年体育单招数学试题与答案(可编辑修改word版)
体育对口单招数学卷(含答案) (7)
体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称()(A )62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 2.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k的值为()(A )-6(B )6(C )3(D )-33.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为()(A )0(B )-1(C )1(D )24、函数)32(log )(22-+=x x x f 的定义域是()A.[]1,3- B.()1,3-C.(][)+∞-∞-,13, D.()()+∞-∞-,13, 5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.b c a <<C.ca b << D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()GD31GD34GD32GD337.在ABC △中,若2AB BC CA === ,则AB BC ⋅等于()A.3- B.3C.-2D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A.2B.3C.322D.111、已知54cos ,0,2=⎪⎭⎫⎝⎛-∈x x π,则x tan =()A 、34B 、34-C 、43D 、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A 、76B 、28C 、7D 、12913、直线012=+-y x 的斜率是();A 、-1B 、0C 、1D 、214、点P(-3,-2)到直线4x-3y+1=0的距离等于()A 、-1B 、1C 、2D 、-215、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是()。
体育单招数学模拟试题(一)及答案
体育单招数学模拟试题(一)及答案一、选择题1,下列各函数中,与y某表示同一函数的是()某2(A)y(B)y某2(C)y(某)2(D)y某3某2,抛物线y12某的焦点坐标是()4(A)0,1(B)0,1(C)1,0(D)1,03,设函数y某2的定义域为A,关于X的不等式log22某1a的解集为B,且ABA,则a的取值范围是()(A),3(B)0,3(C)5,(D)5,12,某是第二象限角,则tan某()13125512(A)(B)(C)(D)1212554,已知in某5,等比数列an中,a1a2a330,a4a5a6120,则a7a8a9()(A)240(B)240(C)480(D)4806,tan330()(A(B(C)(D)某2y2过椭圆1的焦点F1作直线交椭圆于A、B两点,F2是椭圆另一焦点,则△ABF2的周长是7,3625()(A).12(B).24(C).22(D).108,函数yin2某图像的一个对称中心是()6(A)(12,0)(B)(6,0)(C)(,0)6(D)(,0)3二,填空题(本大题共4个小题,每小题5分,共20分)9.函数yln2某1的定义域是.个单位,得到的函数解析式为________________.611.某公司生产A、B、C三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,样本中A种型号的轿车比B种型号的轿车少8辆,那么10.把函数yin2某的图象向左平移n12.已知函数ya上,则1某(a0且a1)的图象恒过点A.若点A在直线m某ny10mn012的最小值为.mn三,解答题13.12(1)完成如下的频率分布表:(2)从得分在区间10,20内的运动员中随机抽取2人,求这2人得分之和大于25的概率.14.已知函数f(某)in2某in某co某.(1)求其最小正周期;(2)当0某2时,求其最值及相应的某值。
(3)试求不等式f(某)1的解集15如图2,在三棱锥PABC中,AB5,BC4,AC3,点D是线段PB的中点,平面PAC平面ABC.(1)在线段AB上是否存在点E,使得DE//平面PAC?若存在,指出点E的位置,并加以证明;若不存在,请说明理由;(2)求证:PABC.9.,10.yin2某11.7212.332三,解答题(共五个大题,共40分)13本小题主要考查统计与概率等基础知识,考查数据处理能力.满分10分.(1)解:频率分布表:3分A4,A8,A4,A11,A8,A11,共10种.6分“从得分在区间10,20内的运动员中随机抽取2人,这2人得分之和大于25”(记为事件B)的所有可能结果有:A2,A4,A2,A11,A3,A4,A3,A8,A3,A11,A4,A8,A4,A11,A8,A11,共8种.8分所以PB80.8.10答:从得分在区间10,20内的运动员中随机抽取2人,这2人得分之和大于25的概率为0.8.10分14.(1)T=;(2)yma某123(3)k,某;ymin0,某0;4,k2,kZ2815.本小题主要考查直线与平面的位置关系的基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分10分.(1)解:在线段AB上存在点E,使得DE//平面PAC,点E是线段AB 的中点.1分下面证明DE//平面PAC:取线段AB的中点E,连接DE,2∵点D是线段PB的中点,∴DE是△PAB的中位线.3∴DE//PA.4∵PA平面PAC,DE平面PAC,∴DE//平面PAC.(2)证明:∵AB5,BC4,AC3,∴ABBCAC.∴ACBC.8分∵平面PAC平面ABC,且平面PAC平面ABCAC,BC平面ABC,∴BC平面PAC.9分∵PA平面PAC,∴PABC.10分222。
体育对口单招数学试卷(答案) (6)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.在平等四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F。
若AC,,a BD b AF == 则=()A.1142a b +B.1233a b +C.1124a b +D.2133a b +2.设函数()f x 的零点为1x ,函数()422xg x x =+-的零点为2121,||4x x x ->若,则()f x 可以()A.1()22f x x =-B.21()4f x x x =-+-C.()110xf x =-D.()ln(82)f x x =-3.设集合{|||5},{|(7)(3)0}S x x T x x x =<=+-<,则S∩T=()A.{|75}x x -<<-B.{|35}x x <<C.{|53}x x -<<D.{|75}x x -<<4.下列函数中,与函数y =有相同定义域的是()A.()ln f x x =B.1()f x x=C.()||f x x =D.()xf x e =5、已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于()A.143B.2C.4D.86、某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是()A.60B.31C.30D.107、直线12y =+的倾斜角为()A、90°B、180°C、120°B、150°210y ++=与直线30x +=的位置关系是()A、两线平行B、两线垂直C、两线重合B、非垂直相交9.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是()(A))(cos )(cos B f A f >(B))(sin )(sin B f A f >(C))(cos )(sin B f A f >(D))(cos )(sin B f A f <10.下列命题中,正确的是()(A)||||||b a b a ⋅=⋅(B)若)(c b a -⊥,则c a b a ⋅=⋅(C)2a ≥||a (D)cb ac b a ⋅⋅=⋅⋅)()(11、设集合M={1,2,3,4,5},集合N={1,4,5},集合T={4,5,6},则N T M )(=()A、{2,4,5,6}B、{1,4,5}C、{1,2,3,4,5,6}D、{2,4,6}12、已知集合{|3A x x n ==+2,N n ∈,},{6,8,10,12,14}B =,则集合A B 中的元素个数为()A、5B、4C、3D、213、已知集合A {}12x x =-<<,{03}B x x =<<,则A B = ()A、(-1,3)B、(-1,0)C、(0,2)D、(2,3)14、已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)()3f x f -<的x 的取值范围是()A.1[0,)3B.12(,)33C.12[,23D.11(,3215、已知函数()sin()(0,0)f x A x A ωϕω=+>>的部分图像如图所示,则()y f x =的图像可由函数()sin g x x =的图像(纵坐标不变)()A.先把各点的横坐标缩短到原来的12倍,再向右平移6π个单位B.先把各点的横坐标伸长到原来的2倍,再向右平移12π个单位C.先向右平移12π个单位,再把各点的横坐标伸长到原来的2倍D.先向右平移6π个单位,再把各点的横坐标缩短到原来的12倍16、已知集{1,2,3},B {1,3}A ==,则A B = ()A、{3}B、{1,2}C、{1,3}D、{1,2,3}17、已知集合{}{}3,2,3,2,1==B A ,则()A、A=BB、=B A ∅C、B A ⊆D、AB ⊆18、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A、{0,-1}B、{1}C、{-2}D、{-1,1}19、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件20、设集合A={0,2,a},B={1,a2},若A∪B={0,1,2,5,25},则a 的值为()A、0B、1C、2D、5二、填空题:(共20分)1.