2018年体育单招数学模拟试题(一)及答案
2018单独招生考试数学试卷(A)(1)
2018年单独招生《数学》试卷 第 1 页 共 2 页2018年单独招生考试《数学》试卷一.选择题:(本大题共10小题,每小题6分,共60分) (在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={a,b,c,d },B= {a,b,d }, 则=⋂B A ( )A .{a,b,c,d }B .{a,b,d }C .{c }D .φ2.下列函数是偶函数的是( )A .x 2y =B .x y sin =C .2x y =D .3x y =3.已知角045=θ,则=θtan ( )A .23 B .3 C .33D .1 4.数列2,4,, 8,16是( )A .等比数列B .等差数列C .常数列D .递减数列5.二次函数)0(2≠++=a c bx ax y 的图像是( ) A .直线 B .抛物线C . 双曲线D .椭圆6.直线52+-=x y 的斜率k 等于( ) A .-5B . 5C .-2D .27.圆922=+y x 的半径等于( )A .9B .29 C .23D .3 8.已知正方体的体积为64,则它的边长为( ) A .4 B .8 C . 16 D .329.3支篮球队之间进行比赛,每两队之间赛一场,共需安排( )场比赛 A .3 B .6 C . 9 D .2710.从1,2,3,4,5这五个数字中任取一个数,取出的数是偶数的概率为( )A .51B . 52C .53D .54二.填空题:(本大题共5小题,每小题6分,共30分)11.集合{}为自然数x x x ,3≤中共有 个元素。
12.函数23y -=x 的定义域为 13.在直角ABC ∆中,若345===BC AB AC ,,,则ABC ∆的面积等于14.已知一个函数)(x f y =为奇函数,若===-=y x y x 时则时1,21 15.底面半径为2cm ,高6cm 的圆柱体体积为三.判断题(本大题共5小题,每小题6分,共30分) (对的在题后括号内打√号,错的打×号)16. 任何一个数的三次方一定比它的二次方大。
体育单招数学模拟试题(一)及答案
体育单招数学模拟试题(一)及答案一、选择题1,下列各函数中,与y某表示同一函数的是()某2(A)y(B)y某2(C)y(某)2(D)y某3某2,抛物线y12某的焦点坐标是()4(A)0,1(B)0,1(C)1,0(D)1,03,设函数y某2的定义域为A,关于X的不等式log22某1a的解集为B,且ABA,则a的取值范围是()(A),3(B)0,3(C)5,(D)5,12,某是第二象限角,则tan某()13125512(A)(B)(C)(D)1212554,已知in某5,等比数列an中,a1a2a330,a4a5a6120,则a7a8a9()(A)240(B)240(C)480(D)4806,tan330()(A(B(C)(D)某2y2过椭圆1的焦点F1作直线交椭圆于A、B两点,F2是椭圆另一焦点,则△ABF2的周长是7,3625()(A).12(B).24(C).22(D).108,函数yin2某图像的一个对称中心是()6(A)(12,0)(B)(6,0)(C)(,0)6(D)(,0)3二,填空题(本大题共4个小题,每小题5分,共20分)9.函数yln2某1的定义域是.个单位,得到的函数解析式为________________.611.某公司生产A、B、C三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,样本中A种型号的轿车比B种型号的轿车少8辆,那么10.把函数yin2某的图象向左平移n12.已知函数ya上,则1某(a0且a1)的图象恒过点A.若点A在直线m某ny10mn012的最小值为.mn三,解答题13.12(1)完成如下的频率分布表:(2)从得分在区间10,20内的运动员中随机抽取2人,求这2人得分之和大于25的概率.14.已知函数f(某)in2某in某co某.(1)求其最小正周期;(2)当0某2时,求其最值及相应的某值。
(3)试求不等式f(某)1的解集15如图2,在三棱锥PABC中,AB5,BC4,AC3,点D是线段PB的中点,平面PAC平面ABC.(1)在线段AB上是否存在点E,使得DE//平面PAC?若存在,指出点E的位置,并加以证明;若不存在,请说明理由;(2)求证:PABC.9.,10.yin2某11.7212.332三,解答题(共五个大题,共40分)13本小题主要考查统计与概率等基础知识,考查数据处理能力.满分10分.(1)解:频率分布表:3分A4,A8,A4,A11,A8,A11,共10种.6分“从得分在区间10,20内的运动员中随机抽取2人,这2人得分之和大于25”(记为事件B)的所有可能结果有:A2,A4,A2,A11,A3,A4,A3,A8,A3,A11,A4,A8,A4,A11,A8,A11,共8种.8分所以PB80.8.10答:从得分在区间10,20内的运动员中随机抽取2人,这2人得分之和大于25的概率为0.8.10分14.(1)T=;(2)yma某123(3)k,某;ymin0,某0;4,k2,kZ2815.本小题主要考查直线与平面的位置关系的基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分10分.(1)解:在线段AB上存在点E,使得DE//平面PAC,点E是线段AB 的中点.1分下面证明DE//平面PAC:取线段AB的中点E,连接DE,2∵点D是线段PB的中点,∴DE是△PAB的中位线.3∴DE//PA.4∵PA平面PAC,DE平面PAC,∴DE//平面PAC.(2)证明:∵AB5,BC4,AC3,∴ABBCAC.∴ACBC.8分∵平面PAC平面ABC,且平面PAC平面ABCAC,BC平面ABC,∴BC平面PAC.9分∵PA平面PAC,∴PABC.10分222。
2018体育单招数学模拟考习题[一]和答案解析
精心整理2018年体育单招考试数学试题(1)一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合}4,3,2{},,3,2,1{==B A ,则=⋃B A ()A 、}4,3,2,1{B 、}3,2,1{C 、}4,3,2{D 、}4,1{2、下列计算正确的是()A 、3452113x x ->+的解集为() A 、6A C 7C .x =2为()f x 的极大值点D .x =2为()f x 的极小值点8.已知锐角△ABC 的内角A 、B 、C 的对边分别为c b a ,,,,7,02cos cos 232==+a A A 6=c ,则=b ()(A )10(B )9(C )8(D )59、已知{}n a 为等差数列,且74321,0a a a -=-=,则公差d =()A 、-2B 、12-C 、12D 、210、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有(???)种A 、90????B 、180??????C 、270???????..D 、540二、填空题:本大题共6小题,每小题6分,共36分。
11.已知,lg ,24a x a ==则x =________.12、2nx ⎫⎪⎭展开式的第5项为常数,则n =。
13.14.15.16.17.((1(21819BDC 90=.(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求AE 与DB 夹角的余弦值2018年体育单招数学模拟试题(2)一、 选择题1,下列各函数中,与x y =表示同一函数的是()(A)xx y 2= (B)2x y = (C)2)(x y = (D)33x y =2,抛物线241x y -=的焦点坐标是()(A) ()1,0-(B)()1,0 (C)()0,1 (D)()0,1-3,设函数216x y -=的定义域为A,关于X的不等式a x <+12log 2的解集为B,且A B A = ,则a 的取值范围是()456,789.10.11.某公司生产A 、B 、C 三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,样本中A 种型号的轿车比B 种型号的轿车少8辆,那么n =.12.已知函数1(0x y a a -=>且1)a ≠的图象恒过点A .若点A 在直线()100mx ny mn +-=>上,则12+的最小值为.m n三,解答题13.12名篮球运动员在某次篮球比赛中的得分记录如下:二,填空题(本大题共5个小题,每小题4分,共20分。
体育单招试卷数学模拟试卷一
