八年级数学实践与探索2
2020—2021年华东师大版八年级数学下册《实践与探索》课时练习及参考答案.docx
(新课标)2017-2018学年华东师大版八年级下册第十七章第五节17.5实践与探索课时练习一、单选题(共15题)1.某同学网购一种图书,每册定价20元,另加书价的5%作为快递运费.若购书x册,则需付款y(元)与x的函数解析式为()A.y=20x+1 B.y=21x C.y=19x D.y=20x-1 答案:B解析:解答:由题意得:购买一册书需要花费(20+20×5%)元,故购买x册数需花费x(20+20×5%)元.即y=x(20+20×5%)=21x选B分析: 根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式2.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系式应为()A.y=40t+5 B.y=5t+40 C.y=5t-40 D.y=40-5t 答案:D解析:解答:依题意得,油箱内余油量y(升)与行驶时间t(小时)的关系式为:y=40-5t选:D.分析:根据:油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式3.某书贩以每本10元的价格从出版社购进某种练习册5000份,以每份30元的价格销售出x份(x<5000),未销售完的练习册又以每份2元的价格由废品收购站收购,这次买卖中该书贩获利y元,则y与x的函数关系式为()A.y=32x+40000(x<5000)B.y=32x-60000(x<5000)C.y=28x+40000(x<5000)D.y=28x-40000(x<5000)答案:D解析:解答: ∵总售价为:30x元,总成本为:10×5000=50000元,由废品收购站收购总价为:2×(5000-x)元,∴赚钱为:y=30x-50000+2×(5000-x)=28x-40000(x<5000)选D.分析: 等量关系为:利润=总售价-总成本+收购站收购总价,把相关数值代入4.某报亭老板以每份0.5元的价格从报社购进某种报纸500份,以每份O.8元的价格销售x 份(x<500),未销售完的报纸又以每份0.1元的价格由报社收回,这次买卖中该老板获利y 元,则y与x的函数关系式为()A.y=0.7x-200(x<500)B.y=0.8x-200(x<500)C.y=0.7x-250(x<500)D.y=0.8x-250(x<500)答案:A解析:解答: ∵总售价为0.8x元,总成本为0.5×500=250元,回收总价为0.1×(500-x),∴获利为:y=0.8x-250+0.1×(500-x)=0.7x-200(x<500)选A.分析:等量关系为:利润=总售价-总成本+回收总价,把相关数值代入5.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900-30t(t>15)C.y=45t-225(t>15)D.y=45t-675(t>15)答案:C解析:解答:由题意可得:y=45(t-15)=45t-225(t>15)选C.分析:利用他从家去上学时以每分钟30米的速度行走了前半程,所用时间为15分钟,进而得出y与t的函数关系式6.函数y=2x-1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:解答: ∵k=2>0,∴函数y=2x-1的图象经过第一,三象限;又∵b=-1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=-x-1的图象经过第一,三,四象限,即它不经过第二象限选B.分析:由于k=2,函数y=2x-1的图象经过第一、三象限;b=-1,图象与y轴的交点在x轴的下方,即图象经过第四象限,即可判断图象不经过第二象限7.“五一”期间,一体育用品商店搞优惠促销活动,其活动内容是:“凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠”.在此活动中,小东到该商店为学校一次性购买单价为70元的篮球x个(x>2),则小东应付货款y(元)与篮球个数x(个)的函数关系式是()A.y=63x(x>2)B.y=63x+100(x>2)C.y=63x+10(x>2)D.y=63x+90(x>2)答案:C解析:解答:∵凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠,∴小东到该商店为学校一次性购买单价为70元的篮球x个(x>2),则小东应付货款y(元)与篮球个数x(个)的函数关系式是:y=(70x-100)×0.9+100=63x+10(x>2)选:C.分析:根据已知表示出买x个篮球的总钱数以及优惠后价格,进而得出等式8.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)x+12(0<x<24)B.y=-12C.y=2x-24(0<x<12)x-12(0<x<24)D.y=12答案:B解析:解答:由题意得:2y+x=24,故可得:y=-1x+12(0<x<24)选B.2分析: 根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围9.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x (升)之间的函数关系是()A.y=7.6x(0≤x≤20)B.y=7.6x+76(0≤x≤20)C.y=7.6x+10(0≤x≤20)D.y=7.6x+76(10≤x≤30)答案:B解析:解答: 依题意有y=(10+x)×7.6=7.6x+76,10≤汽油总量≤30,则0≤x≤20选:B.