大学物理复习资料

合集下载

大学物理复习资料

大学物理复习资料

大学物理复习资料一、简答题1.利用所学的物理知识解释花样滑冰运动员在双手合拢时旋转速度增大,双手展开时旋转速度减小。

答:当合外力矩等于0时物体对轴的角动量守恒,即JW=常量。

当双手合拢时旋转半径变小,J变小,旋转角速度W增大,将双手展开,J增大了,旋转角速度W又会减小。

2.“河道宽处水流缓,河道窄处水流急”,如何解释?答:由不可压缩流体的连续性方程V1△S1=V2△S2即V△S=恒量,知河流宽处△S大,V小,河流窄处△S小,V大。

3.为什么从水龙头徐徐流出的水流,下落时逐渐变细,请用所学的物理知识解释。

答;有机械能守恒定理知,从水龙头流出的水速度逐渐增大,再由不可压缩流体的连续性方程V△S=常量知,V增大时△S变小,所以水流变细。

4.请简述机械振动与机械波的区别与连续答:区别:机械振动是在某一位置附近做周期性往返运动5.用所学的物理知识总结一下静电场基本性质及基本规律。

答:性质:a.处于电场中的任何带电体都受到电场所作用的力。

b.当带电体在电场中移动时,电场力将对带电体做功。

规律:高斯定理:通过真空中的静电场中任一闭合面的电通量Φe等于包围在该闭合面内的电荷代数和∑qi的ε0分之一,而与闭合面外的电荷无关。

ΦEdSSqSε0环流定理:在静电场中,场强E的环流恒等于零。

Edl0l6.简述理想气体的微观模型。

答:①分子可以看做质点②分子作匀速直线运动③分子间的碰撞是完全弹性的7.一定质量的理想气体,当温度不变时,其压强随体积的减小而增大,当体积不变时,其压强随温度的升高而增大,请从微观上解释说明,这两种压强增大有何区别。

答:当温度不变时,体积减小,分子的平均动能不变,但单位体积内的气体分子数增加,故而压强增大;当体积不变时,温度升高,单位体积内的气体分子数不变,但分子的平均动能增加,故压强增大。

这两种压强增大是不同的,一个是通过增加分子数密度,一个是通过增加分子的平均平动动能来增加压强的。

9.请简述热力学第一定律的内容及数学表达式。

《大学物理》复习题及答案

《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。

3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。

速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。

如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。

25:一质点沿半径为米的圆周运动,其转动方程为??2?t。

质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。

大学物理复习资料

大学物理复习资料

第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。

2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。

它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。

3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。

在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。

大学物理复习资料

大学物理复习资料

大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。

在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。

大学物理总复习

大学物理总复习

0 冲击,
角达水平位置。设 m与m1的碰撞为完全非弹 /2
性的,m1=4m,m2=m,L=1m,取,求
? 0
O
L/2 A m1
分析:碰撞过程中系统动量是否守恒, 角动量是否守恒?碰撞之后一起运动 m 的过程,系统机械能是否守恒?
B
L/2 m2
10
解:取杆及 m 组成的系统为研 究对象,碰撞过程中,轴对系统
B 都垂直的直线上的投影以相同速度切 割磁场线运动时产生的电动势,这一投 影长度称之为导线的有效切割长度。

× × × × L × × ×
× × × × × × ×
× × × × × × ×
31
N
B

★ 直线电流的磁场
dB 方向均沿 x 轴的负方向
dB
z
D
2

0 Idl sin
质点组的动能定理
内力的功
dW内 F1 dr12 0
W外 W内 Ek E k0 W外 W内 Ek
功能原理
W外 W非内 Ek Ep Em
9
例3-5 如图,杆OB可绕水平光滑轴O转动,杆长L,质量不计, 杆的中点A和底端B处附有两个质量为m1和m2的小球,最初杆 静止于平衡位置,令一质量为m的粘性球以水平速度 恰能使杆转过
E 的大小都相等,方向沿径向。
取高斯面:作同心高斯球面
+ + +
+
S +1
O
+R+ +
r
+
+ + +
球内区域 r < R ,作高斯球面 S1
E dS 0

《大学物理简明教程》总复习课件

《大学物理简明教程》总复习课件

《大学物理简明教程》总复习课件一、力学部分1. 牛顿运动定律:物体在不受外力作用时,将保持静止或匀速直线运动;物体受到外力作用时,其加速度与外力成正比,与物体质量成反比。