体育单招模拟试卷一一.选择题(共10小题,满分60分,每小题6分)1.(6分)下列函数是奇函数的是( )A .y=x ﹣1B .y=2x 2﹣3C .y=x 3D .y=2x2.(6分)在△ABC 中,AC=√13,BC=1,B=60°,则△ABC 的面积为( )A .√3B .2C .2√3D .3 3.(6分)若函数y=log 3x 的反函数为y=g (x ),则g(12)的值是( )A .3B .log 312C .log 32D .√34.(6分)函数y=sinx•cosx ,x ∈R 的最小正周期为( )A .2B .πC .2πD .1π 5.(6分)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是( )A .15B .25C .35D .45 6.(6分)(x −1x )6的展开式中含x 2的项的系数是( )A .﹣20B .20C .﹣15D .157.(6分)设a ,b 是两条不同的直线,α,β是两个不同的平面,则( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β 8.(6分)已知双曲线x 2a 2−y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( ) A .y=±√5x B .y=±√55x C .y=±√33x D .y=±√3x9.(6分)圆x 2+y 2﹣4x +6y=0的圆心坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)10.(6分)不等式(x +1)(x ﹣2)≤0的解集为( )A .{x |﹣1≤x ≤2}B .{x |﹣1<x <2}C .{x |x ≥2或x ≤﹣1}D .{x |x >2或x <﹣1}二.填空题(共6小题,满分36分,每小题6分)11.(6分)在等差数列{a n }中,a 2=10,a 4=18,则此等差数列的公差d= . 12.(6分)从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成 个四位数.13.(6分)函数y =lg √3x −4的定义域 .14.(6分)以点(2,﹣1)为圆心,且与直线x +y=7相切的圆的方程是 .15.(6分)抛物线y 2=2x 的准线方程是 .16.(6分)设集合A={1,3},B={a +2,5},A ∩B={3},则A ∪B= .三.解答题(共3小题,满分54分,每小题18分)17.(18分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.18.(18分)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2). (1)求椭圆的离心率;(2)求椭圆的方程.19.(18分)如图四棱锥P ﹣ABCD ,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,其中BC=2AB=2PA=6,M 、N 为侧棱PC 上的三等分点.(Ⅰ)证明:AN ∥平面MBD ;(Ⅱ)求三棱锥N ﹣MBD 的体积.故选B5.(6分)(2017•淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是( )A .15B .25C .35D .45【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C 52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=4C 52=410=25,故选B .6.(6分)(2017•凉山州模拟)(x −1x )6的展开式中含x 2的项的系数是( )A .﹣20B .20C .﹣15D .15【解答】解:(x ﹣1x )6展开式的通项为T r +1=(﹣1)r C 6r x 6﹣2r ,令6﹣2r=2,解得r=2故展开式中含x 2的项的系数是C 62=15,故选:D7.(6分)(2017•抚州模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则() A .若a ∥α,b ∥α,则a ∥b B .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β【解答】解:A .若a ∥α,b ∥α,则a ∥b ,或a ,b 异面或a ,b 相交,故A 错;B .若a ∥α,a ∥β,则α∥β,或α∩β=b ,故B 错;C .若a ∥b ,a ⊥α,则b ⊥α,故C 正确;D .若a ∥α,α⊥β,则a ⊂β或a ∥β或a ⊥β,故D 错.故选:C .8.(6分)(2017•河西区模拟)已知双曲线x 2a 2−y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( )A .y=±√5xB .y=±√55xC .y=±√33xD .y=±√3x【解答】解:依题意可知√a 2+1=2∴a=±√3∴双曲线的渐近线方程为y=±1a x=±√33x 故选C9.(6分)(2017•怀柔区模拟)圆x 2+y 2﹣4x +6y=0的圆心坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)【解答】解:将圆x 2+y 2﹣4x +6y=0化成标准方程,得(x ﹣2)2+(y +3)2=13∴圆表示以C (2,﹣3)为圆心,半径r=√13的圆故选:D .10.(6分)(2016•长沙模拟)不等式(x +1)(x ﹣2)≤0的解集为( )A .{x |﹣1≤x ≤2}B .{x |﹣1<x <2}C .{x |x ≥2或x ≤﹣1}D .{x |x >2或x <﹣1}【解答】解:不等式(x +1)(x ﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x |﹣1≤x ≤2}.故选:A .二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2016•眉山模拟)在等差数列{a n }中,a 2=10,a 4=18,则此等差数列的公差d= 4 .【解答】解:∵在等差数列{a n }中a 2=10,a 4=18,∴公差d=a 4−a 24−2=18−102=4故答案为:412.(6分)从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成 216 个四位数.【解答】解:从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字,再把这四个数字任意排,故有C 32C 32A 44=216个,故答案为:21613.(6分)(2010秋•湖南校级期末)函数y =lg √3x −4的定义域 (43,+∞) .【解答】解:要使得 3x ﹣4>0,等价于3x >4解得x >43, 所以,函数f (x )的定义域为(43,+∞)故答案为(43,+∞).14.(6分)(2017•黄浦区一模)以点(2,﹣1)为圆心,且与直线x +y=7相切的圆的方程是 (x ﹣2)2+(y +1)2=18 .【解答】解:将直线x +y=7化为x +y ﹣7=0,圆的半径r=√2=3√2,所以圆的方程为(x ﹣2)2+(y +1)2=18.故答案为(x ﹣2)2+(y +1)2=18.15.(6分)(2017•丰台区一模)抛物线y 2=2x 的准线方程是 x =−12 .【解答】解:抛物线y 2=2x ,∴p=1, ∴准线方程是x=﹣12 故答案为:﹣1216.(6分)(2017•南通一模)设集合A={1,3},B={a +2,5},A ∩B={3},则A ∪B= {1,3,5} .【解答】解:集合A={1,3},B={a +2,5},A ∩B={3},可得a +2=3,解得a=1,即B={3,5},则A ∪B={1,3,5}.故答案为:{1,3,5}.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2016•浙江学业考试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.【解答】解:(1)在△ABC 中,由sin2C=√3cosC ,可得:2sinCcosC=√3cosC ,因为C 为锐角,所以cosC ≠0,可得sinC=√32,可得角C 的大小为π3. (2)由a=1,b=4,根据余弦定理可得:c 2=a 2+b 2﹣2abcos π3=13, 可得边c 的长为√13.18.(18分)(2017春•济南月考)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2).(1)求椭圆的离心率;(2)求椭圆的方程.【解答】解:(1)由题意a=32b ,c=2, ∴√94b 2−b 2=2,∴b 2=165,∴a=√5, ∴椭圆的离心率e=c a =√53;(2)椭圆的方程y 2365+x 2165=1.19.(18分)(2017春•东湖区校级月考)如图四棱锥P ﹣ABCD ,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,其中BC=2AB=2PA=6,M 、N 为侧棱PC 上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.【解答】(Ⅰ)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC的中点,∵M、N为侧棱PC上的三等分点,∴CM=MN,∴OM∥AN,∵OM⊂平面MBD,AN⊄平面MBD,∴AN∥平面MBD;(Ⅱ)解:∵四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.∴V N−MBD=V A−MBD=V M−ABD=13S△ABD×13PA=13×9×1=3.。