分析: 根据油箱内汽油的总价=(原有汽油+加的汽油)×单价10.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y=0.5t-2(8<t≤12)答案:D解析:解答: 下坡路的长度=4-1-0.2×5=2千米,下坡路的速度=2÷4=0.5千米/分钟,则y=平路+上坡路+(t-8)×下坡路速度=2+0.5×(t-8)=0.5t-2,即可得y=0.5t-2(8<t≤12)选:D.分析:当8<t≤12时,小高正在走下坡路,求出走下坡路的速度,然后根据y=平路+上坡路+(t-8)×下坡路速度,即可得出答案11.已知,如图,某人驱车在离A地10千米的P地出发,向B 地匀速行驶,30分钟后离P地50千米,设出发x小时后,汽车离A地y千米(未到达B地前),则y与x的函数关系式为()A.y=50x B.y=100x C.y=50x-10 D.y=100x+10 答案:D解析:解答: ∵汽车在离A地10千米的P地出发,向B地匀速行驶,30分钟后离P地50千米(未到达B地前),∴汽车的速度=50÷0.5=100(千米/时),则依题意有:y=100x+10选:D.分析:根据汽车的速度=50÷0.5=100千米/时,汽车离A地距离=10+行驶距离得出12.小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,设该天小明上学行走t分时行走的路程为S米,则当l5<t≤25时,s与t之间的函数关系是()A.s=30t B.s=900-30t C.S=45t-225D.s=45t-675答案:C解析:解答:以每分30米的速度行走了450米用的时间为=15s,t=45030则当l5<t≤25时,速度是每分45米,根据题意列出关系式:s=450+45(t-15)=45t-225(l5<t≤25).选:C.分析:当l5<t≤25时,小明的速度为每分45米,从而可得出s 与t的关系式13.为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t (15<t≤23)的函数关系为()A.y=100t(15<t≤23)B.y=100t-500(15<t≤23)C.y=50t+650(15<t≤23)D.y=100t+500(15<t≤23)答案:B解析:解答: ∵用了8分钟骑行了剩余的800米,=100米/分,∴速度v=8008则可得y=1000+100(t-15)=100t-500(15<t≤23)分析:先求出骑车的速度,然后根据路程=故障前行走的路程+故障后行走的路程,即可得出y与x的函数关系式14.若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为()A.y=t+2.4 B.y=0.5t+1 C.y=0.5t+0.3 D.y=0.5t-0.3答案:C解析:解答:依题意有:y=1.8+0.5(t-3)=0.5t+0.3选:C.分析:根据电话费=3分内收费+三分后的收费列出函数解析式15.平行四边形的周长为50,设它的长为x,宽为y,则y与x 的函数关系为()A.y=25-x B.y=25+x C.y=50-x D.y=50+x 答案:A解析:解答:∵平行四边形的周长为50,∴2x+2y=50,整理,得y=25-x选:A.分析:根据平行四边形的对边相等,周长表示为2x+2y,根据已知条件,建立等量关系,再变形二、填空题(共5题)16.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(单位:cm)与燃烧时间t(单位:h)(0≤t≤4)之间的关系是___答案:h=-5t+20解析:解答: 解:由题意得:5t+h=20,整理得:h=-5t+20,答案为:h=-5t+20分析:根据题意可得等量关系:燃烧的高度+剩余的高度=20cm,根据等量关系列出函数关系式17.为了加强公民节水意识,某市制定了如下用水收费标准,每户每月用水不超过10t时,水价为每吨1.2元;超过10t时,超过的部分按每吨1.8元收费,现有某户居民5月份用水xt(x>10),应交水费y元,则y与x的关系式__________.答案:y=1.8x-6解析:解答: 依题意有y=1.2×10+(x-10)×1.8=1.8x-6.所以y关于x的函数关系式是y=1.8x-6(x>10)答案为:y=1.8x-6分析:水费y=10吨的水费+超过10吨的水费,依此列式18.汽车以60千米/时速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为_________ 答案:s=60t解析:解答: 由路程=速度×时间,可得s与t的函数关系式为:s=60t答案为s=60t分析:根据路程=速度×时间,列出函数关系式19.已知等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),写出y关x函数解析式及自变量x的取值范围________.答案:y=24-2x(6<x<12)解析:解答:∵等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),∴y关于x函数解析式为:y=24-2x,自变量x的取值范围为:6<x<12.分析:利用等腰三角形的性质结合三角形三边关系得出答案20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为________答案:y=6+0.3x解析:解答: 根据题意可得:y=6+0.3x(0≤x≤5)分析:根据高度等于速度乘以时间列出关系式解答即可三、解答题(共5题)21.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为怎样的?