若复数z 满足zi=l-i,则z=_______.2.圆x+y=5的一条经过点(1,-2)的切线方程为_______.3.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ⋅=+.写出满足上述条件的一个函数:=)(x f _____________;4.定义在区间)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,则=)(x f ______________;三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.如图PC⊥平面ABC,AC =BC =2,PC =,∠BCA=120°.(1)求二面角P‐AB‐C 的大小;(2)求锥体P‐ABC 的体积.2.计算下列各式的值:(1);(2).3、解:(1)由题知5,435===b a S 设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===.(1)求角C ;(2)求c 边的长度.参考答案:一、选择题1-5题答案:CCABB 6-10题答案:CCDCB 11-15题答案:BDADC 16-20题答案:CDBCD 二、填空题1.答案:-1-i2.答案:x-2y-5=03.x2(不唯一,一般的xa ,1>a 均可);4.)1lg(31)1lg(32x x -++;三、解答题1、参考答案.(1)60°;(2)12、参考答案.(1)(2)3、题:参考答案:C ab S sin 21=Csin 542135⨯⨯=∴23sin =∴C 又 C 是ABC ∆的内角3π=∴C 或32π=C(2)当3π=C 时,3cos 2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c 当32π=C 时,22222cos 3c a b ab π=+-215422516⨯⨯⨯++==6161=∴c。
体育单招测试题数学及答案
体育单招测试题数学及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数 f(x) = 2x - 1,求 f(3) 的值。
A. 5B. 4C. 3D. 23. 一个圆的半径是 5 厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 如果一个三角形的两边长分别是 3 和 4,且这两边夹角为 60 度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√35. 等差数列 3, 7, 11, ... 的第 10 项是多少?B. 41C. 47D. 516. 一个直角三角形的两条直角边分别为 6 厘米和 8 厘米,斜边的长度是多少?A. 10 厘米B. 12 厘米C. 14 厘米D. 16 厘米7. 已知集合 A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}8. 一个数的平方根是 2,这个数是多少?A. 4B. -4C. 8D. -89. 一个数的立方根是 2,这个数是多少?A. 2B. 4C. 8D. 1610. 已知等比数列 2, 6, 18, ... 的公比是 3,求第 5 项。
B. 108C. 162D. 324二、填空题(每题2分,共10分)11. 一个数的相反数是 -5,这个数是 _______。
12. 若 a + b = 10,且 a - b = 2,则a × b = _______。
13. 一个数的绝对值是 7,这个数可以是 _______ 或 _______。
14. 已知一个等差数列的首项是 5,公差是 3,求第 6 项。
15. 已知一个等比数列的首项是 2,公比是 2,求第 4 项。
三、解答题(每题10分,共20分)16. 求函数 y = x^2 - 4x + 4 的顶点坐标。
体育单招数学卷及答案
全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本大题共10小题,每小题5分,共50分。
1、已知集合}1|2||{<-=x x M ,}02|{2<-=x x x N ,则=N M( )A 、}20|{<<x xB 、}30|{<<x xC 、}21|{<<x xD 、}31|{<<x x 2、已知α是第四象限的角,且23)sin(-=-απ,则=+)cos(απ( )A 、21- B 、21 C 、22-D 、223、三个球的表面积之比为1:2:4,它们的体积依次为1V ,2V ,3V ,则( )A 、124V V =B 、1322V V =C 、234V V =D 、2322V V =4、已知点A (-2,0),C (2,0).ABC ∆的三个内角C B A ∠∠∠,,的对边分别为c b a ,,,且c b a ,,成等差数列,则点B 一定在一条曲线上,此曲线是 ( )A 、圆B 、椭圆C 、双曲线D 、抛物线5、数列}{n a 的通项公式为nn a n ++=11,如果}{n a 的前n 项和等于3,那么=n( )A 、8B 、9C 、15D 、166、一个两头密封的圆柱形水桶装了一些水,当水桶水平横放时,桶内的水浸了水桶横截面周长的41. 当水桶直立时,水的高度与桶的高度的比值是 ( )A 、41B 、4πC 、π141-D 、π2141-7、已知函数)1(-=x f y 是偶函数,则函数)2(x f y =图象的对称轴是 ( )A 、1=xB 、1-=xC 、21=x D 、21-=x 8、ABC ∆中A ∠,B ∠和C ∠的对边分别是a ,b 和c ,满足ba cA C 3233cos cos +-=,则C∠的大小为( )A 、3πB 、6π C 、32πD 、65π9、已知0>ω,)2,2(ππϕ-∈. 如果函数)sin(ϕω+=x y 的最小正周期是π,且其图象关于直线12π=x 对称,则取到函数最小值的自变量是 ( )A 、Z k k x ∈+-=,125ππ B 、Z k k x ∈+-=,65ππC 、Z k k x ∈+=,61ππD 、Z k k x ∈+=,121ππ10、某班分成8个小组,每小组5人. 现要从班中选出4人参加4项不同的比赛. 且要求每组至多选1人参加,则不同的选拔方法共有 ( )A 、444854A C (种)B 、154448C A C (种)C 、444845A C (种)D 、444405A C (种)二、填空题:本大题共10小题,每小题5分,共50分。
体育单招数学试题及答案
体育单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是整数?A. 0B. 1C. 3.5D. 2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B3. 已知x² - 5x + 6 = 0,求x的值。
A. 2B. 3C. 1, 2D. 2, 3答案:D4. 圆的半径为5,求圆的面积。
A. 25πC. 75πD. 100π答案:B5. 函数f(x) = 2x - 3,当x = 2时,f(x)的值为多少?A. -1B. 1C. 3D. 5答案:B6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8答案:A8. 已知一个数列的前三项为1, 4, 7,求第四项。
B. 11C. 12D. 13答案:B9. 一个长方体的长、宽、高分别为2, 3, 4,求其体积。
A. 24B. 36C. 48D. 52答案:A10. 一个正六边形的内角是多少度?A. 120°B. 135°C. 150°D. 180°答案:B二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身的数是______或______。
答案:正数;02. 一个数的相反数是其本身的数是______。
答案:03. 一个数的倒数是其本身的数是______。
答案:±14. 若a和b互为倒数,则ab=______。
答案:15. 一个数的平方等于9,这个数可以是______或______。
答案:3;-36. 一个数的立方等于-27,这个数是______。
答案:-37. 一个数的平方根是2,这个数是______。
体育单招数学真题3(可编辑修改word版)
