(完整版)体育单招数学真题

合集下载

(完整版)份体育单招数学考试卷

(完整版)份体育单招数学考试卷

体育单招数学测试卷姓名 ___________ 分数 _______________(注意事项:1.本卷共19小题,共150分。

2.本卷考试时间:90分钟)一、选择题:本大题共10小题,每小题6分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的,请将所选答案的字母写在括号里。

1、 设集合 M {x|x (x 1) 0}, N {x|x 2 4},则()A M NB 、M N MC 、M N MD 、M N R 2、 下列函数中既是偶函数又在(0,)上是增函数的是( )A y x 3B 、y |x| 1C 、y x 2 1D 、y 2 |x|3、 过点A (4,a )与B (5,b )的直线与直线y x m 平行,贝U | AB | ()A 6B 、 一 2C 、2D 、不确定 4、某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选本阅读,则不同的选法共有( ) A. 24种 B. 9种C. 3种D. 26种 8在 ABC 中,角A 、BC 所对边的长分别为a,b,c .若b 2 c 2 a 2 -bc ,则sin (B C ) 5 的值为()33-D 、— 555、函数??= D. ??=- ??6 6、已知sin cos J , (0, n ),则 sin27、已知直线 l 过点(1 ,-1)且与直线x 2y 3A. 2xy 1 )A. ??- B.、填空题:本大题共6小题,每小题6分,共36分。

把答案写在题中横线上。

112、 函数 f (x ) =-=-?=+In (x+2)的定义域为 ______ .13、 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 ________ .14、 一个正方体的体积是8,则这个正方体的内切球的表面积是 _____ .2 2 15、已知双曲线 务 笃1(a 0,b 0)的一条渐近线方程是y . 3x ,它的一个焦点与抛物a b 线y 2 16x 的焦点相同。

(完整版)体育单招数学真题

(完整版)体育单招数学真题

20XX 年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学注意事项:1、用钢笔或圆珠笔直接答在试题卷中。

2、答卷前将密封线内的项目填写清楚。

3、本卷共19小题,共150分。

一、选择题(6分*10=60分)1、已知集合{}1,M x x =>{}22,N x x =≤则M N =U ( )A. {1,x x <≤B.{}1,x x <≤C.{,x x ≤D.{.x x ≥ 2、已知平面向量(1,2),(2,1),a b ==r r 若(),a kb b k +⊥=r r r 则( )A .45- B.34- C.23- D.12-3、函数y x = ) A.21,(0)2x y x x -=< B. 21,(0)2x y x x -=> C. 21,(0)2x y x x +=< D.21,(0)2x y x x +=>4、已知tan 32α=,则sin 2cos 2sin cos αααα++=( ) A.25 B.25- C. 5 D.5-5、已知9()x a +的展开式中常数项是8-,则展开式中3x 的系数是( )A.168B.168-C. 336D.336-6、下面是关于三个不同平面,,αβγ的四个命题1:,p αγβγαβ⊥⊥⇒∥,2:,p αγβγαβ⇒∥∥∥,3:,p αγβγαβ⊥⊥⇒⊥,4:,p αγβγαβ⊥⇒⊥∥,其中的真命题是()A.12,p pB. 34,p pC.13,p pD.24,p p7、直线20(0)x y m m -+=>交圆于A ,B 两点,P 为圆心,若△PAB 的面积是25,则m=( )B. 1 D.2 8、从10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法有( )A.120种B. 240种C.360 种D. 720种9、 等差数列{}n a 的前n 项和为n s .若11,19,100,k k a a s k ====则( )A.8B. 9C. 10D.1110、过抛物线的焦点F 作斜率为 与 的直线,分别交抛物线的准线于点A ,B.若△FAB 的面积是5,则抛物线方程是( )A. 212y x = B. 2y x = C. 22y x = D.24y x = 二、填空题(6分*6=36分) 11、已知函数()ln1x a f x x -=+在区间()0,1,单调增加,则a 的取值范围是. 12、已知圆锥侧面积是底面积的3倍,高为4cm ,则圆锥的体积是 cm 3131x >-的解集是.14、某选拔测试包含三个不同项目,至少两个科目为优秀才能通过测试.设某学员三个科目优秀的概率分别为544,,,666则该学员通过测试的概率是. 15、已知{}n a 是等比数列,1236781291,32,...a a a a a a a a a ++=++=+++=则.16、已知双曲线22221x y a b-=的一个焦点F 与一条渐近线l ,过焦点F 做渐近线l 的垂线,垂足P 的坐标为3,43⎛⎫- ⎪ ⎪⎝⎭,则焦点的坐标是.三、解答题(18分*3=54分) 17、已知△ABC 是锐角三角形.证明:2cos 2sin02B C A +-<18、设F 是椭圆2212x y +=的右焦点,半圆221(0)x y x +=≥在Q 点的切线与椭圆教育A ,B 两点. (Ⅰ)证明:.AF AQ +为常数(Ⅱ)设切线AB 的斜率为1,求△OAB 的面积(O 是坐标原点).19、如图,已知正方形ABCD —A 1B 1C 1D 1的棱长为1,M 是B 1D 1的中点.(Ⅰ)证明;BM AC ⊥(Ⅱ)求异面直线BM 与CD 1的夹角;(Ⅲ)求点B 到平面A B 1M 的距离.A C A 11。