答案:解答: 新增加的投资额x万元,x万元.则增加产值250100这函数关系式是:y=2.5x+15.即总产值y(万元)与新增加的投资额x(万元)之间函数关系为y=2.5x+15分析:每增加100元投资,一年增加250元产值,那么增加1万元投资,就要增加2.5万元的产值,根据总产值=现在年产值+增加的年产值可得出关系式22.一拖拉机有油10升,工作时每小时用油5升.写出剩余油量Q升与工作时间t小时之间的关系式,并画出函数的图象.答案:解答: 剩余油量Q升与工作时间t小时之间的关系式为:Q=10-5t(0≤t≤2)分析: 余油量=原有油-每小时用油×时间,函数图象为一条线段23.已知一个长方形周长为60米.求它的长y(米)与宽x(米)之间的函数关系式,并指出关系式中的自变量与函数答案:解答:由题意得,2(x+y)=60x+y=30,即y=30-x (0<x<30)故长方形的长与宽的关系为:y=40-x (0<x<30)分析:根据长方形的周长等于长方形长和宽之和的两倍,写出长与宽的关系式24.A,B两地相距400km,甲车从A地出发,以60km/h的速度匀速行驶到B地,设甲车与B的路程为y(km),行驶的时间为x(h),求y关于x的函数解析式,并写出自变量x的取值范围答案:解答:由题意得:60x+y=400,y=400-6x,400-6x≥0,,解得:x≤2003∵x≥0,∴0≤x≤2003分析:由题意得:甲车的行驶速度×行驶时间+y=400km,根据等量关系可得60x+y=400,然后再变形可得y=400-6x25.等腰三角形的周长为30cm.(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.x+1,0<x<15答案:y=-12解答:∵等腰三角形的周长为30cm,底边长为xcm,腰长为ycm,x+15,自变量的取值∴y与x的关系式为:x+2y=30,即y=-12范围是:0<x<15;(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围答案:y=-2x+30,7.5<x<15解答:∵等腰三角形的周长为30cm,腰长为xcm,底边长为ycm,∴y与x的关系式为:y=-2x+30,自变量的取值范围是:7.5<x <15分析:(1)直接利用三角形周长公式求出y与x的函数关系,进而利用三角形三边关系得出自变量的取值范围;(2)直接利用三角形周长公式求出y与x的函数关系,进而利用三角形三边关系得出自变量的取值范围.。
八年级数学实践与探索2
住院病历书写质量评估标准中有项单项否决。A.30B.31C.32D.33E.34 矿井涌水的大小,通常以每或每涌入矿井多少立方米/水计算。 一个独立光伏系统,已知系统电压48V,蓄电池的标称电压为12V,那么需串联的蓄电池数量为。A.1B.2C.3D.4 [配伍题]具有化生气血功能的脏是。</br>具有朝百脉功能的脏是。</br>具有运化水液功能的脏是。A.肝B.心C.脾D.肺E.肾 用万用表测得某晶体二极管的正反向电阻值相差很大,则说明该管子。A.很好B.已失去单向导电性C.已经击穿D.内部已断路 下列有关赔偿的说法正确的是A、行政机关、司法机关的工作人员是赔偿责任主体B、行政机关、司法机关的工作人员是履行赔偿义务的主体C、行政机关、司法机关的工作人员是原则上侵权主体D、行政机关、司法机关的工作人员是有追偿权 下列哪一种情况是造成铸件冷隔的原因A.铸型反复多次焙烧B.铸造温度过高C.铸金量过多D.包埋材料透气性不良E.铸金量不足 12岁女孩,外院诊断为"先天性心脏病",近因头昏、失眠来诊。体检:肺动脉瓣区有Ⅱ级收缩期杂音,柔和,不传导,肺动脉瓣区第2音正常,无分裂。心电图及超声心动图正常。此时处理应是A.通知家属来院面谈B.请班主任来院联系C.建议每半年随访一次D.解释为生理性杂音,消除顾虑E.作心 世界卫生组织推荐的预防接种的4种疫苗是。A、卡介苗麻疹疫苗百白破混合疫苗脊髓灰质炎疫苗B、卡介苗流感疫苗白喉疫苗脊髓灰质炎疫苗C、卡介苗麻疹疫苗伤寒疫苗霍乱疫苗D、卡介苗麻疹疫苗风疹疫苗脊髓灰质炎疫E、麻疹疫苗流感疫苗天花疫苗脊髓灰质炎疫苗 肠梗阻诊断明确后,最重要的是确定。A.梗阻的原因B.梗阻的部位C.梗阻的程度D.梗阻的性质E.有无发生肠绞窄 下列哪种血液病的诊断需要求助于五官科医师会诊()A.骨髓瘤B.巨幼细胞性贫血C.轻型血友病D.皮肤性淋巴瘤E.粒细胞缺乏症 下列不是引起急性心肌梗死的原因有A.休克B.脱水C.冠脉血栓形成D.妊娠E.严重心律失常 水中少量硫酸盐对人体无影响,但过量时有致写作用,饮用水中硫酸盐的含量不应超过mg/L。 关于限仓制度,以下说法正确是。A、限制投资者最多可持有的期权合约数量B、限制投资者最多可持有的股票数量C、限制投资者单笔最小买入期权合约数量D、限制投资者每个交易日最多可买入期权合约数量 相啮合的一对齿轮旋转方向,每经一齿轮传动副传动,其输出轴变改变旋转方向。A.相反一次B.相同一次C.相反二次D.相同二次 卢梭以小说体裁反映自然主义教育思想的代表作是。A.社会契约论B.忏悔录C.新爱洛绮丝D.爱弥儿 灭火基本方法分隔离法、窒息法、冷却法、抑制法四种.A.正确B.错误 失认症左侧忽略患者常将"标"读作A.标B.木C.示D.二E.小 非溶血性发热反应除表现寒战、高热外,可能还具有下列何种表现A.血压降低,恶心、呕吐,腹泻B.血压升高,头痛、呕吐,腰痛C.血压正常,头痛、呕吐D.皮肤潮红,全身痛E.全身潮红,手脚发麻 二氧化碳是一种不助燃、不导电、无腐蚀性的惰性气体,不空气重.A.正确B.错误 某建筑设计注册执业人员在施工图纸设计过程中,严重违反民用建筑节能强制性标准的规定,造成严重后果,按照《民用建筑节能条例》的规定,可由颁发资格证书的部门吊销执业资格证书,()内不予注册。A.1年B.2年C.3年D.5年 假定KM不变,当少量装货的重心高于船舶的重心时,则装货后船舶的初稳性高度值将。