222 =2012 年全国普通高等学校运动训练、民族传统体育专业一、选择题(6 分*10=60 分)单独统一招生考试数学1、已知集合M ={x x >1}, N ={x x2≤ 2}, 则M N =()A. {x 1 <x ≤ 2},B. {x -<x ≤1},C. {x x ≤ 2},D. {x x ≥- 2}.2、已知平面向量a = (1, 2), b= (2,1), 若(a +kb) ⊥b,则k =()A.-45B.-34C.-23D.-123、函数 y =x -的反函数是()A.y = x2-12x, (x < 0) B.x2-1y =2x, (x > 0)C. y = x2+12x, (x < 0) D.x2+1y =2x, (x > 0)4、已知tan2=3,则sin+2c os()2 2 s in+ cos2A. B. -5 5C. 5D. -55、已知(x +a)9的展开式中常数项是-8 ,则展开式中x3的系数是()A. 168B. -168C. 336D. -3366、下面是关于三个不同平面,,的四个命题p 1:⊥ ,⊥⇒∥p2:∥,∥⇒∥p 3:⊥ ,⊥⇒⊥p4:⊥ ,∥⇒⊥其中的真命题是()A. p1 , p2B. p3 , p4C. p1 , p3D. p2 , p427、直线x - 2 y +m = 0(m > 0) 交圆于A,B 两点,P 为圆心,若△PAB 的面积是,则m=5()A. B. 12 C. D. 2x2-1- = y 8、从 10 名教练员中选出主教练 1 人,分管教练 2 人,组成教练组,不同的选法有()A.120 种B. 240 种C.360 种D. 720 种 9、 等差数列{a n } 的前 n 项和为 s n .若 a 1 = 1, a k = 19, s k = 100,则k = ()A.8B. 9C. 10D.11 10、过抛物线的焦点 F 作斜率为 与 的直线,分别交抛物线的准线于点 A ,B.若△FAB 的面积是 5,则抛物线方程是( )A. y 2 = 1x2B. y 2 = xC. y 2 = 2xD. y 2 = 4x二、填空题(6 分*6=36 分)x - a 11、已知函数 f (x ) = ln x +1在区间(0,1) ,单调增加,则 a 的取值范围是.12、已知圆锥侧面积是底面积的 3 倍,高为 4cm ,则圆锥的体积是cm 313 > x -1 的解集是.14、某选拔测试包含三个不同项目,至少两个科目为优秀才能通过测试.设某学员三个科目优秀5 4 4的概率分别为 , , , 则该学员通过测试的概率是.6 6 615、已知{a n } 是等比数列, a 1 + a 2 + a 3 = 1, a 6 + a 7 + a 8 = 32,则a 1 + a 2 +... + a 9 = .x 2 16、已知双曲线 a 2 y 2b 21的一个焦点 F 与一条渐近线l ,过焦点 F 做渐近线l 的垂线,垂足 P⎛ 3 2 5 ⎫的坐标为4 , - 3 ⎪ ,则焦点的坐标是 .⎝ ⎭三、解答题(18 分*3=54 分)17、已知△ABC 是锐角三角形.证明: cos 2 A - sin 2B +C < 0218、设 F 是椭圆B 两点.x 2 + 2 2= 1的右焦点,半圆 x 2+ y 2 = 1(x ≥ 0) 在Q 点的切线与椭圆教育A ,(Ⅰ)证明: AF + AQ 为常数.(Ⅱ)设切线 AB 的斜率为 1,求△OAB 的面积(O 是坐标原点).x +119、如图,已知正方形ABCD—A1B1C1D1的棱长为1,M 是B1D1的中点.(Ⅰ)证明 BM AC;(Ⅱ)求异面直线BM 与CD1的夹角;(Ⅲ)求点B 到平面A B1M 的距离.CA。
(word完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率,
二项式定理、排列组合1. 〔2021 年第 6 题〕(1 x)3a 0 a 1 x a 2 x 2a 3 x 3 ,那么 a 0 a 1 a 2 a 3 〔〕A .7B .8C .9D .102. 〔 2021 年第 8 题〕把 4 个人平均分成 2 组,不同的分组方法共有〔〕A .5 种B .4 种C .3 种D.2 种3. 〔 2021 年第 14 题〕有 3 男 2 女,随机挑选 2 人参加活动,其中恰好为 1 男 1 女的概率为.4. 〔 2021 年第 5 题〕( xa) 9 的展开中常数项是 -8 ,那么展开式中 x 3 的系数是〔〕A .168B .-168C .336 D. -3365. 〔 2021 年第 8 题〕在 10 名教练员中选出主教练 1 人,分管教练 2 人,组成教练组,不同的选法共有〔〕A .120 种B . 240 种C . 360 种D .720 种6. 〔 2021 年第 14 题〕某选拔测试包含三个不同科目,至少两个科目为优秀才能通过测试,设某学员三个科目获优秀 的概率分别为 5 , 4, 4,那么该学员通过测试的概率是.6 667. 〔 2021 年第 10 题〕将 3 名教练员与 6 名运发动分为 3 组,每组 1 名教练员与 2 名运发动,不同的分法有〔 〕A .90 种B.180 种C .270 种D. 360 种8. 〔 2021 年第 11 题〕(2 x 21)6 的展开式中常数项是.x9. 〔 2021 年第 17 题〕甲、乙两名篮球运发动进行罚球比赛,设甲罚球命中率为0.6 ,乙罚球命中率为 0.5 ,( Ⅰ) 甲、乙各罚球 3 次,命中 1 次得 1 分,求甲、乙得分相等的概率;( Ⅱ) 命中 1 次得 1 分,假设不中那么停止罚球,且至多罚球3 次,求甲得分比乙多的概率;10. 〔2021 年第 10 题〕篮球运发动甲和乙的罚球命中率分别是 0.5 和 0.6 ,假设两人罚球是否命中相互无影响, 每人各次罚球是否命中也相互无影响, 假设甲、乙两人各连续 2 次罚球都至少有 1 次未命中的概率为 p ,那么〔〕A .B . p1C.0.55 p D.p11.〔2021 年第 11 题〕( x 2) 43( x 2)32( x2) a4 x4a3 x3a2 x2a1 x a0,那么 a0.12.〔2021 年第 15 题〕4 位运发动和 2 位教练员排成一排照相,假设要求教练员不相邻且都不站在两端,那么可能的排法共有种。
2022年单招考试 数学真题+解析答案
机密★启用前2022年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本题共8小题,每小题8分,共64分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.若集合{|14,}A x x x Z =-<<∈,{|21,}B x x x Z =-<<∈,则A B 的元素共有( )A .1个B .2个C .3个D .4个2.函数2()log f x =( ) A .(1,3)-B .[1,3]-C .(3,1)-D .[3,1]-3.下列函数中,为增函数的是( ) A .ln(1)y x =-+B .21y x =-C .2xe y =D .|1|y x =-4.函数3sin 4cos 1y x x =++的最小值是( ) A .7-B .6-C .5-D .4-5.已知O 为坐标原点,点(2,2)A ,M 满足2AM OM =,则点M 的轨迹方程为( ) A .22334480x y x y +++-= B .22334480x y x y +---= C .224440x y x y +++-=D .224440x y x y +---=6.从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方式共有( ) A .6种B .9种C .12种D .15种7.ABC ∆中,已知60A =︒,2AC =,BC AB =( ) A .4B .3C .2D .18.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则( ) A .1AB CC =B .AB BC =C .145CBC ∠=︒D .145BDB ∠=︒二、填空题:本题共4小题,每小题8分,共32分.请将各题的答案写入答题卡上的相应位置. 9.若221sin cos 3θθ-=-,则cos2θ= .10.不等式|1|2x ->的解集是 .11.若向量a ,b 满足||2a =,||3b =,且a 与b 的夹角为120︒,则a b = . 12.设α,β,γ是三个平面,有下面四个命题: ①若αβ⊥,βγ⊥,则αγ⊥; ②若//αβ,//βγ,则//αγ; ③若αβ⊥,//βγ,则αγ⊥; ④若//αβ,βγ⊥,则//αγ. 其中所有真命题的序号是 .三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.请将各题的答案写在答题卡上的相应位置. 13.(18分)某射击运动员各次射击成绩相互独立,已知该运动员一次射击成绩为10环的概率为0.8,9环的概率为0.1,小于9环的概率为0.1,该运动员共射击3次. (1)求该运动员恰有2次成绩为9环的概率; (2)求该运动员3次成绩总和不小于29环的概率.已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.已知函数3()x x bf xx++=,{}na是等差数列,且2(1)a f=,3(2)a f=,4(3)a f=.(1)求{}na的前n项和;(2)求()f x的极值.2022年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学参考答案与试题解析【选择题&填空题答案速查】一、选择题:本题共8小题,每小题8分,共64分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.若集合{|14,}A x x x Z =-<<∈,{|21,}B x x x Z =-<<∈,则A B 的元素共有( )A .1个B .2个C .3个D .4个【解析】集合{|14,}{0,1,2,3}A x x x Z =-<<∈=,{|21,}{1,0}B x x x Z =-<<∈=-,{0}A B ∴=,所以AB 的元素共有1个元素,故选:A .【评注】此题考查了交集及其运算,比较简单,是一道基本题型.2.函数2()log f x =( ) A .(1,3)-B .[1,3]-C .(3,1)-D .[3,1]-以函数的定义域为(1,3)-,故选:A .【评注】本题考查函数的定义域及其求法,考查了一元二次不等式的解法,是基础题. 3.下列函数中,为增函数的是( ) A .ln(1)y x =-+B .21y x =-C .2xe y =D .|1|y x =-【解析】对于A :在(1,)-+∞上单调递减;对于B :在(,0)-∞上单调递减,在(0,)+∞上单调递增; 对于C :在(,)-∞+∞上单调递增;对于D :在(,1)-∞上单调递减,在(1,)+∞上单调递增.故选:C . 【评注】本题考查的知识点是函数单调性的性质,熟练掌握指数函数,对数函数,幂函数,一次函数,绝对值函数和复合函数单调性,是解答的关键. 4.