体育单招考试数学卷(答案) (1)
单独考试招生文化考试数学卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.圆221:40C xy x +-=与圆222:610160Cx y x y ++++=的公切线有( )(A )1条 (B )2条 (C )3条 (D )4条 2.已知圆22670xy x +--=与抛物线22(0)ypx p =>的准线相切,则p 为( )(A )1 (B )2 (C )3 (D )43.在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么( )(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外4.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有( )(A )25条 (B )60条 (C )80条 (D )181条 5、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ( ) A.}23|{<<-x x B.}25|{<<-x x C.}33|{<<-x xD.}35|{<<-x x6.已知0>>b a ,全集=I R ,集合}2|{ba xb x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与NM ,的关系为 ( )(A ))(N C M p I = (B )N M C p I )(= (C )N M P = (D )N M P = 7.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 ( )(A )2 (B )2(C )22 (D )2log 38. 函数的图象如图所示,则最大、最小值分别为 ( )A. B.C. D.9. 设,,,其中为自然对数的底数,则,,的大小关系是( )A. B. C. D.10. 设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是( )A. B.C. D.二、填空题:(共30分.)1.函数y=3-2cos(x-)的最大值为__,此时x=_______.2.函数f(x)=3cos(2x+)的最小正周期为___.3.函数f(x)=sin2x的图像可以由g(x)=sin 2x-号)的图像向左平移___个单位得到.4. 在中,,,,则______.5. 若向量,的夹角为,则——————随机抽取 100名年龄在 ,,, 年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于 岁的人中按年龄段分层抽样的方法随机抽取 8人,则在 年龄段抽取的人数为_____.三、解答题:(本题共3小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.)1.为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可确定所有样本都是阴性的,若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数; ②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X 的分布列和数学期望()E X ;(2)若采用“5合1检测法”,检测次数Y 的期望为()E Y ,试比较()E X 和()E Y 的大小.(直接写出结果)2.求经过两点(10)A -,、(32)B ,,且圆心在y 轴上的圆的方程. 3设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,3a b S ===(1)求角C ; (2)求c 边的长度.参考答案:一、选择题答案: 参考答案1-5题:DBABA 参考答案6-10题:ACCDC 二、填空题答案: 1.答案:5;(k ∈Z)解析: 2.答案:π 解析: 3.答案: 解析:由的图像向左平移0.25个单位,可得函数 的图像。
体育单招试卷数学模拟试卷一定稿版
体育单招试卷数学模拟试卷一精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】体育单招模拟试卷一一.选择题(共10小题,满分60分,每小题6分)1.(6分)下列函数是奇函数的是()A.y=x﹣1 B.y=2x2﹣3 C.y=x3D.y=2x 2.(6分)在△ABC中,AC=√13,BC=1,B=60°,则△ABC的面积为()A.√3B.2 C.2√3D.33.(6分)若函数y=log3x的反函数为y=g(x),则g(12)的值是()A.3 B.ggg312C.log32 D.√34.(6分)函数y=sinx?cosx,x∈R的最小正周期为()A.2 B.πC.2πD.1g5.(6分)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.15B.25C.35D.456.(6分)(g−1g)6的展开式中含x2的项的系数是()A.﹣20 B.20 C.﹣15 D.15 7.(6分)设a,b是两条不同的直线,α,β是两个不同的平面,则()A.若a∥α,b∥α,则a∥b B.若a∥α,a∥β,则α∥βC.若a∥b,a⊥α,则b⊥αD.若a∥α,α⊥β,则α⊥β8.(6分)已知双曲线g 2g2−g2=1的焦点为(2,0),则此双曲线的渐近线方程是()A.y=±√5x B.y=±√55g C.y=±√33g D.y=±√3x9.(6分)圆x2+y2﹣4x+6y=0的圆心坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)10.(6分)不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2} B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1} D.{x|x>2或x<﹣1}二.填空题(共6小题,满分36分,每小题6分)11.(6分)在等差数列{an }中,a2=10,a4=18,则此等差数列的公差d= .12.(6分)从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成个四位数.13.(6分)函数g=gg√3g−4的定义域.14.(6分)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.15.(6分)抛物线y2=2x的准线方程是.16.(6分)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= .三.解答题(共3小题,满分54分,每小题18分)17.(18分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C=√3cosC,其中C为锐角.(1)求角C的大小;(2)a=1,b=4,求边c的长.18.(18分)椭圆的中心为坐标原点,长、短轴长之比为3,一个焦点是(0,﹣2).2(1)求椭圆的离心率;(2)求椭圆的方程.19.(18分)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.20170417-体育单招模拟试卷一参考答案与试题解析一.选择题(共10小题,满分60分,每小题6分)1.(6分)(2013秋?福州校级期中)下列函数是奇函数的是()A.y=x﹣1 B.y=2x2﹣3 C.y=x3D.y=2x【解答】解:A、D两项图象既不关于y轴对称,也不关于原点对称,所以它们不是奇函数.B项图象关于y轴对称,所以它是偶函数.故选C.2.(6分)(2017?济南一模)在△ABC中,AC=√13,BC=1,B=60°,则△ABC的面积为()A.√3 B.2 C.2√3D.3【解答】解:∵AC=√13,BC=1,B=60°,∴由余弦定理可得:AC2=AB2+BC2﹣2ABBCsinB,即:13=AB2+1﹣AB,∴解得:AB=4或﹣3(舍去),∴S△ABC =12ABBCsinB=12×4×1×√32=√3.故选:A.3.(6分)(2016秋?道里区校级期末)若函数y=log3x的反函数为y=g(x),则g(12)的值是()A.3 B.ggg312 C.log32 D.√3【解答】解:由y=log3x可得 x=3y,故函数y=log3x的反函数为y=g(x)=3x,则g(12)=312=√3,故选D.4.(6分)(2017河西区模拟)函数y=sinxcosx,x∈R的最小正周期为()A.2 B.