A.减小B.不变C.增大D.变化趋势不定 男性,30岁。自15岁起反复中至大量咯血,有时痰呈脓性。近日咯血50ml就诊。体检:右下肺固定性湿啰音。X线胸片示两肺纹粗乱。临床诊断支气管扩张症。患者要求手术治疗,医生告之要进一步检查,对于该患者能否手术的决定性因素是A.病变范围B.病变部位C.肺功能D.临床症状E.有无继发 下列选项不属于拱桥支架施工控制要点的是。A.预制拼装B.混凝土压注质量控制C.墩顶实心段混凝土裂缝控制D.支架沉降控制E.拱架加载控制 以经营方式租入的固定资产改良支出属于。A、修理费用B、固定资产C、长期待摊费用D、流动性资产 以神经毒素致病的细菌是A.霍乱弧菌B.肉毒梭菌C.伤寒沙门菌D.脑膜炎奈氏菌E.乙型溶血性链球菌 肺吸虫病的临床症状哪项是错误的A.不可能侵犯脑部B.血中嗜酸性粒细胞可增加C.可无明显症状D.可出现肝型E.急性期可出现低热、荨麻疹 影响神经系统发育最重要的激素A.生长素B.甲状腺激素C.糖皮质激素D.胰岛素E.性激素 近年来对痢疾杆菌较为敏感的抗菌药物是A.磺胺药B.庆大霉素C.喹诺酮类D.氨苄西林E.四环素 我们一般使用以下哪个软件用于编制项目实施计划?A.MS-VISIOB.MS-PROJECTC.EXCELD.WORD 可以导致心力衰竭加重的因素A.情绪激动B.感染C.回心血量不足D.不恰当使用β受体阻滞剂E.以上均可 股骨头血液供给的主要来源是。A.腹壁浅动脉的分支B.腹壁下动脉的分支C.旋股内、外侧动脉的分支D.肌骨头圆韧带的小凹动脉E.股骨干的滋养动脉升支 坐高/身高的比值最小是出现在A.婴儿期B.童年期C.青春发育早期D.青春发育中期E.青春发育晚期 安宫牛黄丸的证治要点中不包括()A.神昏谵语B.高热烦躁C.口干舌燥D.舌红或绛E.脉数 关于臀位,哪项错误A.为最常见的异常胎位B.胎儿病死率比枕前位高3~8倍C.多见于经产妇D.必须在妊娠28周左右行外转胎位术E.后出头困难时需产钳助产 高压加热器为防止停用后的氧化腐蚀,规定停用时间小于h可将水侧充满给水A.20B.40C.60D.80 引起副溶血性弧菌食物中毒的好发食品是A.奶制品B.海产品C.豆制品D.剩饭E.肉制品 支票是出票人签发的,委托办理支票存款业务的银行或者其他金融机构在见票时无条件支付确定的金额给收款人或者的票据。 某网点在贷款发放时,操作员执行交易录入相关要素后,系统将会计人员录入要素与电子准贷证有关要素作一致性检查。 局麻药的不良反应有和
八年级数学教案:探索三角形全等的条件 ( 全8课时 )
合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。
新版华东师大版八年级数学下册《17.5实践与探索》说课稿26
新版华东师大版八年级数学下册《17.5实践与探索》说课稿26一. 教材分析华东师大版八年级数学下册《17.5实践与探索》是一节旨在培养学生实践能力和探索精神的课程。
本节课的内容包括两个部分,一部分是实践操作,另一部分是探索研究。
实践操作部分要求学生运用所学知识解决实际问题,提高学生的动手操作能力;探索研究部分则要求学生通过自主探究,发现规律,提高学生的思维能力和创新能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学产生了一定的兴趣。
但是,由于地区差异,学生的数学水平参差不齐,部分学生对数学仍然存在恐惧心理。
此外,学生对于实践与探索类课程的认识还不够深刻,需要在教学过程中加以引导。
三. 说教学目标1.知识与技能目标:学生能够运用所学知识解决实际问题,提高实践操作能力。
2.过程与方法目标:学生通过自主探究,发现规律,提高思维能力和创新能力。
3.情感态度与价值观目标:学生体验数学在生活中的应用,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:学生能够运用所学知识解决实际问题。
2.教学难点:学生通过自主探究,发现规律,提高思维能力和创新能力。
五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、实践操作法等。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。
六. 说教学过程1.导入新课:通过生活中的实际问题,引发学生对数学的兴趣,导入新课。
2.实践操作:学生分组讨论,运用所学知识解决实际问题,提高实践操作能力。
3.探索研究:学生自主探究,发现规律,提高思维能力和创新能力。
4.总结提升:教师引导学生总结本节课的知识点,加深对数学的理解。
5.布置作业:布置适量作业,巩固所学知识,提高应用能力。
七. 说板书设计板书设计遵循清晰、简洁、易懂的原则,突出本节课的关键知识点和思路。
主要包括以下几个部分:1.实践操作部分的板书设计:问题提出、方法指导、操作步骤等。
2.探索研究部分的板书设计:问题提出、思路引导、规律总结等。
八年级数学实践与探索2
