当α∩β=c时,c⊥γ其中,正确的是_____________(填写所有正确判断的序号)三、解答题:本大题共3小题,每小题18分,共54分。
体育对口单招数学试卷(包含答案) (2)
4. (1, 2) ; 5. (3,1) ;
三、问答题:
cosÐ ABC = - 1
3 15
1、参考答案.(1)
4 ;(2) 2
sin B = 12
cosC = 16
2、参考答案.(1) 13 ,A 是锐角;(2)
65
是____________________; 3.已知 f (x) lg(x2 8x 7) 在 (m , m 1) 上是增函数,则 m 的取值范围是________________; 4.已知函数 f (x) sin x 5x ,x (1,1) ,如果 f (1 a) f (1 a2 ) 0 ,则 a 的取值范围是____________;
2. 在△ABC 中,
5,
13 .
(1)求 sinB,并判断 A 是锐角还是钝角;
(2)求 cosC.
参考答案:
一、选择题:
1-5 题答案:DACDD
6-10 题答案:BCBCC
11-15 题答案:CDCCB
16-20 题答案:ABBAA;
21-25 题答案:DCCCB.
二、填空题:
1.答案: 9 2.{1,0,1} ; 3.[1,3] ;
A.{2}
B.{2,3}
C.{3,4,}
D.{2,3,4}
7.已知 z=2-i,则( z(z + i) =( ) A. 6-2i
B. 4-2i
C. 6+2i
D. 4+2i
8.已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2
B.2 2 C.4
D.4 2
9.设二次函数 f (x) ax2 bx c ,如果 f (x1) f (x2)(x1 x2) ,则 f (x1 x2) 等于(
体育单招数学试题及答案2024
体育单招数学试题及答案2024一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,下列哪个选项是f(-1)的值?A. -1B. 1C. 5D. 7答案:A2. 一个等差数列的首项是2,公差是3,那么这个数列的第五项是多少?A. 14B. 17C. 20D. 23答案:B3. 一个圆的半径是5厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C4. 一个直角三角形的两条直角边分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 8答案:A5. 已知集合A={1,2,3},B={2,3,4},那么A∩B等于?A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B6. 一个数列的前三项分别是1,2,4,那么这个数列的第四项是多少?A. 6B. 7C. 8D. 9答案:C7. 一个等比数列的首项是2,公比是2,那么这个数列的第四项是多少?A. 8B. 16C. 32D. 648. 如果一个函数y=f(x)在区间[a,b]上是增函数,那么下列哪个选项是正确的?A. f(a) ≤ f(b)B. f(a) > f(b)C. f(a) = f(b)D. f(a) < f(b)答案:A9. 一个长方体的长、宽、高分别是2,3,4,那么这个长方体的体积是多少?A. 24B. 26C. 28D. 30答案:A10. 已知函数f(x) = x^2 - 4x + 3,下列哪个选项是f(2)的值?A. -1B. 1C. 3D. 5答案:A二、填空题(每题4分,共20分)11. 一个等差数列的首项是5,公差是2,那么这个数列的第十项是________。
12. 一个圆的直径是10厘米,那么这个圆的周长是________厘米。
答案:31.413. 一个直角三角形的两条直角边分别是5和12,那么这个三角形的面积是________平方厘米。
2023年体育单招数学试卷
2023年体育单招数学试卷一、选择题(每题1分,共5分)1.下列函数中,奇函数是()A.y=x^3B.y=x^2C.y=|x|D.y=x+1/x2.已知函数f(x)=x^22x+1,那么f(x)的最小值是()A.0B.1C.-1D.无法确定3.下列等比数列中,公比是3的数列是()A.1,3,9,27,B.2,6,18,54,C.3,6,12,24,D.4,12,36,108,4.已知三角形ABC中,角A、角B、角C的对边分别为a、b、c,那么根据正弦定理,下列哪个选项是正确的?()A.a/sinA=b/sinB=c/sinCB.a/sinB=b/sinC=c/sinAC.a/sinC=b/sinA=c/sinBD.a/sinA=b/sinC=c/sinB5.下列方程中,不是一元二次方程的是()A.x^2+2x+1=0B.x^22x+1=0C.x^2+2x1=0D.x+2x+1=0二、判断题(每题1分,共5分)1.两个奇函数的乘积是偶函数。
()2.任何数列都有通项公式。
()3.两个等差数列的乘积还是等差数列。
()4.三角形的内角和为180度。
()5.一元二次方程的判别式Δ=b^24ac。
()三、填空题(每题1分,共5分)1.若函数f(x)=x^33x,那么f'(x)=_______。
2.若等差数列的首项为1,公差为2,那么第10项为_______。
3.若等比数列的首项为2,公比为3,那么第5项为_______。
4.若三角形ABC中,角A=30度,角B=60度,那么角C=_______度。
5.若一元二次方程ax^2+bx+c=0的解为x1=2,x2=3,那么b=_______。
四、简答题(每题2分,共10分)1.请简述函数的单调性及其判定方法。
2.请简述等差数列与等比数列的定义及其通项公式。
3.请简述三角形的内角和定理及其应用。
4.请简述一元二次方程的判别式及其意义。
5.请简述函数的极值及其判定方法。