体育单招考试数学试题

体育单招考试数学试题

体育单招考试数学试题一、选择题:本大题共10小题,每小题6分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合}4,3,2{},,3,2,1{==B A ,则=⋃B A ( )A 、}4,3,2,1{B 、}3,2,1{C 、}4,3,2{D 、}4,1{2、下列计算正确的是 ( ) A 、222log 6log 3log 3-= B 、22log 6log 31-=C 、3log 93=D 、()()233log 42log 4-=-3、已知(1,2),(1,)a b x =-= ,若a b ⊥ ,则x 等于 ( )A 、21 B 、 21- C 、 2 D.、-2 4、已知函数)1(156≠∈-+=x R x x x y 且,那么它的反函数为( ) A 、()1156≠∈-+=x R x x x y 且 B 、()665≠∈-+=x R x x x y 且 C 、⎪⎭⎫⎝⎛-≠∈+-=65561x R x x x y 且 D 、()556-≠∈+-=x R x x x y 且 5、不等式2113x x ->+的解集为( ) A 、x <-3或x >4B 、{x | x <-3或x >4}C 、{x | -3<x <4}D 、{x | -3<x <21} 6、满足函数x y sin =和x y cos =都是增函数的区间是( )A .]22,2[πππ+k k , Z k ∈ B .]2,22[ππππ++k k , Z k ∈C .]22,2[ππππ--k k , Z k ∈D .]2,22[πππk k - Z k ∈7、直线是y=2x 关于x 轴对称的直线方程为( )A 、12y x =-B 、12y x =C 、2y x =-D 、2y x =8、设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S 等于 ( ) A 、13 B 、35 C 、49 D 、 639、已知{}n a 为等差数列,且74321,0a a a -=-=,则公差d = ( )A 、-2B 、12-C 、12D 、210、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )种A 、90B 、180C 、270D 、540二、填空题:本大题共6小题,每小题6分,共36分。

体育单招测试题数学及答案

体育单招测试题数学及答案

体育单招测试题数学及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数 f(x) = 2x - 1,求 f(3) 的值。

A. 5B. 4C. 3D. 23. 一个圆的半径是 5 厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 如果一个三角形的两边长分别是 3 和 4,且这两边夹角为 60 度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√35. 等差数列 3, 7, 11, ... 的第 10 项是多少?B. 41C. 47D. 516. 一个直角三角形的两条直角边分别为 6 厘米和 8 厘米,斜边的长度是多少?A. 10 厘米B. 12 厘米C. 14 厘米D. 16 厘米7. 已知集合 A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}8. 一个数的平方根是 2,这个数是多少?A. 4B. -4C. 8D. -89. 一个数的立方根是 2,这个数是多少?A. 2B. 4C. 8D. 1610. 已知等比数列 2, 6, 18, ... 的公比是 3,求第 5 项。