[单选,A2型题,A1/A2型题]可精确切割不同组织,最适于镫骨手术的是()。A.准分子激光B.氩离子激光CO2激光D.半导体激光E.Nd:YAG激光 [名词解释]宏观市场营销 [填空题]《学校卫生工作条例》所称的学校,是指普通中小学、农业中学、职业中学、中等专业学校、技工学校、()。 [单选]布氏硬度HB的单位是()A.MPaB.无单位C.kgf/c㎡D.kgf•m/m㎡ [问答题,简答题]噪声测定仪 [单选]车辆检修时,摇枕中心销插入摇枕长度及露出长度均不小于()(从下心盘凸脐上部测量)。A.160mmB.150mmC.100mmD.90mm [单选,A1型题]关于干酪性肺炎的叙述正确的是()A.属于继发性肺结核常见的类型B.易发生在免疫力过强或变态反应过低的病人C.病变性质为渗出性炎D.常由浸润型肺结核恶化进展产生E.由慢性纤维空洞型肺结核经血行播散所致 [单选,A2型题,A1/A2型题]关于阴离子隙,描述错误的是().A.参考范围8~16mmol/LB.细胞外液阴阳离子总数之差C.酮症酸中毒时,阴离子隙增加D.判断代谢性碱中毒病因E.判断代谢性酸中毒病因 [单选,A2型题,A1/A2型题]女性,45岁。新诊断糖尿病,用胰岛素治疗后第5天,血糖从原来甚高很快降至接近正常水平,但突然发生视力模糊,应首先考虑可能是由于().A.已有白内障B.视网膜微血管病变C.合并青光眼D.晶体渗透压改变E.玻璃体出血 [单选]总行程由()和空驶行程构成。A.重车公里B.载重行程C.平均车日行程D.有效行程 [单选,A1型题]下述哪项不是产后出血的原因()A.胎膜早破B.滞产C.子宫畸形D.多次刮宫人流术后E.双胎妊娠 [单选,A1型题]当创伤事件的片段如同黑白影片中的一个个画面一样在当事人的脑中反复闪现时,当事人出现的创伤后反应是()A.焦虑B.抑郁C.精神病性症状D.解离E.创伤后应激障碍 [名词解释]卷内目录 [单选,A2型题,A1/A2型题]2级高血压,血压水平为()A.收缩压140~149mmHg,舒张压90~99mmHgB.收缩压160~179mmHg,舒张压100~109mmHgC.收缩压150~159mmHg,舒张压90~109mmHgD.收缩压170~189mmHg,舒张压90~109mmHgE.收缩压160~179mmHg,舒张压109~119mmHg [单选,A2型题,A1/A2型题]小儿腹股沟斜疝发病的相关因素为()A.生后腹膜鞘状突未闭B.腹股沟区解剖结构薄弱C.剧烈哭闹等腹压增高因素D.小儿多仰卧,双髋屈曲,使腹肌松弛E.以上都是 [单选]过烧缺陷的金相特征主要表现为()。A、晶粒粗化B、性能降低C、晶界氧化和熔化D、氧化脱碳 [单选,A2型题,A1/A2型题]一般小儿在几岁左右平衡、精细动作、粗大运动的协调发育基本成熟()A.10岁B.11岁C.9岁D.7岁E.4岁 [不定项选择]属于从传播途径上降低噪声的方法的是()。A.在工程设计中改进生产工艺和加工操作方法,降低工艺噪声B.在生产管理和工程质量控制中保持设备良好运转状态,不增加不正常运行噪声C.合理安排建筑物功能和建筑物平面布局,使敏感建筑物远离噪声源,实现"闹静分开"D.采用合 [判断题]方法发明一般不能授予专利权。A.正确B.错误 [名词解释]密级 [名词解释]525R型水泥 [单选,A1型题]哪项不是对β内酰胺类抗生素产生耐药的原因()。A.细菌产生β内酰胺酶B.PBPs与抗生素亲和力降低C.PBPs数量减少D.菌细胞壁或外膜的通透性发生改变E.细菌缺少自溶酶 [填空题]影响放大电路工作点稳定的主要因素是()的变化。 [单选]鉴别肾上腺腺瘤与嗜铬细胞瘤主要依据()A.肿瘤大小和外形B.肿瘤内密度C.增强扫描后强化方式D.发病年龄E.是否出现临床症状 [单选]下列卵巢子宫内膜异位囊肿声像图分型,哪一项是错误的A.单纯囊肿型B.多囊型C.实性团块型D.囊内团块型E.囊内均匀点状回声型 [单选]电源频率增加一倍,变压器绕组感应电动势也()。A、增加一倍B、不变C、减少一倍D、略有增加 [单选]沿岸航行中,利用同名侧物标进行转向时,若发现船舶至转向物标的横距比预定的距离大,则应()转向,以使船舶转向后行驶在计划航线上。A.提前B.推迟C.大舵角D.小舵角 [单选,A1型题]形成高带免疫耐受的细胞是()A.B细胞B.T细胞C.T和B细胞D.单核细胞E.NK细胞 [单选]人工砂的总压碎值指标应小于()。A.10%B.20%C.30% [问答题,简答题]什么是“抄表段”? [单选]放射性制剂的放射化学纯度要求()A.放化纯度控制在85%以上B.放化纯度控制在99%以上C.放化纯度控制在95%以上D.放化纯度控制在80%以上E.放化纯度控制在70%以上 [单选]下列不属于容积式泵的是()。A.喷射泵B.凸轮泵C.隔膜泵D.齿轮泵 [单选]含水量为8%的粉煤灰540g,其烘干后质量为()。A.496.8gB.504gC.500gD.无法判定 [单选,案例分析题]某电网企业110kV变电站,两路电源进线,两路负荷出线(电缆线路),进线、出线对端均为系统内变电站,四台主变压器(电压比为110/10.5kV);110kV为单母线分段接线,每段母线接一路进线,一路出线,两台主变;主变高压侧套管CT电流比为3000/1A,其余110kVCT电流 [单选]下列哪种情况不会传播朊毒体病()A.器官移植B.神经外科手术C.进食煮熟的牛肉D.空气传播E.注射尸体来源的人体激素 [单选,A2型题,A1/A2型题]继发性肺结核包括()A.血行播散性肺结核B.浸润型肺结核C.结核性胸膜炎D.其他肺外结核E.原发性肺结核 [单选]区别行政违法与行政不当时,行政违法对应的行为是裁量行为和()。A.意志行为B.羁束行为C.客观行为D.主观行为 [单选,A1型题]下列有关mRNA的特点,哪项是错误的()A.代谢活跃B.分子大小不一C.其5’末端可有"帽",3’末端可有"polyA"D.通常易被碱水解E.主要含在线粒体中 [填空题]钢中的氮可使钢材产生()脆化,降低钢的(),且能引起钢的()脆。 [单选]下列哪些内容应成为航海员判定海图资料是否可信的依据()。Ⅰ.测量时间;Ⅱ.海图比例尺;Ⅲ.新购置图;Ⅳ.航标位置;Ⅴ地貌精度。A.Ⅰ~ⅤB.Ⅰ,Ⅱ,Ⅳ,ⅤC.Ⅱ,Ⅲ,ⅣD.Ⅲ~Ⅴ
八年级数学 一次函数学 实践与探索教案