2. 动能定理:物体的动能变化等于物体所受外力做的功。

3. 势能:物体在重力场中具有的势能等于其重力势能;物体在弹性力场中具有的势能等于其弹性势能。

4. 动量守恒定律:在封闭系统中,物体间的相互作用力导致系统总动量守恒。

5. 角动量守恒定律:在封闭系统中,物体间的相互作用力导致系统总角动量守恒。

二、热学部分1. 热力学第一定律:能量守恒定律在热学中的体现,即系统吸收的热量等于系统内能的增加和对外做功之和。

2. 热力学第二定律:熵增原理,即在一个孤立系统中,熵总是增加的,直到达到最大值。

3. 热力学第三定律:绝对零度时,系统的熵为零。

4. 理想气体状态方程:描述理想气体状态参量(压强、体积、温度)之间关系的方程,即 PV=nRT。

5. 热容:描述物体吸收或放出热量时温度变化的物理量,包括比热容和摩尔热容。

三、电磁学部分1. 库仑定律:描述点电荷之间相互作用力的规律,即F=kq1q2/r^2。

2. 高斯定理:描述静电场中电荷分布与电场强度关系的定律,即∮E·dA=Q/ε0。

3. 法拉第电磁感应定律:描述磁场变化引起电场变化的规律,即ε=dΦ/dt。

4. 安培环路定理:描述电流与磁场之间关系的定律,即∮B·dl=μ0I。

5. 麦克斯韦方程组:描述电磁场基本规律的方程组,包括高斯定理、法拉第电磁感应定律、安培环路定理和洛伦兹力定律。

四、光学部分1. 光的反射定律:描述光线在光滑表面上反射时,反射光线、入射光线和法线共面的规律。

2. 光的折射定律:描述光线从一种介质进入另一种介质时,入射角和折射角之间关系的规律。

3. 双缝干涉:描述光波在双缝实验中产生的干涉现象,即明暗相间的条纹。

4. 单缝衍射:描述光波通过单缝时产生的衍射现象,即中央亮条纹和两侧暗条纹。

大学物理一复习第四章刚体的转动-文档资料

大学物理一复习第四章刚体的转动-文档资料

mg FT2 ma2

FT1 FT2
R
mg FT1 r
m
a1
J
a1 r
a2 R
FT1 r R
FT1'
A
mg
β
FT2
FT2'
B
mg
mg(R r)
J mR2 mr2
a1

r

J
mgr(R r) mR2 mr2
40 半径减小角速度增加。
(2)拉力作功。请考虑合外力矩为0, 为什么拉力还作功呢?
W


0
Md
在定义力矩作功 时,我们认为只 有切向力作功, 而法向力与位移 垂直不作功。
但在例题中,小 球受的拉力与位 移并不垂直,小 球的运动轨迹为 螺旋线,法向力 要作功。
o
F
r d Fn F
解得
a2

R

mgR(R r) J mR2 mr2
FT1 mg ma1
FT2 mg ma2
例2:光滑斜面倾角为 ,顶端固定一半 径为 R ,质量为 M 的定滑轮,质量为 m 的物体用一轻绳缠在定滑轮上沿斜面 下滑,求:下滑的加速度 a 。
解:物体系中先以
物体 m 研究对象,
A
分别根据牛二定律和转动定律列方程:
角量、线量关系式
解得:
a
mB g
mA mB mC 2
T1

mAmB g
mA mB mC
2
T2

(mA mC 2)mBg mA mB mC 2
如令 mC 0,可得:

大学物理综合复习

大学物理综合复习
光的射
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续传播的现象称为光的衍射。衍射现 象是光波动性的体现,在光学成像、光谱分析和量子力学等领域有重要应用。
光的偏振
光的偏振态
光波的电矢量或磁矢量在某一特定方 向上的振动状态称为光的偏振态。自 然光中,电矢量和磁矢量在各个方向 上的振动是均匀分布的。
大学物理综合复习
汇报人:
202X-01-05
目录
• 力学基础 • 电磁学 • 光学 • 量子物理 • 热力学与统计物理
01
力学基础
牛顿运动定律
01 牛顿第一定律
物体若不受外力作用,则保持静止或匀速直线运 动状态。
02 牛顿第二定律
物体加速度的大小与合外力的大小成正比,与物 体的质量成反比。
03 牛顿第三定律
熵增加原理
熵增加原理指出,在一个封闭系统中,如果没有外界的能 量交换或物质交换,系统的熵总是趋向于增加,即系统总 是趋向于更加混乱或无序的状态。
热力学第二定律的表述
热力学第二定律可以表述为“热量不可能自发地从低温物 体传到高温物体”,或者“不可能通过有限的过程将一个 物体冷却到绝对零度”。这意味着自然界的自发过程总是 向着熵增加的方向进行。
高斯定理的数学表达式为:∮E·dS = 4πρ。
高斯定理在静电场中具有广泛应用,它 可以帮助我们理解电场分布和电荷之间 的关系,以及计算电场强度。
•·
高斯定理表述为:穿过任意闭合曲面的 电场强度通量等于该闭合曲面所包围的 电荷量。
磁场与安培环路定律
安培环路定律表述为:磁场中穿
过任意闭合曲线的磁感应线数等
• · 万有引力定律:任何两个物体都相互吸引,引力的大小与两个物体的质量成正比,与它们之 间的距离的平方成反比。

大学物理学复习资料

大学物理学复习资料

大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。

大学物理复习主要章节

大学物理复习主要章节
8.5麦克斯韦速率分布律
第9章静电场
9.1电荷库仑定律
9.2电场电场强度
9.3静电场中的高斯定理
9.4静电场的环路定理电势
第10章稳恒磁场
10.1磁感应强度
10.2毕奥-萨伐尔定律及其应用
10.3磁通量磁场中的高斯定理
10.4安培环路定理
10.5磁场对载流导线的作用
10.6磁场对运动电荷的作用
第12章波动光学基础
12.1光的相干性
12.2分波面干涉
12.3分振幅干涉
12.4惠更斯-菲涅耳原理
12.5单缝的夫琅禾费衍射
12.6圆孔的夫琅禾费衍射
12.7衍射光栅及光栅光谱
12.9光的偏振
考试时间:18周周末
第1章运动学
1.4质点运动的描述
1.5刚体定轴转动的描述
第2章动力学
2.1质点运动定律
2.3刚体转动定理
第3章力学的守恒定律
3.1动量动量守恒定律
3.2功和能机械能守恒定律
3.3角动量角动量守恒定律
第5章机械振动
5.1简谐振动的描述
5.2简谐振动的合成
第6章机械波
6.1机械波的产生与传播
6.2平面简谐波
6.4惠更斯原理波的干涉
第7章热力学基础
7.1平衡态理想气体状态方程
7.2准静态过程
7.3热力学第一定律
7.4循环过程与卡诺循环
7.5热力学第二定律(要求理解第二定律的两种解释)
第8章气体动理论
8.1气体分子热运动的统计规律性
8.2理想气体的

大学物理复习资料(超全)(一)

大学物理复习资料(超全)(一)

大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。

本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。

本文档将分为五个大点来详细讲解各个方面的内容。

一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。

2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。

3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。

4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。

5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。

二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。

2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。

3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。

4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。

5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。

三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。

2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。

3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。

4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。

5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。

四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。

2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。

3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。

4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。

5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。

大学物理复习资料

大学物理复习资料

1、矢量的方向,如速度,做曲线运动的加速度,平均加速度等。

2、第一章学过的矢量符号。

如rr∆=∆,rd ds =,n t a a a +=,αr a n =是否正确?3、电场强度和磁感应强度的方向分别是如何规定的?4、所学到的物理量有哪些是状态量,有哪些是过程量。

5、刚体的转动惯量与哪些因素有关?6、同号的点电荷相距L,要使它们的电势能增加一倍,或者要使它们的电势能减少一倍,两电荷之间的距离应该怎么变化?7、对于静电场的高斯定理的描述进行判断:高斯面上的场强与哪些电荷有关,通过高斯面的电场强度通量与哪些电荷有关?8、两个点电荷相距一定的距离,若在这两个点电荷连线的中垂线上电势为零,或者两个点电荷连线的中点的场强为零这两个电荷所带的电荷或者符号应该满足什么关系。

9、下列说法正确的是( )。

A 检验电荷在静电场中某点的电势能越大,则该点的电势就越高;B 静电场中任意两点间的电势差的值,与检验电荷有关;C 静电场中任一点电势的正负与电势零点的选择有关;D 静电场中任意两点间的电势差与电势零点的选择有关。