π C.2πD.1g【解答】解:函数y=sinx?cosx=12sin2x.周期T=2g|g|=2g2=g.故选B5.(6分)(2017?淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.15B.25C.35D.45【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=4g52=410=25,故选B.6.(6分)(2017?凉山州模拟)(g−1g)6的展开式中含x2的项的系数是()A.﹣20 B.20 C.﹣15 D.15【解答】解:(x ﹣1g )6展开式的通项为T r+1=(﹣1)r C 6r x 6﹣2r,令6﹣2r=2,解得r=2故展开式中含x 2的项的系数是C 62=15,故选:D7.(6分)(2017?抚州模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β【解答】解:A .若a ∥α,b ∥α,则a ∥b ,或a ,b 异面或a ,b 相交,故A 错;B .若a ∥α,a ∥β,则α∥β,或α∩β=b ,故B 错;C .若a ∥b ,a ⊥α,则b ⊥α,故C 正确;D .若a ∥α,α⊥β,则a β或a ∥β或a ⊥β,故D 错.故选:C .8.(6分)(2017?河西区模拟)已知双曲线g 2g 2−g 2=1的焦点为(2,0),则此双曲线的渐近线方程是( )A .y=±√5xB .y=±√55g C .y=±√33g D .y=±√3x【解答】解:依题意可知√g2+1=2∴a=±√3∴双曲线的渐近线方程为y=±1g x=±√33x故选C9.(6分)(2017?怀柔区模拟)圆x2+y2﹣4x+6y=0的圆心坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:将圆x2+y2﹣4x+6y=0化成标准方程,得(x﹣2)2+(y+3)2=13∴圆表示以C(2,﹣3)为圆心,半径r=√13的圆故选:D.10.(6分)(2016?长沙模拟)不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2} B.{x|﹣1<x<2} C.{x|x≥2或x≤﹣1} D.{x|x>2或x<﹣1}【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2016?眉山模拟)在等差数列{an }中,a2=10,a4=18,则此等差数列的公差d= 4 .【解答】解:∵在等差数列{an }中a2=10,a4=18,∴公差d=g4−g24−2=18−102=4故答案为:412.(6分)从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成216 个四位数.【解答】解:从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字,再把这四个数字任意排,故有C32C32A44=216个,故答案为:21613.(6分)(2010秋?湖南校级期末)函数g=gg√3g−4的定义域(43,+∞).【解答】解:要使得 3x﹣4>0,等价于3x>4解得x>43,所以,函数f(x)的定义域为(43,+∞)故答案为(43,+∞).14.(6分)(2017?黄浦区一模)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18 .【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3√2,√2所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18..15.(6分)(2017?丰台区一模)抛物线y2=2x的准线方程是g=−12【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣12故答案为:﹣1216.(6分)(2017?南通一模)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= {1,3,5} .【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2016?浙江学业考试)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C=√3cosC,其中C为锐角.(1)求角C的大小;(2)a=1,b=4,求边c的长.【解答】解:(1)在△ABC中,由sin2C=√3cosC,可得:2sinCcosC=√3cosC,因为C为锐角,所以cosC≠0,可得sinC=√32,可得角C的大小为g3.(2)由a=1,b=4,根据余弦定理可得:c2=a2+b2﹣2abcos g3=13,可得边c的长为√13.18.(18分)(2017春?济南月考)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2).(1)求椭圆的离心率;(2)求椭圆的方程.【解答】解:(1)由题意a=32b,c=2,∴√94g2−g2=2,∴b2=165,∴a=√5,∴椭圆的离心率e=gg =√5 3;(2)椭圆的方程g 236 5+g2165=1.19.(18分)(2017春?东湖区校级月考)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.【解答】(Ⅰ)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC的中点,∵M、N为侧棱PC上的三等分点,∴CM=MN,∴OM∥AN,∵OM平面MBD,AN平面MBD,∴AN∥平面MBD;(Ⅱ)解:∵四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.∴g g−ggg=g g−ggg=g g−ggg=13g△ggg×13gg=13×9×1=3.。
体育单招数学模拟试卷含答案
体育单招数学模拟试卷含答案第一部分选择题1. 甲乙两人比赛,甲比乙多跳了5次,比赛中甲跳了30次,求乙跳了几次?A. 25次B. 26次C. 27次D. 28次答案:D2. 一支长为12m的绳子,悬在离地3m的位置,绳子悬成环状,最短的梯子为多长?A. 12mB. 13mC. 14mD. 15m答案:B3. 若a:b=5:6,c:b=8:5,则a:b:c=多少?A. 20:24:30B. 15:18:20C. 40:48:60D. 25:30:40答案:D4. 在一个圆形运动场外侧建一条长375米的跑道,宽6米,跑道的面积为()A. 2250(平方米)B. 2565(平方米)C. 2676(平方米)D. 2826(平方米)答案:C5. 某购销店有2种不同的足球,甲款全皮的售价为每个40元,乙款半皮半人造革的售价为每个35元,现在这家店决定让买10个甲款球的客户赠送1个乙款,如果想花最少的钱买到10个甲球和1个乙球,一共需付多少元?A. 385元B. 400元C. 420元D. 440元答案:B第二部分填空题1. 一只乒乓球在10秒钟内弹起89次,平均每秒钟弹起次数为__9__次。
2. 甲、乙两人买一个篮球,篮球的实际价格为370元。
当甲乙两人分别少付了10元、15元之后,两人给钱总共为__350__元和__355__元。
3. 若120个篮球排成8行,每行有__15__个篮球。
4. 一个锻炼体育的人在一条长300米的环道上慢跑,他先在环道的起点处向顺时针方向跑1圈3公里,再顺时针方向跑回起点,经过的路程为__3__00米。
5. 若a:b=3:4,b:c=4:5,则a:b:c=3:4:5,并且a:b:c的和为__12__。
第三部分解答题1. 如图,相邻的两个红圆的直径和一满圆的直径相等,则所示实心图形的面积为多少?(注:红圆无需画出实际大小)解:通过观察图中可知,红圆的直径长为2.5个单元(连同中间分割线);因此,实体图形的宽度为5个单元,高度为3.5个单元。
2018-2019年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷
2018-2019年全国普通⾼等学校运动训练、民族传统体育专业单招考试数学试卷2018-2019年全国普通⾼等学校运动训练、民族传统体育专业单招考试数学试卷第I 卷(选择题共40分)⼀、选择题:本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题列出的四个选项中,选出符合题⽬要求的⼀项.1. 已知全集为实数集R ,集合22{|30},{|log 0}A x x x B x x =-<=>, 则()A B =R e(A )(,0](1,)-∞+∞(B )(0,1] (C )[3,)+∞(D )?【答案】C【解析】本题考查集合的运算.集合2{|30}{|(3)0}{|03}A x x x x x x x x =-<=-<=<<, 集合222{|log 0}{|log log 1}{|1}B x x x x x x =>=>=>. 所以{|0A x x =≤R e或3}x ≥,所以(){|3}A B x x =≥R e,故选C .2. 在复平⾯内,复数i1iz =+所对应的点位于(A )第⼀象限(B )第⼆象限(C )第三象限(D )第四象限【答案】A【解析】本题考查复数的运算与坐标表⽰.i i(1i)1i1i (1i)(1i)2z -+===++-,在复平⾯内对应的点为11(,)22,在第⼀象限,故选A .3. 已知平⾯向量(,1),(2,1)x x ==-a b ,且//a b ,则实数x 的值是(A )1-(B )1(C )2(D )1-或2【答案】D【解析】本题考查平⾯向量的平⾏的坐标运算.由(,1),(2,1)x x ==-a b ,且//a b ,可以得到(1)2x x -=,x x x --=-+=,所以1x =-或2x =,故选D .4. 已知直线m ⊥平⾯α,则“直线n m ⊥”是“//n α”的(A )充分但不必要条件(B )必要但不充分条件(C )充要条件(D )既不充分⼜不必要条件【答案】B【解析】本题考查线⾯位置关系的判定、性质与充分必要条件.(充分性)当m α⊥且n m ⊥时,我们可以得到//n α或n α?(因为直线n 与平⾯α的位置关系不确定),所以充分性不成⽴;(必要性)当//n α时,过直线n 可做平⾯β与平⾯α交于直线a ,则有//n a .⼜有m α⊥,则有m a ⊥,即m n ⊥.所以必要性成⽴,故选B .5. 已知F 为抛物线2:4C y x =的焦点,过点F 的直线l 交抛物线C 于,A B 两点,若||8AB =,则线段AB 的中点M 到直线10x +=的距离为(A )2(B )4(C )8(D )16【答案】B【解析】本题考查抛物线的定义.如图,抛物线24y x =的焦点为(1,0)F ,准线为1x =-,即10x +=. 分别过,A B 作准线的垂线,垂⾜为,C D , 则有||||||||||8AB AF BF AC BD =+=+=. 过AB 的中点M 作准线的垂线,垂⾜为N , 则MN 为直⾓梯形ABDC 中位线,则1||(||||)42MN AC BD =+=,即M 到准线1x =-的距离为4.故选B .6. 某四棱锥的三视图如图所⽰,则该四棱锥的体积等于(A )13 (B )12(D )34【答案】A【解析】本题考查三视图还原和锥体体积的计算抠点法:在长⽅体1111ABCD A B C D -中抠点, 1.由正视图可知:11C D 上没有点; 2.由侧视图可知:11B C 上没有点; 3.由俯视图可知:1CC 上没有点;4.由正(俯)视图可知:,D E 处有点,由虚线可知,B F 处有点,A 点排除. 由上述可还原出四棱锥1A BEDF -,如右图所⽰,111BEDF S =?=四边形,1111133A BEDF V -=??=. 故选A .7. 函数2πsin 12()12xf x x x=-+的零点个数为(A )0(B )1(C )2(D )4【答案】C【解析】本题考查函数零点.2πsin 12(),12x f x x x=-+定义域为(,0)(0,)-∞+∞,。
体育单招试卷数学模拟试卷一
体育单招试卷数学模拟试卷一体育单招模拟试卷一一.选择题(共10小题,满分60分,每小题6分)1.(6分)下列函数是奇函数的是()A.y=x﹣1 B.y=2x2﹣3 C.y=x3D.y=2x2.(6分)在△ABC中,AC=√13,BC=1,B=60°,则△ABC的面积为()A.√3B.2 C.2√3D.33.(6分)若函数y=log3x的反函数为y=g(x),则g(12)的值是()A.3 B.log312C.log32 D.√34.(6分)函数y=sinx•cosx,x∈R的最小正周期为()A.2 B.πC.2πD.1π5.(6分)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.15B.25C.35D.456.(6分)(x−1x)6的展开式中含x2的项的系数是()A.﹣20 B.20 C.﹣15 D.15 7.(6分)设a,b是两条不同的直线,α,β是两个不同的平面,则()A.若a∥α,b∥α,则a∥b B.若a∥α,a ∥β,则α∥βC.若a∥b,a⊥α,则b⊥α D.若a∥α,α⊥β,则α⊥β8.(6分)已知双曲线x2a2−y2=1的焦点为(2,0),则此双曲线的渐近线方程是()A.y=±√B.y=±√55x C.y=±√33xD.y=±√x9.(6分)圆x2+y2﹣4x+6y=0的圆心坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)10.(6分)不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2} B.{x|﹣1<x<2} C.{x|x≥2或x≤﹣1} D.{x|x>2或x<﹣1}二.填空题(共6小题,满分36分,每小题6分)长之比为3,一个焦点是(0,﹣2).2(1)求椭圆的离心率;(2)求椭圆的方程.19.(18分)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.20170417-体育单招模拟试卷一参考答案与试题解析一.选择题(共10小题,满分60分,每小题6分)1.(6分)(2013秋•福州校级期中)下列函数是奇函数的是()A.y=x﹣1 B.y=2x2﹣3 C.y=x3D.y=2x【解答】解:A、D两项图象既不关于y轴对称,也不关于原点对称,所以它们不是奇函数.B项图象关于y轴对称,所以它是偶函数.故选C.2.(6分)(2017•济南一模)在△ABC中,AC=√13,BC=1,B=60°,则△ABC的面积为()A.√3B.2 C.2√3D.3【解答】解:∵AC=√13,BC=1,B=60°,∴由余弦定理可得:AC2=AB2+BC2﹣2AB•BC•sinB,即:13=AB2+1﹣AB,∴解得:AB=4或﹣3(舍去),∴S△ABC =12AB•BC•sinB=12×4×1×√32=√3.故选:A.3.(6分)(2016秋•道里区校级期末)若函数y=log3x的反函数为y=g(x),则g(12)的值是()A.3 B.log312C.log32 D.√3【解答】解:由y=log3x可得 x=3y,故函数y=log3x的反函数为y=g(x)=3x,则g(12)=312=√3,故选D.4.(6分)(2017•河西区模拟)函数y=sinx•cosx,x∈R的最小正周期为()A.2 B.πC.2πD.1π【解答】解:函数y=sinx•cosx=12sin2x.周期T=2π|ω|=2π2=π.故选B5.(6分)(2017•淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.15B.25C.35D.45【解答】解:由题意知本题是一个古典概型, ∵从五个数中随机抽取2个不同的数有C 52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=4C 52=410=25,故选B .6.(6分)(2017•凉山州模拟)(x −1x)6的展开式中含x 2的项的系数是( ) A .﹣20 B .20 C .﹣15 D .15【解答】解:(x ﹣1x )6展开式的通项为T r+1=(﹣1)rC 6r x6﹣2r,令6﹣2r=2, 解得r=2故展开式中含x 2的项的系数是C 62=15, 故选:D7.(6分)(2017•抚州模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则( ) A .若a ∥α,b ∥α,则a ∥b B .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β【解答】解:A .若a ∥α,b ∥α,则a ∥b ,或a ,b 异面或a ,b 相交,故A 错;B .若a ∥α,a ∥β,则α∥β,或α∩β=b,故B 错;C .若a ∥b ,a ⊥α,则b ⊥α,故C 正确;D .若a ∥α,α⊥β,则a ⊂β或a ∥β或a ⊥β,故D 错. 故选:C .8.(6分)(2017•河西区模拟)已知双曲线x 2a −y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( )A .y=±√B .y=±√55x C .y=±√33x D .y=±√3x【解答】解:依题意可知√a 2+1=2∴a=±√3∴双曲线的渐近线方程为y=±1a x=±√33x故选C9.(6分)(2017•怀柔区模拟)圆x 2+y 2﹣4x+6y=0的圆心坐标是( )A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:将圆x2+y2﹣4x+6y=0化成标准方程,得(x﹣2)2+(y+3)2=13∴圆表示以C(2,﹣3)为圆心,半径r=√13的圆故选:D.10.(6分)(2016•长沙模拟)不等式(x+1)(x ﹣2)≤0的解集为()A.{x|﹣1≤x≤2} B.{x|﹣1<x<2} C.{x|x ≥2或x≤﹣1} D.