B. 108C. 162D. 324二、填空题(每题2分,共10分)11. 一个数的相反数是 -5,这个数是 _______。

12. 若 a + b = 10,且 a - b = 2,则a × b = _______。

13. 一个数的绝对值是 7,这个数可以是 _______ 或 _______。

14. 已知一个等差数列的首项是 5,公差是 3,求第 6 项。

15. 已知一个等比数列的首项是 2,公比是 2,求第 4 项。

三、解答题(每题10分,共20分)16. 求函数 y = x^2 - 4x + 4 的顶点坐标。

体育对口单招数学试试卷(答案)

体育对口单招数学试试卷(答案)

体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.若集合2{|20},{|log (1)1},M x x N x x =->=-< 则M N =()A.{|23}x x <<B.{|1}x x <C.{|3}x x >D.{|12}x x <<2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a、b 满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=03.已知{}n a 为等差数列,3177,10,n a a a S =+=为其前n 项和,则使得n S 达到最大值的n 等于()A.4B.5C.6D.74.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.23B.33C.223D.2335、方程43)22(log =x 的解为()A.4=xB.2=xC.2=xD.21=x 6、下列各组函数是同一函数的是()①3()2()2f x x g x x x =-=⋅-与②2()()f x x g x x ==与③001()()f x x g x x ==与④22()21()21f x x xg x t t =--=--与A.①②B.①③C.③④D.①④7、下列命题是假命题的是()A.(0,),sin 2x x x π∀∈>B.000,sin cos 2x R x x ∃∈+=C.,30x x R ∀∈>D.00,lg 0x R x ∃∈=8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()9.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280B.-160C.160D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421 B.121 C.114 D.2711、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A、cb a <<B、b ac <<C、bc a <<D、a b c <<12、不等式152x x ---<的解集是()A、(,4)-∞B、(,1)-∞C、(1,4)D、(1,5)13、函数x x y 2cos sin =是()A、偶函数B、奇函数C、非奇非偶函数C、既是奇函数,也是偶函数14、若(12)a+1<(12)4-2a,则实数a 的取值范围是()A、(1,+∞)B、(12,+∞)C、(-∞,1)D、(-∞,12)15、化简3a a 的结果是()A、aB、12a C、41a D、83a 16、下列计算正确的是()A、(a3)2=a9B、log36-log32=1C、12a -·12a =0D、log3(-4)2=2log3(-4)17、三个数a=0.62,b=log20.3,c=30.2之间的大小关系是()A、a<c<bB、a<b<cC、b<a<cD、b<c<a 18、8log 15.021+-⎪⎭⎫⎝⎛的值为()A、6B、72C、16D、3719、下列各式成立的是()A、()52522n m n m +=+B、(b a )2=12a 12b C、()()316255-=-D、31339=20、设2a=5b=m,且1a +1b=3,则m 等于()A、310B、10C、20D、100二、填空题:(共20分)1.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________;2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________;3.已知m b a ==32,且211=+b a ,则实数m 的值为______________;4.若0>a ,9432=a ,则=a 32log ____________;三、解答题:(本题共3小题,共40分)1.计算:1033cos 3)27lg0.012p +-++2.等差数列{an}中,a2=13,a4=9.(1)求a1及公差d;(2)当n 为多少时,前n 项和Sn 开始为负?3.如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2)若2)nx 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的常数项等于多少?参考答案:一、选择题1-5题答案:DCBAA6-10题答案:BDDBA11-15题答案:BABAB;16-20题答案:BBCDA.二、填空题1.-3;2.),1( ;3.6;4.3;三、解答题1.参考答案.62.参考答案.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。

体育单招数学试题及答案

体育单招数学试题及答案

体育单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是整数?A. 0B. 1C. 3.5D. 2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B3. 已知x² - 5x + 6 = 0,求x的值。