10、在一条直线上A 、B 、C 三点的电势关系为V A >V B >V C ,若将一负电荷或一正电荷放在B 点,则此电荷将怎样运动?如11、下列哪一种说法对( )。

A 在圆周运动中,加速度的方向一定指向圆心;B 匀速率圆周运动中运动的速度和加速度都恒定不变;C 物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒等于零, 因此其法向加速度也一定等于零;D 物体做曲线运动时,必定有加速度,加速度的法向分量一定不等于零。

12、会计算变力作功,如一质点受力i x F23=(SI),沿着x 轴正向运动,在x=0到x=2m 的过程中,力F 做功为多少?13、质量为m 的质点,以恒速率v 沿图示正三角形ABCA 的方向转动一周,或者沿图示正方形ABCDA 的方向转动一周,作用于A 处质点的冲量大小和方向如何?14、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始下落,在棒摆动到竖直位置的过程中,角速度和角加速度怎样变化? 15、质点组总动量的改变与内力有无关系;(2)质点组总动能的改变与内力有无关系;(3)质点组机械能的改变与保守内力有无关系。

大学物理总复习各章知识点的总结

大学物理总复习各章知识点的总结

大学物理总复习各章知识点的总结本文档旨在为大学物理学生提供各章知识点的总结,以便进行全面的复。

以下是各章的重要知识点概述:第一章:力学基础- 牛顿三定律:惯性定律、动量定律和作用-反作用定律- 力和力的矢量表示- 物体的平衡状态和平衡条件- 力的分解和合成- 弹力和摩擦力第二章:运动学- 位移、速度和加速度的定义和关系- 一维运动和二维运动的公式和图像- 自由落体运动和投射运动- 碰撞和动量守恒定律- 圆周运动和使用向心力的公式第三章:力学定律应用- 牛顿第二定律和用力学定律解决动力学问题- 摩擦力和滑动/静止摩擦力的计算- 动能和势能的概念以及能量守恒定律的应用- 万有引力和行星运动的规律- 弹性碰撞和非弹性碰撞的区别第四章:热学- 温度、热量和热平衡的概念- 热传递和热平衡的方式:传导、对流和辐射- 理想气体定律和状态方程- 热力学第一定律和热功公式的应用- 熵和热传递的熵变定律第五章:波动光学- 波和光的特性和性质- 光的干涉和衍射现象- 多普勒效应和光谱的应用- 像的成像和光的折射- 反射和折射定律的应用第六章:电学静电学- 电荷和电场的概念- 高斯定律和电场强度的计算- 静电势和电势能的关系- 电和电容的计算- 电场中电荷的受力和电势能的变化第七章:电学电流学- 电流、电阻和电压的定义和关系- 欧姆定律和电阻的计算- 串联和并联电路的计算- 电功率和电能的转换- 阻抗和交流电的特性第八章:磁学- 磁场和磁力线的概念- 安培环路定理和电流的磁场- 法拉第电磁感应定律和楞次定律- 电动势的产生和电磁感应的应用- 磁场中的电荷和导线的受力以上是大学物理各章知识点的概述。