{x|x>2或x<﹣1}【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2016•眉山模拟)在等差数列{an}中,a2=10,a4=18,则此等差数列的公差d= 4 .【解答】解:∵在等差数列{an }中a2=10,a4=18,∴公差d=a4−a24−2=18−102=4故答案为:412.(6分)从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成216 个四位数.【解答】解:从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字,再把这四个数字任意排,故有C32C32A44=216个,故答案为:21613.(6分)(2010秋•湖南校级期末)函数y= lg√3x−4的定义域(4,+∞).【解答】解:要使得 3x﹣4>0,等价于3x>4解得x>43,所以,函数f(x)的定义域为(43,+∞)故答案为(43,+∞).14.(6分)(2017•黄浦区一模)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x ﹣2)2+(y+1)2=18 .【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3√2,√2所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18.15.(6分)(2017•丰台区一模)抛物线y2=2x的准线方程是x=−1.2【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣12故答案为:﹣1216.(6分)(2017•南通一模)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= {1,3,5} .【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2016•浙江学业考试)在△ABC中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.【解答】解:(1)在△ABC 中,由sin2C=√3cosC ,可得:2sinCcosC=√3cosC ,因为C 为锐角,所以cosC ≠0,可得sinC=√32,可得角C 的大小为π3. (2)由a=1,b=4,根据余弦定理可得:c 2=a 2+b 2﹣2abcos π3=13, 可得边c 的长为√13.18.(18分)(2017春•济南月考)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2).(1)求椭圆的离心率;(2)求椭圆的方程.【解答】解:(1)由题意a=32b ,c=2, ∴√94b 2−b 2=2,∴b 2=165,∴a=√5, ∴椭圆的离心率e=c a =√53;(2)椭圆的方程y2365+x2165=1.19.(18分)(2017春•东湖区校级月考)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC 上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.【解答】(Ⅰ)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC的中点,∵M、N为侧棱PC上的三等分点,∴CM=MN,∴OM∥AN,∵OM⊂平面MBD,AN⊄平面MBD,∴AN∥平面MBD;(Ⅱ)解:∵四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.∴V N−MBD=V A−MBD=V M−ABD=13S△ABD×1 3PA=13×9×1=3.。
(完整word版)2018年体育单招数学模拟试题(一)及答案
( )(C ) 8(D ) 52018年体育单招考试数学试题(1)、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有 一项是符合题目要求的。
{1,4}2、 下列计算正确的是 ( )2A 、Iog 2 6 log 2 3 log 2 3B > log 2 6 log 2 3 1C > log 3 9 3D 、log 3 4 2log 3 4 3、 求过点(3,2)与已知直线X y 20垂直的直线L 2 =()A: 2x-y-3=0 B: x+y-仁0 C: x-y-1=0 D: x+2y+4=0r r To14、 设向量 a (1,cos )与 b ( 1,2cos )垂直,则 cos2 等于()A. B . - C . 02 2D. -15、不等式红」1的解集为()x 3A 、x<-3 或 x>4B 、{x| x<-3 或 x>4}C 、{x| -3< x<4}6、满足函数y sinx 和y cosx 都是增函数的区间是( )1、设集合 A {1,2,3,}, B {2,3,4},则 A B ()A {1,2,3,4} B{1,2,3} C 、{2,3,4} D 、1 D 、{x| -3< x<- }2A. [2k ,2k] , k Z 2 C. [2k,2k-], k Z 227. 设函数f(x) 1门乂,则(x 1A. x —为f (x)的极大值点2C. x=2为f (x)的极大值点B . [2k,2k ] , k Z2 D. [2k ,2k ] kZ2)1B. x —为f (x)的极小值点2D . x=2为f (x)的极小值点 8. 已知锐角厶ABC 的内角A 、B C 的对边分别为a,b,c ,23cos 2A COS 2A 0,a7,C 6,则 b10. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士, 不同的分配方法共有( )种A 90B 、180C 、270 ..D 、540二、 填空题:本大题共6小题,每小题6分,共36分。
体育单招试卷数学模拟试卷一
体育单招模拟试卷一一.选择题(共10小题,满分60分,每小题6分)1.(6分)下列函数是奇函数的是( )A .y=x ﹣1B .y=2x 2﹣3C .y=x 3D .y=2x2.(6分)在△ABC 中,AC=√13,BC=1,B=60°,则△ABC 的面积为( )A .√3B .2C .2√3D .3 3.(6分)若函数y=log 3x 的反函数为y=g (x ),则g(12)的值是( )A .3B .log 312C .log 32D .√34.(6分)函数y=sinx•cosx ,x ∈R 的最小正周期为( )A .2B .πC .2πD .1π 5.(6分)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是( )A .15B .25C .35D .45 6.(6分)(x −1x )6的展开式中含x 2的项的系数是( )A .﹣20B .20C .﹣15D .157.(6分)设a ,b 是两条不同的直线,α,β是两个不同的平面,则( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β 8.(6分)已知双曲线x 2a 2−y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( ) A .y=±√5x B .y=±√55x C .y=±√33x D .y=±√3x9.(6分)圆x 2+y 2﹣4x +6y=0的圆心坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)10.(6分)不等式(x +1)(x ﹣2)≤0的解集为( )A .{x |﹣1≤x ≤2}B .{x |﹣1<x <2}C .{x |x ≥2或x ≤﹣1}D .{x |x >2或x <﹣1}二.填空题(共6小题,满分36分,每小题6分)11.(6分)在等差数列{a n }中,a 2=10,a 4=18,则此等差数列的公差d= . 12.(6分)从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成 个四位数.13.(6分)函数y =lg √3x −4的定义域 .14.(6分)以点(2,﹣1)为圆心,且与直线x +y=7相切的圆的方程是 .15.(6分)抛物线y 2=2x 的准线方程是 .16.(6分)设集合A={1,3},B={a +2,5},A ∩B={3},则A ∪B= .三.解答题(共3小题,满分54分,每小题18分)17.(18分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.18.(18分)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2). (1)求椭圆的离心率;(2)求椭圆的方程.19.(18分)如图四棱锥P ﹣ABCD ,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,其中BC=2AB=2PA=6,M 、N 为侧棱PC 上的三等分点.