函数3sin 4cos 1y x x =++的最小值是( ) A .7-B .6-C .5-D .4-故函数的最小值5(1)14⨯-+=-,故选:D .【评注】本题考查了辅助角公式化简能力、正弦函数的图象和性质和转化思想求解最小值问题.属于基础题.5.已知O 为坐标原点,点(2,2)A ,M 满足2AM OM =,则点M 的轨迹方程为( ) A .22334480x y x y +++-= B .22334480x y x y +---= C .224440x y x y +++-=D .224440x y x y +---=【评注】本题考查用直译法(直接法)求轨迹方程的方法,利用点点距公式建立等量关系,是解题的关键. 6.从3名男队员和3名女队员中各挑选1名队员,则不同的挑选方式共有( ) A .6种B .9种C .12种D .15种【解析】男女各选1名队员的挑选方式为种11339C C =,故选:B . 【评注】本题考查排列组合知识点,运用分步计数原理,是解题的关键.7.ABC ∆中,已知60A =︒,2AC =,BC AB =( ) A .4B .3C .2D .1【解析】由题意可知,由余弦定理可得2222cos BC AC AB AC AB A =+-⋅⋅,即【评注】本题考查余弦定理的应用,熟练掌握余弦定理是基础,属于基础题. 8.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则( ) A .1AB CC = B .AB BC =C .145CBC ∠=︒D .145BDB ∠=︒【解析】如图所示,【评注】本题考查立体几何的空间位置关系,通过证明和定量计算求得答案,是中档题. 二、填空题:本题共4小题,每小题8分,共32分.请将各题的答案写入答题卡上的相应位置. 9.若221sin cos 3θθ-=-,则cos2θ= .【评注】本题考查了二倍角公式化简能力.属于基础题. 10.不等式|1|2x ->的解集是 .【解析】不等式|1|2x ->等价于|1|2x ->,解得1x <-或3x >,所以原不等式的解集为{|13}x x x <->或,故答案为:{|13}x x x <->或.或者填(,1)(3,)-∞-+∞ 【评注】考查了绝对值不等式的解法,是基础题.11.若向量a ,b 满足||2a =,||3b =,且a 与b 的夹角为120︒,则a b = .根据向量的数量积可得||||cos ,23a b a b a b =<>=⨯⨯【评注】本题考查了向量的数量积的定义式,是基础题. 12.设α,β,γ是三个平面,有下面四个命题: ①若αβ⊥,βγ⊥,则αγ⊥; ②若//αβ,//βγ,则//αγ; ③若αβ⊥,//βγ,则αγ⊥; ④若//αβ,βγ⊥,则//αγ. 其中所有真命题的序号是 .【解析】对于①:若αβ⊥,βγ⊥,则αγ⊥或//αγ,故①不正确;对于②:有面面平行的判定定理可知②正确;对于③正确;对于④:若//αβ,βγ⊥,则αγ⊥.故④不正确;综上②③正确,故答案为:②③. 【评注】本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.请将各题的答案写在答题卡上的相应位置. 13.(18分)某射击运动员各次射击成绩相互独立,已知该运动员一次射击成绩为10环的概率为0.8,9环的概率为0.1,小于9环的概率为0.1,该运动员共射击3次. (1)求该运动员恰有2次成绩为9环的概率; (2)求该运动员3次成绩总和不小于29环的概率.【解析】(1)该运动员恰有2次成绩为9环的概率为22130.10.90.027P C =⨯⨯=;(2)该运动员3次成绩总和不小于29环的概率为2233330.80.10.80.1920.5120.704P C C =⨯⨯+⨯=+=. 【评注】本题以实际问题为载体,考查概率知识的运用,考查独立重复试验的概率,正确分类是关键. 14.(18分)已知O 是坐标轴原点,双曲线222:1(0)x C y a a -=>与抛物线21:4D y x =交于两点A ,B 两点,AOB ∆的面积为4.(1)求C 的方程;(2)设1F ,2F 为C 的左,右焦点,点P 在D 上,求12PF PF ⋅的最小值.2300012442y y y =2,∴双曲线8)t ,则1(3PF =--,2(3PF =-∴212577(3)(34,864PF PF t t ⋅=----,又2[0,t ∈12min ()(9PF PF ⋅==-,即当时,12PF PF ⋅取得最小值,且最小值为【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出A ,B 两点的坐标,列出三角形的面积关系也是本题的解题关键,运算量并不算太大. 15.(18分)已知函数3()x x bf x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.233 ()()1 x x+ --n 性较强,属于中档题.。
2024全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷6含答案
全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷6一、选择题(本大题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2Z 230A x x x =∈+-≤,{|1}B x x =≥-,则集合A ∩B 的元素个数为()A.1B.2C.3D.42.下列函数中,在其定义域内既是奇函数又是减函数的是A.R x x y ∈-=,3B.R x x y ∈=,sin C.R x x y ∈=,D.R x x y ∈=,)21(3.不等式11x -≤的解集是()A.{}2x x ≤B.{}02x x ≤≤C.{}0x x ≥D.{}14.函数()()ln 11x f x x -=+的定义域是()A.(-1,1)B.()(),11,1-∞-⋃-C.(0,1)D.()()1,11,-⋃+∞5.已知向量()()2,4,2,a b m ==-,若a b + 与b的夹角为60°,则m =()A.33-B.33C.233-D.2336.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则()A .a n =2n ﹣5B .a n =3n ﹣10C .S n =2n 2﹣8n D .S n =21n 2﹣2n7.若π3sin 45α⎛⎫-= ⎪⎝⎭,则sin 2α=()A.725- B.2425- C.725D.24258.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为AC ,A 1B 的中点,则下列说法错误的是()A .MN ⊥CDB .直线MN 与平面ABCD 所成角为45°C .MN ∥平面ADD 1A 1D .异面直线MN 与DD 1所成角为60°二、填空题(本大题共4小题,每小题8分,共32分.)9.记S n 为等比数列{a n }的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则4a =______.10.已知圆C :22850x y x ay +++-=经过抛物线E :24x y =的焦点,则抛物线E 的准线与圆C 相交所得弦长是__________.11.某班级计划从甲,乙,丙,丁,戊五位同学中选择三人作为代表参加师生座谈会,每人被选中的机会均等,则甲和乙同时被选中的概率为___________.12.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为.三、解答题(本题共3小题,每小题18分,共54分)13.某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A B 、两个题目,该学生答对A B 、两题的概率分别为12和13,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为12,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)求该学生没有通过笔试的概率;(II)求该学生被公司聘用的概率.14.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin B +b cos A =c .(1)求B ;(2)设a =2c ,b =2,求c .15.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1,F 2为双曲线的左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状答案和解析1.C 【详解】∵{}{}{}2Z 230Z 313,2,1,0,1A x x x x x =∈+-≤=∈-≤≤=---,∴{}1,0,1A B =- ,即集合A ∩B 的元素个数为3.故选:C.2.A 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A.3.B 【详解】不等式11111x x -≤⇔-≤-≤,解得:02x ≤≤,所以不等式的解集是{}02x x ≤≤.故选:B4.B 【详解】要使()()ln11x f x x -=+有意义,则101101x x x x -><⎧⎧⇒⎨⎨+≠≠-⎩⎩,所以函数()f x 的定义域是()(),11,1x ∈-∞-⋃-.