体育对口单招数学试卷(最后答案)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分)1.一次选拔运动员,测得7名选手的身高(单位cm )分布茎叶图如图,测得平均身高为177cm ,有一名候选人的身高记录不清楚,其末位数记为x ,那么x 的值为( )A .5B .6C .7D .8 2、在下列区间中,函数-的零点所在的区间为( )A .(0,1) B.(1,2) C.(2,3) D.(3,4)3.已知则等于( )A .B .C .D .4.已知抛物线上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( )A .x=8B .x=-8C .x=4D .x=-4 5.不等式23x +>的解集是( ) A. ()(),51,-∞-+∞ B. ()5,1- C. ()(),15,-∞-+∞ D.()1,5-6.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )1801170389x sin()sin 0,32ππααα++=-<<2cos()3πα+45-35-354522y px=7.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( )A. A ′C ⊥平面DBC ′B. 平面AB ′D ′//平面BDC ′C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1} B. {-2} C. {3} D. ∅ 9.已知θ是三角形的一个内角,且1sin cos 2θθ+=,则方程22sin cos 1x y θθ-=表示( )(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆(C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 10.已知边长为a 的菱形ABCD ,∠A=3π,将菱形ABCD沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是( )(A )a 23 (B )a 43 (C )a23(D )a 4311. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD ⃗⃗⃗⃗⃗ B. DB ⃗⃗⃗⃗⃗ C. AC ⃗⃗⃗⃗⃗ D. CA ⃗⃗⃗⃗⃗ 12. 下面函数以π为周期的是( )A.y =sin (x −π8) B. y =2cos x C. y =sin x D. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法总数是( ) A. 420 B. 200 C. 190 D. 240 14、设全集3{|05},{1,3},{|log ,}U x z x A B y y x x A =∈≤≤===∈集合,则集合C ∪(A ∪B )=( )A .{0,4,5}B .{2,4,5}C .{0,2,4,5}D .{4,5} 15、cos20°·cos40°·cos60°·cos80°=( )A .14B .18C .116D .132二、填空题:(本题共5小题,每小题6分,共30分.) 1、A={x|x>O},B={x-2<x<1},那么A ⌒B=________ 2、A={1,3},B={0,1},那么集合AUB=________.4.已知函数: c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,则事件A 发生的概率为________.5.002012sin )212cos 4(312tan 3--=________6.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……则前n 个图形的边数的总和为____________.三、解答题:(本题共2小题,每小题10分,共40分) 1、已知抛物线的顶点在原点,焦点坐标为F(3,0). (1)求抛物线的标准方程(2)若抛物线上点M 到焦点的距离为4,求点M 的坐标. 2、如图,正三棱锥P-ABC 的侧棱长为2√3,底面边长为4. (1)求正三棱锥P-ABC 的全面积;(2)线段PA 、AB 、AC 的中点分别为D 、E 、F ,求二面角D-EF-A 的余弦值.参考答案: 一、选择题: 1-5题答案:DAABA 6-10题答案:DCABD 11-15题答案:CDCCC 二、填空题: 1.答案:{x|0<x<1} 2.答案: {0,1,3}4. 855.34-6.41n-三、问答题:1、参考答案.(1)212y x ;(2)(1,23)M2、参考答案.(1)43;(2。
2024年体育单招文化考试数学试题及答案
2024年体育单招文化考试数学试题及答案一、选择题(每题4分,共40分)1. 有七名同学站成一排拍毕业照,其中甲必须站在中间,则不同的站法一共有()A. 180种B. 360种C. 720种D. 1260种答案:B2. 已知函数$f(x) = 2x^3 - 3x^2 - 12x + 8$,则$f(-1)$的值为()A. -5B. -3C. 1D. 3答案:A3. 若$x^2 + y^2 = 4$,则$x + y$的最大值为()A. 2B. $\sqrt{2}$C. 4D. $\sqrt{8}$答案:D4. 若$a^2 + b^2 = 1$,则$a + b$的取值范围是()A. $[-1, 1]$B. $[-\sqrt{2}, \sqrt{2}]$C. $[-2, 2]$D. $[-\sqrt{3}, \sqrt{3}]$答案:B5. 若函数$f(x) = \sqrt{1 - 2x}$的定义域为$A$,函数$g(x) = \frac{1}{x - 2}$的定义域为$B$,则$A \cap B$的取值范围是()A. $(-\infty, 0]$B. $(-\infty, 1]$C. $(-\infty, 2]$D. $(-\infty, 1)$答案:D二、填空题(每题4分,共40分)6. 若$a = 3 + \sqrt{5}$,$b = 3 - \sqrt{5}$,则$a - b$的值为_________。
答案:$2\sqrt{5}$7. 已知$a$,$b$是方程$x^2 - (a + b)x + ab =0$的两根,则$a^2 + b^2$的值为_________。
答案:$a + b$8. 若$f(x) = 2x^3 - 3x^2 - 12x + 8$,则$f'(x)$的值为_________。
答案:$6x^2 - 6x - 12$9. 若$a$,$b$,$c$成等比数列,且$a + b + c = 14$,$abc = 48$,则$a$,$b$,$c$分别为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A . y
(3)x B . y log 3x C. y 7.已知b
a 0,且a
b 1,则此 l,2ab,a 2 2 Ab B.a 2 b 2 C.2ab 8.已知函数 f x = log 2x 2x , XJ 则 f f , x 0 A.4 B. 1 C 1