(Ⅰ)证明:AN ∥平面MBD ;(Ⅱ)求三棱锥N ﹣MBD 的体积.【解答】解:函数y=sinx•cosx=12sin2x . 周期T=2π|ω|=2π2=π.故选B5.(6分)(2017•淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是( )A .15B .25C .35D .45【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C 52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=4C 52=410=25,故选B .6.(6分)(2017•凉山州模拟)(x −1x )6的展开式中含x 2的项的系数是( )A .﹣20B .20C .﹣15D .15【解答】解:(x ﹣1x )6展开式的通项为T r +1=(﹣1)r C 6r x 6﹣2r ,令6﹣2r=2,解得r=2故展开式中含x 2的项的系数是C 62=15,故选:D7.(6分)(2017•抚州模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则() A .若a ∥α,b ∥α,则a ∥b B .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β【解答】解:A .若a ∥α,b ∥α,则a ∥b ,或a ,b 异面或a ,b 相交,故A 错;B .若a ∥α,a ∥β,则α∥β,或α∩β=b ,故B 错;C .若a ∥b ,a ⊥α,则b ⊥α,故C 正确;D .若a ∥α,α⊥β,则a ⊂β或a ∥β或a ⊥β,故D 错.8.(6分)(2017•河西区模拟)已知双曲线x 2a −y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( )A .y=±√5xB .y=±√55xC .y=±√33xD .y=±√3x【解答】解:依题意可知√a 2+1=2∴a=±√3∴双曲线的渐近线方程为y=±1a x=±√33x 故选C9.(6分)(2017•怀柔区模拟)圆x 2+y 2﹣4x +6y=0的圆心坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)【解答】解:将圆x 2+y 2﹣4x +6y=0化成标准方程,得(x ﹣2)2+(y +3)2=13∴圆表示以C (2,﹣3)为圆心,半径r=√13的圆故选:D .10.(6分)(2016•长沙模拟)不等式(x +1)(x ﹣2)≤0的解集为( )A .{x |﹣1≤x ≤2}B .{x |﹣1<x <2}C .{x |x ≥2或x ≤﹣1}D .{x |x >2或x <﹣1}【解答】解:不等式(x +1)(x ﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x |﹣1≤x ≤2}.故选:A .二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2016•眉山模拟)在等差数列{a n }中,a 2=10,a 4=18,则此等差数列的公差d= 4 .【解答】解:∵在等差数列{a n }中a 2=10,a 4=18,∴公差d=a 4−a 24−2=18−102=412.(6分)从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成 216 个四位数.【解答】解:从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字,再把这四个数字任意排,故有C 32C 32A 44=216个,故答案为:21613.(6分)(2010秋•湖南校级期末)函数y =lg √3x −4的定义域 (43,+∞) .【解答】解:要使得 3x ﹣4>0,等价于3x >4解得x >43, 所以,函数f (x )的定义域为(43,+∞)故答案为(43,+∞).14.(6分)(2017•黄浦区一模)以点(2,﹣1)为圆心,且与直线x +y=7相切的圆的方程是 (x ﹣2)2+(y +1)2=18 .【解答】解:将直线x +y=7化为x +y ﹣7=0,圆的半径r=√2=3√2,所以圆的方程为(x ﹣2)2+(y +1)2=18.故答案为(x ﹣2)2+(y +1)2=18.15.(6分)(2017•丰台区一模)抛物线y 2=2x 的准线方程是 x =−12 .【解答】解:抛物线y 2=2x ,∴p=1, ∴准线方程是x=﹣12 故答案为:﹣1216.(6分)(2017•南通一模)设集合A={1,3},B={a +2,5},A ∩B={3},则A ∪B= {1,3,5} .【解答】解:集合A={1,3},B={a +2,5},A ∩B={3},可得a +2=3,解得a=1,即B={3,5},则A ∪B={1,3,5}.故答案为:{1,3,5}.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2016•浙江学业考试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.【解答】解:(1)在△ABC 中,由sin2C=√3cosC ,可得:2sinCcosC=√3cosC ,因为C 为锐角,所以cosC ≠0,可得sinC=√32,可得角C 的大小为π3. (2)由a=1,b=4,根据余弦定理可得:c 2=a 2+b 2﹣2abcos π3=13, 可得边c 的长为√13.18.(18分)(2017春•济南月考)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2).(1)求椭圆的离心率;(2)求椭圆的方程.【解答】解:(1)由题意a=32b ,c=2, ∴√94b 2−b 2=2,∴b 2=165,∴a=√5, ∴椭圆的离心率e=c a =√53;(2)椭圆的方程y 2365+x 2165=1.19.(18分)(2017春•东湖区校级月考)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.【解答】(Ⅰ)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC的中点,∵M、N为侧棱PC上的三等分点,∴CM=MN,∴OM∥AN,∵OM⊂平面MBD,AN⊄平面MBD,∴AN∥平面MBD;(Ⅱ)解:∵四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.∴V N−MBD=V A−MBD=V M−ABD=13S△ABD×13PA=13×9×1=3.。
2018年全国普通高等学校运动训练、民族传统体育专业 单招统一招生考试 数学(真题)
2018年全国普通高等学校运动训练、民族传统体育专业 单招统一招生考试一、选择题:(本大题共10小题,每小题6分,共60分) (1)设集合{2,4,6,8}N 4}{1,2,3==,,M ,则N M =( ) A .φ B .}3,1{ C .}4,2{ D .}8,6,4,3,2,1{数的周期函数,且为偶函最小正周期为数的周期函数,且为偶函最小正周期为数的周期函数,且为奇函最小正周期为数的周期函数,且为奇函最小正周期为)是()函数(42422sin)(2D C B A xx f π=(3)下列函数中是增函数的是( ) A.x e y --= B.x e y -= C.x e y -= D.x e y =46332633215cos 15sin 4DCBA)()(=︒+︒︒︒︒︒⊥+=1501206030)(33,15D C B A ba b b a b a 的夹角为与,则)满足(),单位向量,()已知平面向量( (6)已知a >b,甲:c >d ;乙:a+c >b+d ,则甲是乙的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件3203203203221023722=-+=--=++=+--=+-+y x D y x C y x B y x A l y y x l 的方程为(),则的圆心,斜率为过圆)已知直线( 4523249]1,1[1)(82DC B A m M x x x f m M )(的最大值和最小值,则在区间分别是函数与)设(=----=))(())(())(())(()其中正确的命题是(,则)若;(∥,则∥)若(,则)若;(∥,则∥)若(有下面四个命题:为两个平面,为两条直线,,)设(434231212321,9D C B A m m n m n n m n m n m βαββαβαααβα⊥⊥⊥⊥⊂(10)的解集为不等式21≤-xx ( )A.),2[1+∞∞- ),(B.),1]32+∞-∞-(,(C.]2,1( D.)1,32[二、填空题(本大题共6小题,每小题6分,共36分)(11)在6名男运动员和5名女运动员种选男、女运动员各3名组成一个代表队,则不同的组队方案共有( )种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年体育单招考试数学试题(1)一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合}4,3,2{},,3,2,1{==B A ,则=⋃B A ( )A 、}4,3,2,1{ B 、}3,2,1{ C 、}4,3,2{ D 、}4,1{2、下列计算正确的是 ( )A 、222log 6log 3log 3-=B 、22log 6log 31-=C 、3log 93=D 、()()233log 42log 4-=- 3、求过点(3,2)与已知直线20x y +-=垂直的直线2L =( )A: 2x-y-3=0 B: x+y-1=0 C: x-y-1=0 D: x+2y+4=04.