八年级数学一次函数学实践与探索(1)知识技能目标1.使学生理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解;2.让学生了解到函数是刻画和研究现实世界数量关系的重要数学模型,也是一种重要的数学思想,培养和提高学生在数学学习中的创造和应用函数的能力.过程性目标1.使学生体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律;2.通过图象获取函数相关信息,运用图象来解释实际问题中相关量的涵义;3.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.教学过程一、创设情境问题学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?二、探究归纳问“乙复印社的每月承包费”在图象上怎样反映出来?答“乙复印社的每月承包费”指当x=0时,y的值,从图中可以看出乙复印社的每月承包费是200元.问“收费相同”在图象上怎样反映出来?答“收费相同”是指当x取相同的值时,y相等,即两条射线的交点.我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.问如何在图象上看出函数值的大小?答作一条x轴的垂线,如下图,此时x的值相同,它与哪一条射线的交点较高,就表示对应函数值较大,收费就较高;反之,它与另一条射线的交点较低,就表示对应函数值较小,收费就较低.从图中可以看出,如果每月复印页数在1200页左右,那么应选择乙复印社收费较低.三、实践应用例1小X准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.小X的同学小王以前没有存过零用钱,听到小X在存零用钱,表示从小X存款当月起每个月存18元,争取超过小X.请你写出小X和小王存款和月份之间的函数关系,并计算半年以后小王的存款是多少,能否超过小X?至少几个月后小王的存款能超过小X?解设小X存x个月的存款是y1元,小王的存x个月的存款是y2元,则y1=50+12x,y2=18x,当x =6时,y 1=50+12×6=122(元),y 2=18×6=108(元). 所以半年后小王的存款不能超过小X .由y 2>y 1,即18x > 50+12x ,得x >318,所以9个月后,小王的存款能超过小X .思考:①求⎩⎨⎧=+=.18,1250x y x y 的解.②观察两直线交点坐标与这个方程组的解有什么关系. 结论我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.例2利用图象解方程组⎩⎨⎧+-=-=.1,52x y x y 解在直角坐标系中画出两条直线,如下图所示.两条直线的交点坐标是(2,-1),所以方程组的解为⎩⎨⎧-==.1,2y x例3 下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值X 围); (2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少? (3)问快艇出发多长时间赶上轮船?解(1)设表示轮船行驶过程的函数解析式为y =kx (k ≠0), 由图象知:当x =8时,y =160. 代入上式,得8k =160, 可解得k =20.所以轮船行驶过程的函数解析式为y =20x .设表示快艇行驶过程的函数解析式为y =ax +b (a ≠0), 由图象知:当x =2时,y =0;当x =6时,y =160.代入上式,得⎩⎨⎧=+=+.1606,02b a b a可解得⎩⎨⎧-==.,8040b a所以快艇行驶过程的函数解析式为y =40x -80.(2)由图象可知,轮船在8小时内行驶了160千米,快艇在4小时内行驶了160千米,所以轮船的速度是208160=(千米/时),快艇的速度是404160=(千米/时). (3)设轮船出发x 小时快艇赶上轮船, 20x =40x -80 得x =4,x -2=2.答快艇出发了2小时赶上轮船.四、交流反思1.实际问题中数量之间的相互关系,用函数的思想去进行描述、研究其内在联系和变化规律;2.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.五、检测反馈1.利用图象解下列方程组:(1)⎪⎩⎪⎨⎧+=--=.421,12x y x y (2)⎩⎨⎧-=+=-.5,22y x y x 2.已知直线y =2x +1和y =3x +b 的交点在第三象限,写出常数b 可能的两个数值. 3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元,且都表示对学生优惠.甲旅行社表示:全部8折收费;乙旅行社表示:若人数不超过30人则按9折收费,超过30人按7折收费.(1)设学生人数为x ,甲、乙两旅行社实际收取总费用为y 1、y 2(元),试分别列出y 1、y 2与x 的函数关系式(y 2应分别就人数是否超过30两种情况列出); (2)讨论应选择哪家旅行社较优惠;(3)试在同一直角坐标系内画出(1)题两个函数的图象,并根据图象解释题(2)题讨论的结果.4.药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如下图.请你根据图象:(1)说出服药后多少时间血液中药物浓度最高?(2)分别求出血液中药物浓度上升和下降阶段y 与x 的函数关系式.实践与探索(2)知识技能目标1.使学生理解并掌握一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生能初步运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.过程性目标1.使学生体会到一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生感受到“数形结合”在数学研究和探究现实生活数量关系及其变化规律中的作用.3.能运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.