4 D .
4 4 9.函数 y • log 1 (3x 2) 的定义域是(
A . [1, )
B . (2, )
C . [2,1]
D . D. y cosx b 2,b 四个数中最大的是(
) D.1 2
10.函数y Asin( x 2
,1]
)在一个周期内的图象如下,此函数的解析式
体育单招考试数学试题
本试题卷包括选择题、填空题和解答题三部分。
时量 姓名: ________ 、选择题:本大题共 10小题,每小题6分,共60分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
1. 设集合 M = {x|0<x<1},集合N={x|-1<x<1},则下列正确的是 (
4.函数y —^(x 1)的反函数是(
x 1 5.数列..2, ..5,2 •一2, .11,…,则2.、5是该数列的( ) 120分钟。
满分150分。
分数: _____
(A ) MQ N=N (B ) MU N=M (C) MQ N=M (D ) MJ N= MQ N
2. “ a>0,b>0 ”是“ ab>0”的()
A .充分不必要条件
B .必要不充分条件 x 1
3.
不等式—0的解集是 (•充要条件 D . 既不充分也不必要条件
(A ) {x|0<x<1} (B ) {x|1<x< oo } (C ) {x|- O <x<0} (D ) {x|- OO <x<0}
(A)y 1 x x , (x 1) (B ) y (x x x 1
1) (C ) y jx x 1 x 0) (D ) y (x 0) x A .第6项 B .第7项 C .第10项 D .第11项
6.下列函数中,在区间(0,
)上为增函数的是x 4
)
为 ( )
、填空题:本大题共 6小题,每小题6分,共36分。
11. ___________________ tan 6000 .
12. 设公比为正数的等比数列,若 a , 1,a 5 16,则数列的前5项的和为 ____________________ .
13. 一个有限项的等差数列,前
4项之和为40,最后4项之和是80,所有项之和是 210, 则此数列的项数为。
3 14. 在 ABC 中,AC=2,BC=1, cosC ,则 AB。
4
15. 已知tan 2, ____________________ ——3co ^ 的值为 . sin cos
2 a
16. 已知函数f(x) 4ax —(a 0)有最小值8,贝V a _________________ x
三、解答题:本大题共 3小题,共54分。
解答应写出文字说明、证明过程或演算步骤。
17. (本小题满分18分)
在等差数列 a n n N 中,已知a 2 2,a 4 4 ,
(1) 求数列 a n 的通项公式
a
(2) 设b n 2 n ,求数列b n 前5项的和s 5
2
A . y 2sin(2x )
3 C . y 2si n(£
) 2
3 B . y 2sin(2x ) 3 D . y 2si n(2x —)
已知函数f (x) 2sin(x —) , x R.
(1 )写出函数f (x)的周期;
(2)将函数f (x)图象上的所有的点向左平行移动个单位,得到函数g(x)的图象,写出函
3
数g(x)的表达式,并判断函数g(x)的奇偶性•
已知函数f(x)=log 2(x-1)
(1)求函数f(x)的定义域;
(2)设g(x)= f(x)+ a ;若函数y=g(x)在(2 , 3)有且仅有一个零点,求实数a的取值范围;
(3)设h(x)= f (x) —,是否存在正实数m使得函数y=h(x)在[3,9]内的最大值为
f(x)
4?若存在,求出m的值;若不存在,请说明理由。