故选:B5.D 【详解】由题意得(0,4)a b m +=+,故2()(4)1cos ,2|||||4|4a b ba b b a b b m m +⋅〈+〉==+⋅+⨯+,解得233m =±,其中233m =-不合题意,舍去,故233m =,故选:D6.A 解:设等差数列{a n }的公差为d ,由S 4=0,a 5=5,得,∴,∴a n =2n ﹣5,,故选:A .7.C 【详解】因为π3sin 45α⎛⎫-= ⎪⎝⎭,所以ππsin 2cos 2cos 224ααα⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,22π3712sin 124525α⎛⎫⎛⎫=--=-⨯= ⎪ ⎪⎝⎭⎝⎭,故选:C8.D 解:如图,连结BD ,A 1D ,由M ,N 分别为AC ,A 1B 的中点,知MN ∥A 1D ,而MN ⊄平面ADD 1A 1,A 1D ⊂平面ADD 1A 1,∴MN ∥平面ADD 1A 1,故C 正确;在正方体ABCD ﹣A 1B 1C 1D 1中,CD ⊥平面ADD 1A 1,则CD ⊥A 1D ,∵MN ∥A 1D ,∴MN ⊥CD ,故A 正确;直线MN 与平面ABCD 所成角等于A 1D 与平面ABCD 所成角等于45°,故B 正确;而∠A 1DD 1为异面直线MN 与DD 1所成角,应为45°,故D 错误.故选:D.9.27【详解】 13S ,22S ,3S 成等差数列,∴23143S S S =+即()13121243a a a a a a =++++,∴323a a =,∴等比数列{}n a 的公比323a q a ==,∴34127a a q ==.故答案为:27.【点睛】本题考查了等差数列、等比数列的综合应用,考查了运算求解能力,属于基础题.10.抛物线E:24x y =的准线为1y =-,焦点为(0,1),把焦点的坐标代入圆的方程中,得4a =,所以圆心的坐标为(4,2)--,半径为5,则圆心到准线的距离为1,所以弦长==11.310【详解】从甲,乙,丙,丁,戊五位同学中选择三人,有3510C =种方法,甲和乙同时被选中的方法有133C =,所以甲和乙同时被选中的概率为310p =,故答案为:31012.解:由几何体的空间结构特征可知,正方体的体对角线为球的直径,设正方体的棱长为a ,则6a 2=24,∴a =2,设球的半径为R ,则:(2R )2=22+22+22=12,则,其体积:.故答案为:.13.解:记答对笔试A B 、两试题分别为事件11A B 、,记面试回答对甲、乙两个问题分别为事件C 、D ,则11111()()()()232P A P B P C P D ====,.(I)该学生没有通过笔试的概率为111()P A B - 1151236=-⨯=.答:该学生没有通过笔试的概率是56.(II)该学生被公司聘用的概率为11()1()P A B P C D ⎡⎤⋅-⎣⎦ 11111(1)23228=⨯-⨯=.答:该学生被公司聘用的概率为18.14.解:(1)由正弦定理得sin A sin B +sin B cos A =sin C ,因为sin C =sin[π﹣(A +B )]=sin (A +B )=sin A cos B +cos A sin B ,所以sin A sin B =sin A cos B ,又因为sin A ≠0,cos B ≠0,所以tan B =1,又0<B <π,所以.(2)由余弦定理b 2=c 2+a 2﹣2ac cos B ,,可得,解得c =2.15.解:(1)椭圆方程可化为92x +42y =1,焦点在x 轴上,且c =49-=5,故设双曲线方程为22a x -22by =1(a >0,b >0),则有⎪⎩⎪⎨⎧=+=-,5,1492222b a b a 解得a 2=3,b 2=2,所以双曲线的标准方程为32x -22y =1.(2)不妨设M 点在右支上,则有|MF 1|-|MF 2|=23,又|MF 1|+|MF 2|=63,解得|MF 1|=43,|MF 2|=23,又|F 1F 2|=25,因此在△MF 1F 2中,MF 1边最长,而cos ∠MF 2F 1=||||2||||||2122122122F F MF MF F F MF -+<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
体育单招考试数学试题1
体育单招考试数学试题本试题卷包括选择题、填空题和解答题三部分。
时量120分钟。
满分150分。
一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合}4,3,2{},,3,2,1{==B A ,则=⋃B A ( )A 、}4,3,2,1{B 、}3,2,1{C 、}4,3,2{D 、}4,1{2.下列计算正确的是 ( )(A )222log 6log 3log 3-= (B )22log 6log 31-=(C )3log 93= (D )()()233log 42log 4-=-3.下列函数在其定义域内为增函数的是 ( )A .322+-=x x yB .x y 2=C .x y 21log = D.1y x= 4.函数2log ,(0,16]y x x =∈的值域是( ).(,4]A -∞- .(,4]B -∞ .[4,)C -+∞ .[4,)D +∞5.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.设x R ∈,则“x=1”是“2x x =”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.以下四个命题中不正确的是( )A .||()x f x x=是奇函数; B. 2(),(3,3]f x x x =∈-是偶函数; C.2()(3)f x x =-是非奇非偶函数; D.1()lgx f x -=是奇函数 9.已知a>1,函数y =a x与y =log a x 的图像可能是( )A B C D 10.0.76660.7log 0.7660.760.76A 0.7log 60.76log 0.70.760.76660.7log 60.7log 0.760.70.7<<<<<<<<三个数、、的大小顺序是( ). B.C. D.二、填空题:本大题共6小题,每小题6分,共36分。
2023年全国高考体育单招考试数学模拟试卷试题(含答案详解)
2023年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学试卷一、单选题1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}2.不等式23180x x -++<的解集为()A .{6x x >或3}x <-B .{}36x x -<<C .{3x x >或6}x <-D .{}63x x -<<3.已知角α终边上一点P 的坐标为()512-,,则sin α的值是A .1213-B .1213C .513D .513-4.函数2y x=在区间[2,4]上的最大值、最小值分别是()A .14,12B .12,1C .12,14D .1,125.函数11y x =+的定义域为()A .[)4,1--B .[)()4,11,---+∞ C .()1,-+∞D .[)4,-+∞6.在ABC 中,已知120B =︒,2AB =,则BC =()A .1BC D .37.若0a >、0b >,且411a b+=,则ab 的最小值为().A .16B .4C .116D .148.直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为()A .B .4C .D .二、填空题9.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是______.10.已知向量()3,2a = ,()1,b λ= ,若a b ⊥,则λ=_____.11.已知函数()sin2f x x x =-,则它的单调递增区间是_________12.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.三、解答题13.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c cos sin B b A =,π4A =,b .(1)求角B ;(2)求ABC 的面积.14.若数列{}n a 的前n 项和22n n S a =-,N*n ∈.(1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T .15.已知圆C 过点(M -,(N ,且圆心在x 轴上.(1)求圆C 的方程;(2)设直线:10l mx y -+=与圆C 相交于A ,B 两点,若MA MB ⊥,求实数m 的值.参考答案:1.B【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.2.A【分析】根据二次不等式的解法求解即可.【详解】23180x x -++<可化为23180x x -->,即()()630x x -+>,即6x >或3x <-.所以不等式的解集为{6x x >或3}x <-.故选:A 3.A【解析】根据三角函数定义,sin yx r=,即可求解【详解】由题意,13r ==∴12sin 13y x r ==-故选:A【点睛】本题考查三角函数定义,属于基本题.4.D【分析】根据反比例函数的单调性即可解得最值.【详解】易知函数2y x=在区间[2,4]是单调递减函数,因此当2x =时,函数2y x=的最大值为1,当4x =时,函数2y x=的最小值为12.故选D .【点睛】本题考查函数单调性的应用,对于反比例函数ky x=当0k >时为减函数,当0k <时为增函数,是基础题.5.B【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞ .故选:B .6.D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯ ,即:22150a a +-=,解得:3a =(5a =-舍去),故3BC =.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.7.A【分析】根据基本不等式计算求解.