设向量(1,cos )θ=a 与(1,2cos )θ=-b 垂直,则cos2θ等于( )A. 2B .12C .0D .-1 5、不等式2113x x ->+的解集为( ) A 、x <-3或x >4 B 、{x | x <-3或x >4} C 、{x | -3<x <4}D 、{x | -3<x <21} 6、满足函数x y sin =和x y cos =都是增函数的区间是()A .]22,2[πππ+k k , Z k ∈ B .]2,22[ππππ++k k , Z k ∈C .]22,2[ππππ--k k , Z k ∈D .]2,22[πππk k - Z k ∈ 7.设函数2()ln =+f x x x,则( ) A. 12=x 为()f x 的极大值点 B .12=x 为()f x 的极小值点 C .x =2为()f x 的极大值点 D .x =2为()f x 的极小值点8.已知锐角△ABC 的内角A 、B 、C 的对边分别为c b a ,,,,7,02cos cos 232==+a A A 6=c ,则=b ( )(A )10 (B )9 (C )8 (D )59、已知{}n a 为等差数列,且74321,0a a a -=-=,则公差d = ( )A 、-2B 、12-C 、12D 、210、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )种A 、90B 、180C 、270 ..D 、540二、填空题:本大题共6小题,每小题6分,共36分。
11.已知,lg ,24a x a ==则x =________.12、2nx x ⎛⎫+ ⎪⎝⎭ 展开式的第5项为常数,则n = 。
13.圆锥的轴截面是等腰直角三角形,侧面积是162π,则圆锥的体积是 14.半径为R 的半圆卷成一个圆锥,则它的体积为________________. 15.在△ABC 中,若8,3,7===c b a ,则其面积等于 . 16. 抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 。
三、解答题:本大题共3小题,共54分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分18分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.18、已知圆的圆心为双曲线221412x y -=的右焦点,并且此圆过原点 求:(1)求该圆的方程 (2)求直线3y x =被截得的弦长19.如图,在△ABC 中,∠ABC=60,∠BAC 90=,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC 90=.(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求AE 与DB 夹角的余过椭圆的焦点作直线交椭圆于、两点,是椭圆另一焦x y F A B F 221236251+=弦值2018年体育单招数学模拟试题(2)一、 选择题1, 下列各函数中,与x y =表示同一函数的是( )(A)xx y 2= (B)2x y = (C)2)(x y = (D)33x y =2,抛物线241x y -=的焦点坐标是( ) (A) ()1,0- (B)()1,0 (C)()0,1 ( D)()0,1-3,设函数216x y -=的定义域为A,关于X的不等式a x<+12log 2的解集为B,且A B A = ,则a 的取值范围是( )(A)()3,∞- (B)(]3,0 (C)()+∞,5 (D)[)+∞,54,已知x x ,1312sin =是第二象限角,则=x tan ( ) (A)125 (B) 125- (C) 512 (D)512-5,等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( )(A)240 (B)240± (C) 480 (D)480±6, tan330︒= ( )(A(B(C) (D)7,点,则△ABF 2的周长是 ( )(A ).12 (B ).24 (C ).22 (D ).108, 函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )(A )(,0)12π-(B )(,0)6π-(C )(,0)6π(D )(,0)3π二,填空题(本大题共4个小题,每小题5分,共20分) 9. 函数()ln 21y x =-的定义域是 . 10. 把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 11. 某公司生产A 、B 、C 三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,样本中A 种型号的轿车比B 种型号的轿车少8辆,那么n = .12. 已知函数1(0xy aa -=>且1)a ≠的图象恒过点A . 若点A 在直线 上, 则12m n+的最小值为 . 三,解答题13.12(1) 完成如下的频率分布表:(2)从得分在区间[)10,20内的运动员中随机抽取2人 , 求这2人得分之和大于25的概率.()100mx ny mn +-=>14. 已知函数.cos sin sin )(2x x x x f += (1) 求其最小正周期; (2) 当20π≤≤x 时,求其最值及相应的x 值。
(3) 试求不等式1)(≥x f 的解集15 如图2,在三棱锥P ABC -中,5,4,3AB BC AC ===,点D 是线段PB 的中点,平面PAC ⊥平面ABC .(1)在线段AB 上是否存在点E , 使得//DE 平面PAC ? 若存在,若不存在, 请说明理由; (2)求证:PA BC ⊥.体育单招数学模拟试题(一)参考答案一,选择题(本大题共14个小题,每小题5分,共70分。
)二,填空题(本大题共5个小题,每小题4分,共20分。
) 9. 1,2⎛⎫+∞⎪⎝⎭10. sin 23y x π⎛⎫=+ ⎪⎝⎭ 11. 72 12. 3+三,解答题(共五个大题,共40分)13本小题主要考查统计与概率等基础知识,考查数据处理能力.满分10分. (1) 解:频率分布表:………3分(2)解: 得分在区间[)10,20内的运动员的编号为2A ,3A ,4A ,8A ,11A .从中随机抽取2人,所有可能的抽取结果有:{}23,A A , {}24,A A ,{}28,A A ,{}211,A A ,{}34,A A ,{}38,A A ,{}311,A A ,{}48,A A ,{}411,A A ,{}811,A A ,共10种. ………6分“从得分在区间[)10,20内的运动员中随机抽取2人,这2人得分之和大于25”(记为事件B )的所有可能结果有:{}24,A A ,{}211,A A ,{}34,A A ,{}38,A A ,{}311,A A ,{}48,A A ,{}411,A A ,{}811,A A ,共8种. ………8分所以()80.810P B ==. 答: 从得分在区间[)10,20内的运动员中随机抽取2人, 这2人得分之和大于25的概率为0.8. ………10分14.(1)T=π;(2)0,0;83,221min max ===+=x y x y π;(3)[]Z k k k ∈++,,24ππππ15. 本小题主要考查直线与平面的位置关系的基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分10分.(1)解:在线段AB 上存在点E , 使得//DE 平面PAC , 点E 是线段AB 的中点. …1分 下面证明//DE 平面PAC :取线段AB 的中点E , 连接DE , (2)∵点D 是线段PB 的中点,∴DE 是△PAB 的中位线. ………3 ∴//DE PA . ………4 ∵PA ⊂平面PAC ,DE ⊄平面PAC ,∴//DE 平面PAC . ……… (2)证明:∵5,4,3AB BC AC ===,∴222AB BC AC =+. ∴AC BC ⊥. ………8分 ∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,BC ⊂平面ABC , ∴BC ⊥平面PAC . ………9分 ∵PA ⊂平面PAC ,∴PA BC ⊥. ………10分。