A. 2B. 3C. 1, 2D. 2, 3答案:D4. 圆的半径为5,求圆的面积。

A. 25πC. 75πD. 100π答案:B5. 函数f(x) = 2x - 3,当x = 2时,f(x)的值为多少?A. -1B. 1C. 3D. 5答案:B6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8答案:A8. 已知一个数列的前三项为1, 4, 7,求第四项。

B. 11C. 12D. 13答案:B9. 一个长方体的长、宽、高分别为2, 3, 4,求其体积。

A. 24B. 36C. 48D. 52答案:A10. 一个正六边形的内角是多少度?A. 120°B. 135°C. 150°D. 180°答案:B二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身的数是______或______。

答案:正数;02. 一个数的相反数是其本身的数是______。

答案:03. 一个数的倒数是其本身的数是______。

答案:±14. 若a和b互为倒数,则ab=______。

答案:15. 一个数的平方等于9,这个数可以是______或______。

答案:3;-36. 一个数的立方等于-27,这个数是______。

答案:-37. 一个数的平方根是2,这个数是______。

2023年体育单招数学试卷

2023年体育单招数学试卷

2023年体育单招数学试卷一、选择题(本大题共10小题,每小题6分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2-3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域为()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),α∈<=ft(0,(π)/(2)),则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2=3(x - 1)B. y+2 = 3(x + 1)C. y - 1=3(x - 2)D. y+1=3(x + 2)5. 已知向量→a=(1,2),→b=(2,m),若→a∥→b,则m的值为()A. 1B. 2C. 3D. 46. 等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 10C. 11D. 127. 二次函数y=x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x=-2D. x = 28. 在ABC中,a = 3,b = 4,C = 60^∘,则c的值为()A. √(13)B. √(37)C. √(19)D. √(21)9. 若f(x)=log_2(x + 1),则f(1)的值为()A. 1B. log_22C. 0D. log_2310. 某单位有100名员工,其中45人喜欢篮球,25人喜欢足球,15人既喜欢篮球又喜欢足球,则既不喜欢篮球也不喜欢足球的人数为()A. 35B. 45C. 55D. 65二、填空题(本大题共6小题,每小题6分,共36分)11. 计算limlimits_x→1frac{x^2-1}{x - 1}=_2。

体育高考单招数学试卷

体育高考单招数学试卷

一、选择题(每小题5分,共50分)1. 若集合A={x|1≤x≤4,x∈Z},B={x|2≤x≤1,x∈Z},则A∩B的元素共有()A. 1个B. 2个C. 3个D. 4个2. 函数f(x)=log2(x^2-3x)的定义域是()A. (-∞,0)∪(3,+∞)B. [0,3]C. (0,3)D. [0,+∞)3. 下列函数中,为增函数的是()A. e^xB. y=ln(x+1)C. y=x^2-1D. y=3sinx+4cosx4. 函数y=3sinx+4cosx的最小值是()A. 7B. 6C. 5D. 45. 已知O为坐标原点,点A(2,2),M满足AM=2OM,则点M的轨迹方程为()A. x^2+y^2=4B. x^2+y^2=8C. x^2/4+y^2/4=1D. x^2/16+y^2/16=16. 从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方法共有()A. 6种B. 9种C. 12种D. 15种7. 在三角形ABC中,已知A=60°,AC=2,BC=7,则AB=()A. 4B. 5C. 6D. 78. 长方体ABCD-A1B1C1D1中,O是AB的中点,且OD=OB1,则OD=()A. 1B. √2C. √3D. 2二、填空题(每小题8分,共32分)9. 若sinθ=cos(π/2-θ),则cos2θ=_________10. 不等式x^2-2x-3>0的解集是_________11. 若向量a=(2,3),b=(3,-1),且a与b的夹角为120°,则a·b=_________12. 设向量a=(x,y),向量b=(2,-3),若a与b垂直,则x+y=_________三、解答题(每题20分,共60分)13. (1)已知函数f(x)=x^3-3x,求f(x)的极值。