【详解】因为0a >、0b >,所以41+≥a b 1≥4,即16ab ≥,当仅当41a b=,即82a b ==,时,等号成立.故选:A.8.A【分析】直接利用直线被圆截得的弦长公式求解即可.【详解】由题意圆心()1,2C ,圆C 的半径为3,故C 到:3410l x y +-=2=,故所求弦长为=故选:A.9.32n a n =+【分析】根据给定条件,判定数列{}n a 是等差数列,再求出通项公式作答.【详解】数列{}n a 中,因13n n a a +=+,即13n n a a +-=,因此,数列{}n a 是等差数列,公差d =3,所以数列{}n a 的通项公式是1(1)32n a a n d n =+-=+.故答案为:32n a n =+10.32-【分析】根据向量的垂直的坐标表示求解即可.【详解】解:因为a b ⊥ ,()3,2a =,()1,b λ= ,所以320a b λ⋅=+=,解得32λ=-故答案为:32-11.7[,)1212k k k Z ππππ-+-∈【分析】先把函数化简变形成余弦型函数,利用余弦型函数的性质求出结果.【详解】函数()sin 2cos 22cos(2)6f x x x x π=-=+,令222()6k x k k Z ππππ-++∈,整理得:7()1212k x k k Z ππππ-+-∈,所以函数的单调递增区间为:7[,)1212k k k Z ππππ-+-∈.故答案为:7[,)1212k k k Z ππππ-+-∈.12.【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得;【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴214n si F PF ∠=,则12181224PF F S =⨯⨯⨯△.故答案为:13.(1)π3B =;【分析】(1)根据正弦定理结合特殊角的三角函数即得;(2)根据正弦定理,三角形面积公式进行求解即可.(1)cos sin B b A =,cos sin sin A B B A =,又sin 0A ≠,所以tan B =()0,πB ∈,所以π3B =;(2)由正弦定理可知:sin sin 22a b a A B =⇒又5ππ12C A B =--=,所以5πππππ1sin sinsin cos cos sin 12464622224C ==⨯+⨯=,所以113sin 22346ABC S ab C +==⨯=.14.(1)2n n a =;(2)2n T n =.【分析】(1)根据公式11(2,),(1)n n n S S n n N a a n *-⎧-≥∈=⎨=⎩,结合等比数列的定义、通项公式进行求解即可;(2)根据对数的运算性质,结合等差数列的定义、等差数列前n 项和公式进行求解即可.【详解】(1)数列{}n a 的前n 项和22n n S a =-,N*n ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2.2n n a ∴=.(2)221log 21n n b a n -==-.因为12n n b b +-=,∴数列{}n b 是等差数列,首项为1,公差为2,所以21()(1+21)22n n n a a n n T n +-∴===.15.(1)()2229x y ++=(2)12m =【分析】(1)设圆C 的半径为r ,圆心(),0C a ,由距离公式得出圆C 的方程;(2)由MA MB ⊥得出直线l 过圆心()2,0C -,从而得出m 的值.(1)设圆C 的半径为r ,圆心(),0C a ,由题意得()2222224,,r a r a ⎧=++⎪⎨⎪=+⎩解得2,3,a r =-⎧⎨=⎩∴圆C 的方程为()2229x y ++=.(2)∵点M 在圆上,且MA MB ⊥,∴直线l 过圆心()2,0C -,∴2010m --+=,解得12m =.。
体育单招考试数学卷(答案) (4)
单独考试招生文化考试数学卷(满分120分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数12,3,z m i z i =+=-若12z z ⋅是纯虚数,则实数m 的值为( )A .13-B .-3C .3D .32 2.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为( )(A )0 (B )-1 (C )1 (D )23.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是( )(A )38>d (B )3<d (C )38≤3<d (D )d <38≤34.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是( )(A )π98 (B )π2197 (C )π2199 (D )π1005、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( )A .6B .8C .2D .56.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是( )(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥7.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为( ) (A )(41,+∞) (B )41[,+∞) (C )(0,21) (D )(0,]21)8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( )A. {-1,1}B.{-2}C.{3}D.∅9. 不等式x2-4x ≤0的解集为( )A. [0,4]B.(1,4)C.[-4,0)∪(0,4]D.(-∞,0]∪[4,+∞)10. 函数f (x )=ln(x −2)+1x−3的定义域为( ) A. (2,+∞) B.[2,+∞)C.(-∞,2]∪[3,+∞)D.(2,3)∪(3,+∞) 11. 已知平行四边形ABCD ,则向量AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD ⃗⃗⃗⃗⃗ B.DB ⃗⃗⃗⃗⃗ C.AC ⃗⃗⃗⃗⃗ D.CA⃗⃗⃗⃗⃗ 12. 下列函数以π为周期的是( )A.y =sin (x −π8)B.y =2cos xC.y =sin xD.y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( )A. 400B.380C.190D.4014. 已知直线的倾斜角为60°,则此直线的斜率为( )A. −√33B.−√3C.√3D.√3315. 若sin α>0且tan α<0,则角α终边所在象限是( )A. 第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本题共5小题,每小题6分,共30分.)1.全称命题“”的否定是___________2.设f(x)=x+(m -4)x+2为偶函数,则实数m 的值为_______.3.f(x)=在(一∞,1]上是增函数,则m 的取值范围是_______.4.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A _____;5. 042=-x 是x+2=0的 ____条件.三、解答题:(本题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)1、已知函数232()xf x x a -=+.(1)若0a =,求()y f x =在(1,(1))f 处的切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.2、求过点),(24-,且与直线033=+-y x 平行的直线方程。
(完整word版)体育单招试卷数学模拟试卷
体育单招-高考数学模拟试卷2一.选择题(共10小题,满分60分,每小题6分)1.(6分)已知集合A={x|x2﹣x>0},,则()A.A∩B=∅ B.A∪B=R C.B⊆A D.A⊆B2.(6分)椭圆的离心率为()A.B.C.D.3.(6分)若两个球的体积之比为1:8,则这两个球的表面积之比为( )A.1:2 B.1:4 C.1:8 D.1:164.(6分)已知角α终边上一点P(﹣3,4),则cos(﹣π﹣α)的值为( )A.﹣B.C.D.﹣5.(6分)平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6.(6分)已知等差数列{a n}的公差d=2,a3=5,数列{b n},b n=,则数列{b n}的前10项的和为()A.B.C.D.7.(6分)已知a∈R,函数f(x)=sinx﹣|a|,x∈R为奇函数,则a=()A.0 B.1 C.﹣1 D.±18.(6分)某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有() A.24种B.9种 C.3种 D.26种9.(6分)函数图象的一条对称轴是()A.B.x=0 C.D.10.(6分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知2a﹣b=2ccosB,则角C的大小为()A.B.C.D.二.填空题(共6小题,满分36分,每小题6分)11.(6分)已知平面向量=(1,m),=(2,5),=(m,3),且(+)∥(﹣),则m= .12.(6分)不等式>1的解集是.13.(6分)函数的单调递减区间是.14.(6分)函数 f(x)=+ln(x+2)的定义域为.15.(6分)二项式(x2+)5的展开式中含x4的项的系数是(用数字作答).16.(6分)抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为.三.