希望本文档能够帮助您进行有效的复习和准备,祝您考试顺利!。

大学普通物理复习资料【附答案】

大学普通物理复习资料【附答案】

1、原在空气中的杨氏双缝干涉实验装置,现将整个装置浸入折射率为n的透明液体中,则相邻两明条纹的间距为原间距的倍。

2、波长为500nm的光垂直照射在牛顿环装置上,在反射光中观察到第二级暗环半径为2.23mm,则透镜的曲率半径R= 。

3、在照相机的镜头上镀有一层介质膜,已知膜的折射率为1.38,镜头玻璃的折射率为1.5,若用黄绿光(550nm)垂直入射,使其反射最小,则膜的最小厚度为。

4、为了使单色光(λ=600nm)产生的干涉条纹移动50条,则迈克尔逊干涉仪的动镜移动距离为。

5、远处的汽车两车灯分开1.4m,将车灯视为波长为500nm的点光源,若人眼的瞳孔为3mm,则能分辨两车灯的最远距离为。

6、一束由线偏振光与自然光混合而成的部分偏振光,当通过偏振片时,发现透过的最大光强是最小光强的3倍,则入射的部分偏振光中,自然光与线偏振光光强之比为。

7、布儒斯特定律提供了一种测定不透明电介质的折射率的方法。

今在空气中测得某一电介质的起偏振角为57 ,则该电介质的折射率为。

1、一双缝距屏幕为1m,双缝间距等于0.25mm,用波长为589.3nm的单色光垂直照射双缝,屏幕上中央最大两侧可观察到干涉条纹,则两相邻明纹中心间距等于。

2、波长为λ的平行光垂直地照射在由折射率为1.50的两块平板玻璃构成的空气劈尖上,当劈尖的顶角α减小时,干涉条纹将变得(填“密集”或“稀疏”)λ)垂直照射单缝,缝宽0.1mm,紧靠缝后放一焦距3、用平行绿光(nm546=为50cm的会聚透镜,则位于透镜焦平面处的屏幕上中央明纹的宽度为。

4、波长为500nm的光垂直照射到牛顿环装置上,若透镜曲率半径为5m,则在反射光中观察到的第四级明环的半径=r。

45、一架距地面200公里的照相机拍摄地面上的物体,如果要求能分辨地面上相距1m的两物点。

镜头的几何象差已很好地消除,感光波长为400nm,那么照相机镜头的孔径D= 。

6、一束曲线偏振光与自然光混合而成的部分偏振光,当通过偏振片时,发现透过的最大光强是最小光强的3倍,则在入射的部分偏振光中,线偏振光的光强点占总光强的。

《大学物理教学资料》大物复习资料.doc

《大学物理教学资料》大物复习资料.doc

总加速度:1 .牛顿第一定律:当豆外=0时, V =怛矢量O2 .牛顿第二定律:F = ma =m— dtdPdt期末考试说明第1章质点运动学9分,重点:求导法和积分法,圆周运动切向加速度和法向加速度;第2章质点动力学3分,重点:动量定理、动能定理、变力做功;第3章刚体6分,重点:转动定律、角动量守恒定律、机械能守恒定律;第5章振动17分,重点:旋转矢量法、振动方程、速度方程、加速度方程、振动能量、振动合成。

第6章波动14分,重点:波动方程以及波动方程的三层物理意义、相位差与波程差的关系;大学物理1期末复习提纲第一•章质点运动学主要公式:1.质点运动方程(位矢方程):r(t) = x(t)i + y(t)j + z(t)k(x = x(t)参数方程:y = y(f) T消去f得轨迹方程。

Z — Z(02.速度:v =K,加速度:a = ^dt dt3.平均速度—Ar:V =——,平均加速度:5 =—4.角速度:口 =岑,5.线速度与角速度关系:v 角加速度:/3(a)=—dt =0)r6.切向加速度:a T = — = r(3 ,dt ra =』a;第二章质点动力学主要公式:3.牛顿第三定律(作用力和反作用力定律):F = -F^4.动量定理:I = \ 2 F dt = mAv = m(v2~v{) = AP5.动量守恒定律:当合外力理外力=O,AP = Ocx口16 动能定理:W= -dx = \E k =-m(v22-vf)J*】口 27.机械能守恒定律:当只有保守内力做功时,AE =08.力矩:M = rxF大小:M = Fr sin 0方向:右手螺旋,沿了x产的方向。

9.角动量:L = rxP大小:L = mvr sin 3方向:右手螺旋,沿rxP的方向。

淤质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。

完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。

一般的非弹性碰撞:动量守恒,机械能不守恒。

大学物理复习提纲

大学物理复习提纲
复习
第一章 运动和力
一、质点运动学
1、
位置矢量
r
xi
yj
zk
运动方程:
r (t) x(t)i y(t) j z(t)k
x x(t)
分量式:
y y(t) z z(t) (消去t得轨道方程)
2、位移 r r2 r1
(x2 x1)i ( y2 y1) j (z2 z1 )k
m1v0l
(1 3
m2l
2
m1l
2
)
l m2
v0
摆动过程:机械能守恒
m1
1 2
(1 3
m2l 2
m1l 2 ) 2
m1gl(1
cos )
m2 g
l 2
(1 cos )
复习
第 4 章 流体力学
一、理想流体的稳定流动
(1)连续性方程: S1V1 S2V2
(2)伯努利方程:
p1
1 2
v12
gh1
p2
五、电势差
Ua
dq
4 π 0r
(电势叠加法)
b
Uab Ua Ub
E dl
a
六、电势力做的功 Aab q(Ua Ub ) q Uab
复习
第 9 章 恒定磁场
一、磁感应强度:
1、毕奥-萨伐尔定律:dB
0
Id
l
r
4r 3
(1) 一段载流直导线的磁场
B
0 I(c
4πa
os1
cos2)
复习
五、熵增加原理:
S 0
孤立系统中的可逆过程,其熵不变;孤立系统中的 不可逆过程,其熵要增加 .(孤立系统的熵永不减少)