教学过程一、创设情境问题画出函数y =323x 的图象,根据图象,指出:(1) x 取什么值时,函数值y 等于零? (2)x 取什么值时,函数值y 始终大于零?二、探究归纳问一元一次方程323+x =0的解与函数y =323+x 的图象有什么关系?答一元一次方程323+x =0的解就是函数y =323+x 的图象上当y =0时的x 的值.问一元一次方程323+x =0的解,不等式323+x >0的解集与函数y =323+x 的图象有什么关系?答不等式323+x >0的解集就是直线y =323+x 在x 轴上方部分的x 的取值X 围.三、实践应用例1 画出函数y =-x -2的图象,根据图象,指出: (1) x 取什么值时,函数值y 等于零? (2)x 取什么值时,函数值y 始终大于零? 解过(-2,0),(0,-2)作直线,如图.(1)当x =-2时,y =0; (2)当x <-2时,y >0.例2 利用图象解不等式(1)2x -5>-x +1,(2) 2x -5<-x +1.解设y 1=2x -5,y 2=-x +1,在直角坐标系中画出这两条直线,如下图所示.两条直线的交点坐标是(2, -1) ,由图可知:(1)2x-5>-x+1的解集是y1>y2时x的取值X围,为x>-2;(2)2x-5<-x+1的解集是y1<y2时x的取值X围,为x<-2.四、交流反思运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.五、检测反馈1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?2.画出函数y=3x-6的图象,根据图象,指出:(1) x取什么值时,函数值y等于零?(2)x取什么值时,函数值y大于零?(3)x取什么值时,函数值y小于零?3.画出函数y=-x-1的图象,根据图象,求:(1)函数图象与x轴的交点坐标;(2)函数图象在x轴上方时,x的取值X围;(3)函数图象在x轴下方时,x的取值X围.4.如图,一次函数y =kx +b 的图象与反比例函数xmy的图象交于A 、B 两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值X 围.实践与探索(3)知识技能目标1.通过对一次函数性质、一次函数与一次方程、一次不等式联系的探索,提高自主学习和对知识综合应用的能力.2.让学生用简单的已知函数来拟合实际问题中变量的函数关系.过程性目标1.让学生在探索过程中,体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值;2.让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题.教学过程一、创设情境问题为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:能否据此求出V和t的函数关系?将这些数值所对应的点在坐标系中作出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如下图所示的就是一条这样的直线,较近似的点应该是(10,1000.3)和(60,1002.3).设V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=,b=.V=t+.你也可以将直线稍稍挪动一下,不取这两点,换上更适当的两点.二、探究归纳我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究.三、实践应用例1 为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式(不要求写出x 的取值X 围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为cm ,请你判断它们是否配套?说明理由.解(1)设一次函数为y =kx +b (k ≠0),将表中数据任取两组,不妨取,70.0)和,78.0)代入,得 ⎩⎨⎧+=+=.4278,3770b k b k 解得⎩⎨⎧==.8.10,6.1b k 一次函数关系式是y =x +.(2)当x =时,y =×+=≠77.答一次函数关系式是y =x +,小明家里的写字台和凳子不配套.例2 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所买的水果量x (千克)之间的函数关系式,并写出自变量x 的取值X 围.(2)当购买量在什么X 围时,选择哪种购买方案付款最少?并说明理由.解 (1))3000(9≥x x y =甲;)3000(50008≥+=x x y 乙.(2)当乙甲=y y ,即9x =8x +5000时,解得x =5000.所以当x =5000时,两种付款一样;⎩⎨⎧+<≥<.500089,3000x x x y y 时,有当乙甲 解得3000≤x <5000.所以当3000≤x <5000时,选择甲方案付款最少;500089+>>x x y y 时,有当乙甲.解得x >5000.所以当x >5000时,选择乙方案付款最少.四、交流反思1.现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究;2.把实际问题数学化,运用数学的方法进行分析和研究,是常用的、有效的一种方法.五、检测反馈1.酒精的体积随温度的升高而增大,在一定X 围内近似于一次函数关系.现测得一定量的酒精在0℃时的体积是升,在40℃时的体积是升.求出其函数关系式,又问这些酒精在10℃和30℃时的体积各是多少?2.分别写出下列函数的关系式,指出是哪种函数,并确定其中自变量的取值X 围.