解答题(共3小题,满分54分,每小题18分)17.(18分)一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.(Ⅰ)求这箱饮料的平均容量和容量的中位数;(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率.18.(18分)已知椭圆C的对称轴为坐标轴,一个焦点为F(0,﹣),点M(1,)在椭圆C上(Ⅰ)求椭圆C的方程;(Ⅱ)已知直线l:2x﹣y﹣2=0与椭圆C交于A,B两点,求|AB|.19.(18分)如图,三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点;(1)求证:CD⊥平面ABE;(2)设AB=3,CD=2,若AE⊥BC,求三棱锥A﹣BCD的体积.体育单招-高考数学模拟试卷2参考答案与试题解析一.选择题(共10小题,满分60分,每小题6分)1.(6分)(2017•唐山一模)已知集合A={x|x2﹣x>0},,则()A.A∩B=∅ B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣x>0}={x|x>1或x<0},,∴A∩B={x|﹣或1<x<},A∪B=R.故选:B.2.(6分)(2017•河西区模拟)椭圆的离心率为()A.B.C.D.【解答】解:由椭圆的方程可知,a=5,b=4,c=3,∴离心率 e==,故选A.3.(6分)(2017春•东莞市月考)若两个球的体积之比为1:8,则这两个球的表面积之比为()A.1:2 B.1:4 C.1:8 D.1:16【解答】解:设这两球的半径分为r,R,∵两个球的体积之比为1:8,∴=r3:R3=1:8,∴r:R=1:2,∴这两个球的表面积之比为4πr2:4πR2=1:4.故选:B.4.(6分)(2017•广东模拟)已知角α终边上一点P(﹣3,4),则cos(﹣π﹣α)的值为()A.﹣B.C.D.﹣【解答】解:∵角α终边上一点P(﹣3,4),∴cosα==﹣,则cos(﹣π﹣α)=cos(π﹣α)=﹣cosα=,故选:C.5.(6分)(2016春•新余期末)平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆",那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件【解答】解:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个定点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.6.(6分)(2017春•赫山区校级月考)已知等差数列{a n}的公差d=2,a3=5,数列{b n},b n=,则数列{b n}的前10项的和为()A.B.C.D.【解答】解:等差数列{a n}的公差d=2,a3=5,∴a1+2×2=5,解得a1=1.∴a n=1+2(n﹣1)=2n﹣1.b n===,则数列{b n}的前10项的和=+…+==.故选:A.7.(6分)(2006•江苏)已知a∈R,函数f(x)=sinx﹣|a|,x∈R为奇函数,则a=()A.0 B.1 C.﹣1 D.±1【解答】解:因为f(x)是R上的奇函数,所以f(0)=﹣|a|=0,解得a=0,故选A.8.(6分)(2016春•红桥区期末)某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有()A.24种B.9种 C.3种 D.26种【解答】解:某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,共有4+3+2=9种选法,故选:B.9.(6分)(2016春•桐乡市校级期中)函数图象的一条对称轴是()A.B.x=0 C.D.【解答】解:令=(k∈Z),解得x=(k∈Z),∴函数图象的对称轴方程为x=(k∈Z),取整数k=0,得为函数图象的一条对称轴故选:C10.(6分)(2017•玉林一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知2a﹣b=2ccosB,则角C 的大小为( )A.B.C.D.【解答】解:∵在△ABC中,2ccosB=2a﹣b,∴由余弦定理可得:2c×=2a﹣b,∴a2+b2﹣c2=ab,∴cosC==,又C∈(0,π),∴C=.故选:B.二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2017•安徽模拟)已知平面向量=(1,m),=(2,5),=(m,3),且(+)∥(﹣),则m= .【解答】解:平面向量=(1,m),=(2,5),=(m,3),则+=(1+m,m+3),﹣=(﹣1m﹣5),且(+)∥(﹣),∴(1+m)(m﹣5)+(m+3)=0,m2﹣3m﹣2=0,解得m=或m=.故答案为:.12.(6分)(2016春•肇东市校级期末)不等式>1的解集是{x|}.【解答】解:不等式>1,化为(3x+1)(x+2)<0,解得:,不等式>1的解集是:{x|}.故答案为:{x|}.13.(6分)(2016春•陕西校级期中)函数的单调递减区间是.【解答】解:由正弦函数的单调性可知y=sin(2x﹣)的单调减区间为2kπ+≤2x﹣≤2kπ+即kπ+π≤x≤kπ+π(k∈Z)故答案为:.14.(6分)(2017•青岛一模)函数 f(x)=+ln(x+2)的定义域为(﹣2,3).【解答】解:由,得﹣2<x<3.∴函数 f(x)=+ln(x+2)的定义域为(﹣2,3).故答案为:(﹣2,3).15.(6分)(2016•朝阳区一模)二项式(x2+)5的展开式中含x4的项的系数是10 (用数字作答).【解答】解:二项式(x2+)5的展开式中通项公式为 T r+1= x10﹣2r x﹣r=x10﹣3r.令 10﹣3r=4,可得 r=2,∴展开式中含x4的项的系数是=10,故答案为10.16.(6分)(2014•南京三模)抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为.【解答】解:∵抛物线y2=2px过点M(2,2),∴4=4p,∴p=1,∴抛物线的标准方程为:y2=2x,其准线方程为x=﹣,∴点M到抛物线焦点的距离为2+=.故答案为:.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2017•四川模拟)一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.(Ⅰ)求这箱饮料的平均容量和容量的中位数;(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率.【解答】解:(Ⅰ)由茎叶图知,这箱饮料的平均容量为249+=249,容量的中位数为=249.(Ⅱ)把每听饮料标上号码,其中容量为248ml,249ml的4听分别记作1,2,3,4,容量炎250ml的2听分别记作:a,b.抽取2听饮料,得到的两个标记分别记为x和y,则{x,y}表示一次抽取的结果,即基本事件,从这6听饮料中随机抽取2听的所有可能结果有:共计15种,即事件总数为15.其中含有a或b的抽取结果恰有9种,即“随机取出2听饮用,取到的2听饮料中至少有1听的容量为250ml”的基本事件个数为9.所以从这箱饮料中随机取出2听饮用,取到的2听饮料中至少有1听的容量为250ml的概率为.…(12分)18.(18分)(2015秋•瓦房店市月考)已知椭圆C的对称轴为坐标轴,一个焦点为F(0,﹣),点M(1,)在椭圆C上(Ⅰ)求椭圆C的方程;(Ⅱ)已知直线l:2x﹣y﹣2=0与椭圆C交于A,B两点,求|AB|.【解答】解:(Ⅰ)∵椭圆C的对称轴为坐标轴,一个焦点为F(0,﹣),∴,点M(1,)在椭圆C上∴,(3分)a=2,b2=a2﹣c2=2,∴椭圆C的方程为.(6分)(Ⅱ)联立直线l与椭圆C的方程解得(10分)∴A(0,﹣2),..(12分)19.(18分)(2017•上海模拟)如图,三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点;(1)求证:CD⊥平面ABE;(2)设AB=3,CD=2,若AE⊥BC,求三棱锥A﹣BCD的体积.【解答】证明:(1)∵三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点,∴BE⊥CD,AE⊥CD,又AE∩BE=E,∴CD⊥平面ABE.解:(2)由(1)知AE⊥CD,又AE⊥BC,BC∩CD=C,∴AE⊥平面BCD,∵AB=3,CD=2,∴三棱锥A﹣BCD的体积:==.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
2023年体育单招数学试卷
2023年体育单招数学试卷一、选择题(每题1分,共5分)1.下列函数中,奇函数是()A.y=x^3B.y=x^2C.y=|x|D.y=x+1/x2.已知函数f(x)=x^22x+1,那么f(x)的最小值是()A.0B.1C.-1D.无法确定3.下列等比数列中,公比是3的数列是()A.1,3,9,27,B.2,6,18,54,C.3,6,12,24,D.4,12,36,108,4.已知三角形ABC中,角A、角B、角C的对边分别为a、b、c,那么根据正弦定理,下列哪个选项是正确的?()A.a/sinA=b/sinB=c/sinCB.a/sinB=b/sinC=c/sinAC.a/sinC=b/sinA=c/sinBD.a/sinA=b/sinC=c/sinB5.下列方程中,不是一元二次方程的是()A.x^2+2x+1=0B.x^22x+1=0C.x^2+2x1=0D.x+2x+1=0二、判断题(每题1分,共5分)1.两个奇函数的乘积是偶函数。
()2.任何数列都有通项公式。
()3.两个等差数列的乘积还是等差数列。
()4.三角形的内角和为180度。