大学物理上复习资料

大学物理上复习资料

内容提要位矢:k t z j t y i t x t r r )()()()(++==位移:k z j y i x t r t t r r ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t∙∙∙→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dt r d dt d t a t ∙∙∙∙∙∙→∆++=++===∆∆=222222220lim υυ圆周运动 角速度:∙==θθωdtd 角加速度:∙∙===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a += 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dt d a t ==沿切线方向 线速率:ωυR =弧长:θR s =解题参考大学物理是对中学物理的加深和拓展。

本章对质点运动的描述相对于中学时更强调其瞬时性、相对性和矢量性,特别是处理问题时微积分的引入,使问题的讨论在空间和时间上更具普遍性。

对于本章习题的解答应注意对基本概念和数学方法的掌握。

矢量的引入使得对物理量的表述更科学和简洁。

注意位矢、位移、速度和加速度定义式的矢量性,清楚圆周运动角位移、角速度和角加速度方向的规定。

微积分的应用是难点,应掌握运用微积分解题。

这种题型分为两大类,一种是从运动方程出发,通过微分求出质点在任意时刻的位矢、速度或加速度;另一种是已知加速度或速度与时间的关系及初始条件,通过积分求出任意时刻质点的速度、位矢或相互间的关系,注意式子变换过程中合理的运用已知公式进行变量的转换,掌握先分离变量后积分的数学方法。

内容提要动量:υm p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M ⨯=质点的角动量(动量矩):υ⨯=⨯=r m p r L 角动量定理:dtL d M =外力 角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW ∙= ⎰∙=B A AB r d F W 一般地 ⎰⎰⎰++=B AB A B A z z z y y y x x x AB dz F dy F dx F W 动能:221υm E k = 动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。

《大学物理》综合复习资料

《大学物理》综合复习资料

《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。

大学物理期末复习知识点

大学物理期末复习知识点

CV ,m T
200J
M R T 200J M mol
CV
,m
i 2
R
3 2
R(单)
CV
,m
i 2
R
5 2
R(双)
Q 500J 单
Q 700J 双
例题
例题:一定质量的理想气体的内能E随体积V的变化关系为一直线, 其延长线过E-V图的原点,如图,试判断此直线表示什么过程?
❖ 分析:内能变化公式为:
Q E W
dQ dE pdV
Q E V2 pdV V1
分析:一定量的理想气体,经历某过程后,温度升高了,则说明( D ): A.吸了热; B.外界对系统做功;C. 系统对外界做功;D.内能增加。
知识点2:等值过程
过程 过程方程 热一律 内能增量ΔE 做功W 吸放热Q 摩尔热容
等容 dV=0 等压 dp=0
卡诺循环(理想热机):两绝热+两等温 ❖ 卡诺热机循环(卡诺正循环) 热机效率的理想值:
1 T2 T1 T2 T1 T1
❖ 卡诺制冷机机循环(卡诺负循环)
制冷系数
e T2 T1 T2
供暖系数: Q1 1 e
W
例题
例:一卡诺热机在1000K和300K的两热源之间工作,求热机效率。
若低温热源不变,要使热机效率提高到80%,则高温热源温度需提 高多少?
平均动能与势能
Ek
Ep
1 4
kA2
1 2
E
思考: 1、当质点以频率ν 做简谐振动时,其动能的变化频率为多少? 2ν 2、简谐振动过程中,动能和势能相等的位置的位移在何处?
sin2 (t 0 ) cos2 (t 0 ) t 0 45或135 x Acos 45或Acos135
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章<上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt>m,y=10sin(0.5πt>m,则质点运动方程的矢量式为r=,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v=,加速度=,速度的大小为,加速度的大小为,切向加速度的大小为0,法向加速度的大小为。