(2)已知函数g(x)=x^2+2x+1,求g(x)在[-1,3]上的最大值和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX 年全国普通高等学校运动训练、民族传统体育专业
单独统一招生考试数学
注意事项:
1、用钢笔或圆珠笔直接答在试题卷中。

2、答卷前将密封线内的项目填写清楚。

3、本卷共19小题,共150分。

一、选择题(6分*10=60分)
1、已知集合{}1,M x x =>{}22,N x x =≤则M N =( )
A. {1,x x <≤
B.{}1,x x <≤
C.{,x x ≤
D.{.
x x ≥ 2、已知平面向量(1,2),(2,1),a b ==若(),a kb b k +⊥=则( )
A .45- B.3
4- C.2
3- D.1
2-
3、函数y x = ) A.21
,(0)2x y x x -=< B. 21
,(0)2x y x x -=> C. 21
,(0)2x y x x +=< D.2
1
,(0)2x y x x +=>
4、已知tan 32α=,则sin 2cos
2sin cos αα
αα++=( ) A.2
5 B.2
5- C. 5 D.5-
5、已知9()x a +的展开式中常数项是8-,则展开式中3x 的系数是( )
A.168
B.168-
C. 336
D.336-
6、下面是关于三个不同平面,,αβγ的四个命题
1:,p αγβγαβ⊥⊥⇒∥,2:,p αγβγαβ⇒∥∥∥,
3:,p αγβγαβ⊥⊥⇒⊥,4:,p αγβγαβ⊥⇒⊥∥,其中的真命题是(

A.12,p p
B. 34,p p
C.13,p p
D.24,p p
7、直线20(0)x y m m -+=>交圆于A ,B 两点,P 为圆心,若△PAB 的面积是25
,则m=( )
B. 1 D.2 8、从10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法有( )
A.120种
B. 240种
C.360 种
D. 720种
9、 等差数列{}n a 的前n 项和为n s .若11,19,100,k k a a s k ====则( )
A.8
B. 9
C. 10
D.11
10、过抛物线的焦点F 作斜率为 与 的直线,分别交抛物线的准线于点A ,B.若△FAB 的面积
是5,则抛物线方程是( )
A. 212
y x = B. 2y x = C. 22y x = D.24y x = 二、填空题(6分*6=36分) 11、已知函数()ln
1x a f x x -=+在区间()0,1,单调增加,则a 的取值范围是. 12、已知圆锥侧面积是底面积的3倍,高为4cm ,则圆锥的体积是 cm 3
131x >-的解集是.
14、某选拔测试包含三个不同项目,至少两个科目为优秀才能通过测试.设某学员三个科目优秀的概率分别为544,,,666
则该学员通过测试的概率是. 15、已知{}n a 是等比数列,1236781291,32,...a a a a a a a a a ++=++=+++=则.
16、已知双曲线22
221x y a b
-=的一个焦点F 与一条渐近线l ,过焦点F 做渐近线l 的垂线,垂足
P 的坐标为3,43⎛⎫
- ⎪ ⎪⎝⎭
,则焦点的坐标是.
三、解答题(18分*3=54分) 17、已知△ABC 是锐角三角形.证明:2cos 2sin
02
B C A +-<
18、设F 是椭圆2
212
x y +=的右焦点,半圆221(0)x y x +=≥在Q 点的切线与椭圆教育A ,B 两点. (Ⅰ)证明:.AF AQ +为常数
(Ⅱ)设切线AB 的斜率为1,求△OAB 的面积(O 是坐标原点).
19、如图,已知正方形ABCD —A 1B 1C 1D 1的棱长为1,M 是B 1D 1的中点.
(Ⅰ)证明;BM AC ⊥
(Ⅱ)求异面直线BM 与CD 1的夹角;
(Ⅲ)求点B 到平面A B 1M 的距离.
A C A 1
1。

相关文档
最新文档