()5.一元二次方程的判别式Δ=b^24ac。
()三、填空题(每题1分,共5分)1.若函数f(x)=x^33x,那么f'(x)=_______。
2.若等差数列的首项为1,公差为2,那么第10项为_______。
3.若等比数列的首项为2,公比为3,那么第5项为_______。
4.若三角形ABC中,角A=30度,角B=60度,那么角C=_______度。
5.若一元二次方程ax^2+bx+c=0的解为x1=2,x2=3,那么b=_______。
四、简答题(每题2分,共10分)1.请简述函数的单调性及其判定方法。
2.请简述等差数列与等比数列的定义及其通项公式。
3.请简述三角形的内角和定理及其应用。
4.请简述一元二次方程的判别式及其意义。
5.请简述函数的极值及其判定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011 年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一.选择题:本大题共 10 小题,每小题 6 分,共 60 分.在每小题给出的四个选项中, 只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
(1)设集合 M = {x|0<x<1},集合 N={x| -1<x<1},则【 】(A )M∩N=M (B )M∪N=N (C )M∩N=N(D )M∩N= M∩N( 2) 已知函数 f (x ) 的图象与函数y = sin x 的图象关于 y 轴对称, 则 f (x ) =【 】(A ) -cos x(B ) cos x(C ) -sin x(D ) sin x(3) 已知平面向量a = = (-1, 3) ,则a与 的夹角是【】(1, 2), b b(A )(B )(C )(D )23 4 6(4) 函数 y =1(x ≠ -5) 的反函数是【 】x + 5( A ) y = x - 5(x ∈ R ) ( B )y = 1 + 5(x ≠ 0) x( C ) y = x + 5(x ∈ R )(D ) y = 1- 5(x ≠ 0)x x -1(5) 不等式 x< 0 的解集是 【 】(A ){x|0<x<1} (B ){x|1<x<∞} (C ){x|-∞<x<0}(D ){x|-∞<x<0}(6) 已知函数 f (x ) =1 cos x + 3 sin x,则 f (x ) 是区间 【 】 2 2 2 2(A ) ( 2, 8) 上的增函数 (B ) (- 2, 4) 上的增函数3 3 3 3 (C ) (- 8, - 2) 上的增函数 (D ) (- 4, 2) 上的增函数3 3 3 3(7) 已知直线l 过点(-1,1) ,且与直线 x - 2 y - 3 = 0 垂直,则直线l 的方程是【】(A ) 2x + y -1 = 0 (B ) 2x + y - 3 = 0 (C ) 2x - y - 3 = 0(D )2x -y -1 = 0(8)已知圆锥曲线母线长为5,底面周长为6,则圆锥的体积是【】(A)6(B)2(C)8(D)36(9)S n 是等差数列{a n }的前n 项合和,已知S3 =-12 ,S6 =-6 ,则公差d =【】(A)-1 (B)-2 (C)1 (D)2(10)将3 名教练员与6 名运动员分为3 组,每组一名教练员与2 名运动员,不同的分法有【】(A)90 中(B)180 种(C)270 种(D)360 种二.填空题:本大题共 6 小题,每小题 6 分,共 36 分.把答案填在题中横线上。
(11)(2x2+1)6的展开式中常数项是。
x(12)已知椭圆两个焦点为F (-1, 0) 与F (1, 0) ,离心率e =1,则椭圆的标准方程1 2 3是。
(13)正三棱锥的底面边长为 1,高为6,则侧面面积是。
6(14)已知{ a n }是等比数列,a1 ≠a2 则a1 + 2a2 = 3a3 =1,则a1 =。
(15)在∆ABC 中,AC=1,BC=4, (16)已知函数f (x) = 4ax2+ cos A =-3则cos B =。
5a(a > 0) 有最小值8,则a =。
x2三.解答题:本大题共 3 小题,共 54 分.解答应写出文字说明、证明过程或演算步骤.⋅ = - (17)(本题满分 18 分)甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为 0.6,乙罚球命中率为 0.5。
(I )甲、乙各罚球 3 次,命中 1 次得 1 分,求甲、乙等分相等的概率;(II)命中 1 次得 1 分,若不中则停止罚球,且至多罚球 3 次,求甲得分比乙多的概率。
(18()本题满分18 分)如图正方体 ABCD - A ' B 'C ' D ' 中,P 是线段AB 上的点,AP=1,PB=3(I )求异面直线 PB ' 与 BD 的夹角的余弦值;(II) 求二面角 B - PC - B ' 的大小;(III) 求点 B 到平面 PCB ' 的距离B’B(19)(本题满分 18 分)2y 2 设 F(c,0)(c>0)是双曲线 x -= 1的右焦点,过点 F(c,0)的直线l 交双曲线于 P,Q 两2点,O 是坐标原点。
(I ) 证明OP OQ 1;(II)若原点 O 到直线l 的距离是 3,求∆OPQ 的面积。
2绝密★ 启用前2011 年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学试题参考答案和评分参考评分说明:1.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制2 6 50 1 3 2 订相应的评分细则, 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分效的一半:如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数.表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.选择题:本题考查基本知识和基本运算.每小题 6 分,满分 60 分.( 1 ) B ( 2 ) C ( 3 ) C (4)D (5)A( 6 ) D ( 7 ) A ( 8 ) B ( 9 ) D (10)A二.填空题:本题考查基本知识和基本运算.每小题 6 分,满分 36 分.2 (11)60(12) x+ y = 9 8(13)3 4(14)3(15)(16)2三.解答题: (17)解:(I) 设甲得分为 k 的事件为 A k ,乙得分为 k 的事件为 B k ,k=0,1,2,3 则P ( A ) = 0.43= 0.064P ( A ) = 3⨯ 0.6 ⨯ 0.42 = 0.288P ( A 2 ) = 3⨯ 0.6 ⨯ 0.4 = 0.432P ( A ) = 0.63 = 0.21610 1 23 1 2 1 2 P (B ) = 0.53= 0.215P (B ) = 3⨯ 0.53 = 0.375P (B ) = 3⨯ 0.53 = 0.375P (B ) = 0.53 = 0.125甲和乙得分相等的概率为p = p ( A 0 B 0 + A 1B 1 + A 2 B 2 ) = 0.305(II ) 设甲得分多于 k 的事件为 D k ,乙得分为 k 的事件为 E k , k = 0,1, 2 ,则p (D 0 ) = 0.6p (D ) = 0.62 = 0.36p (D ) = 0.63 = 0.216p (E 0 ) = 0.5p (E ) = 0.52 = 0.25p (E ) = 0.53 = 0.125甲得分比乙多的概率为p = p (D 0 E 0 + D 1E 1 + D 2 E 2 ) = 0.41718. 本题主要考查立体儿何中角与距离的计算,涉及两条异面直线角、二面角、点到面的距离.考查运算能力和空间想象能力。
解:(I )连接 B ' D ' , B ' D ' //BD,异面直线 PB ' 与 BD 的夹角是∠PB ' D ' 。
过点 A ' 作 PB ' 的垂线,垂足为 Q ,由三垂线定理,D Q⊥ PB '由A 'Q = BB ' 得 A 'Q = 16 A ' B ' PB ' 5DQ= 4 41 , QB ' = 12 , cos ∠PB ' D ' = 3 25 5 10(II) 过点 B 作 PC 的垂线 BR ,垂足为 R,由三垂线定理 BR⊥PC. B - PC - B ' 的平面角由 BR = PC ,得 BR = 12∠BRB ' 是二面角BP BC 5 tan ∠BRB ' = 53二面角 B - PC - B ' 的大小为arctan 53(III ) 四面体 B - PCB ' 的体积V = 8三角形 PCB ' 的距离d = 3VS = 6 3417(19)本题主要考查直线与双曲线的位置关系应用.涉及平面向量的数量积、点到直线的距离公式及三角形的面积公式,考查分析问题、解决问题的能力和运算能力。
解:(I ) c = 3- 3k 2 + 2 k 2 +1 -2 3k + 2k k 2 +1 - 3k 2 - 2 k 2 +1 -2 3k + 2k k 2 +1 OP ⋅ O Q = -1若直线l 的方程是 x = ,代入双曲线方程,解得两个交点的坐标分别是( 3, 2)( 3, -2)从而若直线l 的方程是 y = k (x - 3),| k |= 代入双曲线方程,化简得(2 - k 2 )x 2 + 2 3k 2 x - (3k 2 + 2) = 0解得两个交点的坐标分别是( 2 - k 2 , 2 - k 2 )( 2 - k 2 , 2 - k 2 )3k 4 - 4(k 2 +1) +12k 2 - 4k 2 (k +1) 从而OP ⋅ O Q = = -1(2 - k )2(II )原点 O 到直线 y = k (x - 3) 的距离d = 若d = 3 ,则k = ±2|PQ|=16∆OPQ 的面积是 12。
3 2 k 2 +1 3。