2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI>。

它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s 末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。

b5E2RGbCAP3、某质点做直线运动规律为x=t2-4t+2(m>,在(SI>单位制下,则质点在前5s内通过的平均速度和路程为< C )p1EanqFDPwA、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5m E、2m﹒s-1,13mDXDiTa9E3d4、某质点的运动规律为dv/dt=-kv2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是< C )RTCrpUDGiTA、v=½ kt2+v0B、v=-½ kt2+v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =kt2∕2-v05PCzVD7HxA5、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。

在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?jLBHrnAILg6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?xHAQX74J0X第4章<P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r=coswti+bsinwtj,式中、b、w为正的常量。

试问:该质点的动量大小p=,与X轴夹角tanθ=。

LDAYtRyKfE2、一质量m=10g的子弹,以v0 =400m﹒s-1水平地射入质量为M=390g,静止放置在光滑水平面上的木块中,则子弹与木块一起运动的速度的大小v=;在冲击过程中,子弹对木块作用的冲量大小I=。

Zzz6ZB2Ltk3、一质量为m的质点,以同一速率v沿图中正三角形的水平轨道运动,当质点越过A角时,轨道作用在质点上的冲量的大小为<B )<图略)dvzfvkwMI1A、√2mvB、√3 mvC、2 mvD、mvE、√2∕2 mv4、质量为m的小球,以水平速率+v跟墙壁做弹性碰撞,碰撞后以原速率弹回,小球的动量变化为< C )A、mvB、2 mvC、-2mvD、05、已知一质点对原点O的位置矢量r=6i+8j+10k,受力F=15i+20j,试求:此质点所受的力对原点O及OZ轴的力矩。

rqyn14ZNXI6、如图<图略),一质量为10g的子弹射入一个静止在水平面上的质量是990g的木块内,木块右方连接一轻质弹簧,木块被子弹击中后,向右运动压缩弹簧40cm而停止。

设弹簧的劲度系数为1N﹒m-1,木块与水平面的摩擦系数是0.05,试求子弹的初速度v0的大小。

EmxvxOtOco第5章<P149)1、一飞轮的半径R=1.5m,初始时刻的转速为60∕πr﹒min-1,角加速度为10 rad﹒s-2,在t=2s时刻,飞轮的角速度是22 rad﹒s-1,飞轮边缘上一点的加速度大小是33 m﹒s-2。

SixE2yXPq5 2、一个绕定轴转动的轮子,对轴的转动惯量J=2.0kg﹒m2,正以角速度w0匀速转动,如果对轮子加一恒定的制动力矩M=-7.0N﹒m,经过时间t=8.0s时轮子的角速度大小w=,则w0=。

6ewMyirQFL3、如图<图略),质量为m,长为l的质量均匀分布的细棒,可绕过其一端垂直于纸面的水平轴O转动。

如果把棒拉到水平位置后放手,棒落到竖直位置时,与放置在水平面上A处的质量为M静止的物体做完全弹性碰撞,物体在水平面上向右滑行了一段距离S后停止。

设物体与水平面间的摩擦系数μ处处相同。

求证:μ=6m2l/(m+3M>2﹒SkavU42VRUs<P158)4、如图<图略),A、B为两个相同的绕着轻绳的定滑轮。

A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg。

设A、B两滑轮的角加速度为βA和βB,不计滑轮轴的摩擦,则有< C )y6v3ALoS89A、βA=βBB、βA>βBC、βA< βBD、开始时βA=βB,以后βA< βB5、光滑的水平桌面上有长为2l、质量为m的匀质细杆,可绕通过其中点O且垂直于桌面的竖直固定轴自由转动,转动惯量为1∕3ml2,起初杆静止。

有一质量为m的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v运动,如图<图略)。

当小球与杆端发生碰撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转动角速度是< C )M2ub6vSTnPA、lv∕12B、2v∕3lC、3v∕4lD、3v∕l0YujCfmUCw6、一转动惯量为J的圆盘绕一固定轴转动,起初角速度为w0,设它所受阻力矩和转动角速度成正比,即M=-kw (k为正的常数>。

求圆盘的角速度从w0变为½w0时所需的时间。

eUts8ZQVRd第6章<P187)1、半径为R的半球形碗,内部光滑,开口向上放置。

一质量为m的一滑块在距离碗内底部高为h的内边上静止释放,滑块将沿着碗做简谐振动。

设h《R,求其间谐振动的固有频率及其运动学方程。

sQsAEJkW5T第7章<P215)1、一平面间谐波沿X轴正方向传播。

已知x=-1m处质点的振动方程为y1=Acos(wt+&>,则x=2m处质点的振动方程为。

如果已知波速为v,则此波的波动方程为;在相同条件下,如果平面简谐波沿X轴正方向传播,此波的波动方程为。

GMsIasNXkA<P220)2、如图<图略),质量为m的物体,由劲度系数为k1和k2的两个轻弹簧连接到固定端,在水平光滑导轨上做微小振动,其振动频率为< D )TIrRGchYzgA、v=2π√(k1+ k2>/mB、v=1∕2π√(k1+ k2>/mC、v=1∕2π√(k1+ k2>/mk1k2D、v=1∕2π√k1k2/m(k1+ k2>7EqZcWLZNX3、两个质点各自做简谐振动,它们的振幅相同,周期相同。

第一个质点的振动方程为x1=Acos(wt+>,当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点处在最大正位移处,则第二个质点的振动方程为< B )lzq7IGf02EA、x2=Acos(wt++½π>B、x2=Acos(wt+-½π>C、x2=Acos(wt+-3∕2π>D、x2=Acos(wt++π>4、一沿x轴负方向传播的平面简谐波在t=2s时的波形曲线如图<图略),则原点O的振动方程为< C )zvpgeqJ1hkA、y=0.50cos(πt+½π>(SI>B、y=0.50cos(½πt-½π>(SI>NrpoJac3v1C、y=0.50cos(½πt+½π>(SI>D、y=0.50cos(¼πt+½π>(SI>1nowfTG4KI5、两相干波源S1和S2相距λ∕4<λ为波长),S1的相位比S2的相位超前½π,在S1、S2的连线上,S1外侧各点<例如P点)两简波引起的两简谐振动的相位差是< C )fjnFLDa5ZoA、0B、½πC、πD、3∕2π6、一简谐振动曲线如图<图略),则由图可确定在t=2s时刻质点的位移为0 ,速度为3πcm﹒s-1。

7、一弹簧振子系统具有1.0J的振动能量、0.10m的振幅和1.0m﹒s-1的最大速率,则弹簧的劲度系数为200N﹒s-1,振子的振动频率为1.6Hz 。

tfnNhnE6e58、一驻波表达式为y=2Acos(2π/λ>coswt,则x=-½λ处质点的振动方程是;该质点的振动速度表达式是。

HbmVN777sL9、一质量为0.20kg的质点做简谐振动,其振动方程x=0.6cos(5t-½π>(SI>,求:<1)质点的初速度;<2)质点在正向最大位移一半处所受的力。

10、一平面余弦波在t=0时刻与t=2s时刻的波形如图<图略)。

已知波速为v,求:<1)坐标原点处介质质点的振动方程;<2)该波的波动表达式。

11、一平面简谐波,频率为300Hz,波速为340m﹒s-1,在截面面积为3.00×10-2m2的管内空气中传播,若在10s内通过截面的能量为2.70×10-2J,求:V7l4jRB8Hs<1)通过截面的平均能流;<2)波的平均能流密度;<3)波的平均能量密度。

第17章<下册P626)在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大 2.5λ,则屏上原来的明纹处< B )83lcPA59W9A、仍为明条纹B、变为暗条纹C、既非明纹也非暗纹D、无法确定是明纹还是暗纹2、把一平凸透镜放在玻璃上,构成牛顿环装置。

当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环< B )mZkklkzaaPA、向中心收缩,条纹间隔变小B、向中心收缩,环心呈明暗交替变化C、向外扩张,环心呈明暗交替变化D、向外扩张,条纹间隔变大3、如图所示的单缝夫朗和费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹< C )<图略)AVktR43bpwA、间距变大B、间距变小C、不发生变化D、间距不变,但明暗条纹的位置交替变化4、一束光强I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为I=I0/8。

已知P1和P2的偏振化方向相互垂直,若以入射光线为轴,旋转P3,要使出射光的光强为0,ORjBnOwcEdP2最少要转过的角度是< B )A、30oB、45oC、60oD、90o5、可见光的波长范围是400nm~760nm,用平行的白光垂直入射在平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第 1 级光谱。

相关文档
最新文档