(1)在时速为60km 的运动中,路程 s 关于运动时间t 的函数关系式;(2)某校要在校园中辟出一块面积为84m 2的长方形土地做花圃,这个花圃的长y (m)关于宽x (m)的函数关系式;(3)已知定活两便储蓄的月利率是0.0675%,国家规定,取款时,利息部分要交纳20%的利息税,如果某人存入2万元,取款时实际领到的金额y (元)与存入月数x 的函数关系式.3.如图,温度计上表示了摄氏温度(℃)与华氏温度(℉)的刻度.能否用一个函数关系式来表示摄氏温度y (℃)和华氏温度x (℉)的关系?如果气温是摄氏32度,那相当于华氏多少度?4.小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x (m 2)表示铺设地面的面积,用y (元)表示铺设费用,制成下图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m 2,铺设客厅的费用为元/ m 2;(2)表示铺设居室的费用y (元)与面积x (m 2)之间的函数关系式为,表示铺设客厅的费用y (元)与面积x (m 2)之间的函数关系式为;(3)已知在小亮的预算中,铺设1m 2的瓷砖比铺设1m 2的木质地板的工钱多5元;购买1m 2的瓷砖是购买1m 2的木质地板费用的43.那么铺设每平方米木质地板、瓷砖的工钱各是多少?购买每平方米的木质地板、瓷砖的费用各是多少?。
17.5 实践与探索 华东师大版数学八年级下册同步练习(含解析)
17.5实践与探索基础过关全练知识点1一次函数与一元一次方程的关系1.如图,一次函数y=kx+b与x轴的交点为P(-2,0),则关于x的一元一次方程kx+b=0的解为()A.x=-2B.x=2C.x=3D.x=-12.(2021北京五中期中)在平面直角坐标系xOy中,函数y=kx和y=-x+b 的图象如图所示,则关于x的方程kx=-x+b的解为.3.如图,根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=-3的解.知识点2一次函数与一元一次不等式(组)的关系4.(2022山东济南长清期中)如图,若一次函数y=-2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式-2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<35.(2022吉林长春汽开区月考)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中如图所示,则关于x的不等式k1x+b<k2x的解集为()A.x<-1B.x>-1C.x<-2D.x>-26.(2021湖南娄底中考)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(-4,0),点B(2,0),则{x+b>0,kx+4>0的解集为()A.-4<x<2B.x<-4C.x>2D.x<-4或x>27.(2022北京房山期中)如图,已知正比例函数y1=ax与一次函数x+b的图象交于点P.下面结论正确的是() y2=-12A.b<0B.当x>0时,y1<0C.当x<2时,y1<y2D.当x>2时,y1<y28.(2022江苏扬州中考)如图,函数y=kx+b(k<0)的图象经过点P,则关于x 的不等式kx+b>3的解集为.9.【新独家原创】如图,直线y=kx+b(k≠0)与直线y=-x-1交于点A(m,1),2则关于x的不等式kx+b>-x-1>0的解集是.210.(2022福建宁德福安期中)已知一次函数y=kx+b(k,b为常数,且k≠0),x与y的部分对应值如下表所示:那么关于x的不等式kx+b<0的解集是.11.已知一次函数y=-2x+4,完成下面的问题.(1)在如图所示的直角坐标系中画出此函数的图象;(2)根据函数图象回答:方程-2x+4=0的解是;当x时,y>2;当-4≤y≤0时,对应x的取值范围是.(k≠0)与正比例函数12.(2022湖南岳阳中考)如图,反比例函数y=kxy=mx(m≠0)的图象交于点A(-1,2)和点B,点C是点A关于y轴的对称点,连结AC,BC.(1)求该反比例函数的解析式;(2)求△ABC的面积;(3)请结合函数图象,直接写出不等式k<mx的解集.x知识点3 一次函数与二元一次方程(组)的关系13.【数形结合思想】(2022福建泉州外国语学校月考)如图所示,如果一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,那么方程组{y =k 1x +b 1,y =k 2x +b 2的解是 ( )A.{x =3y =−1B.{x =−1y =3C.{x =−1y =−3D.{x =1y =314.(2022湖南衡阳弘扬中学期中)若一次函数y =32x +m 与y =-12x +3的图象的交点在第一象限,则m 的取值范围是 ( )A.-9<m <3B.0<m <3C.m <0或m >3D.m <-9或m >315.用图象法解某二元一次方程组时,在同一平面直角坐标系中作出相应的两个一次函数图象,如图,则所解的二元一次方程组为( )A.{y =−x +2y =2x −1 B.{y =2x −1y =32x −12C.{y =2x −1y =−32x +52D.{y =−x +2,y =32x −1216.若方程组{2x +y =b,x −y =a 的解是{x =−1,y =3,则直线y =-2x +b 与直线y =x -a的交点坐标是 .17.【新独家原创】直线y =2x -5与直线y =-x +1交于点A (a ,b ),则a -2+b 0= .18.(2022四川凉山州会东参鱼中学期中)已知:如图,一次函数y 1=-x -2与y 2=x -4的图象相交于点A. (1)求点A 的坐标;(2)一次函数y 1=-x -2与y 2=x -4的图象与x 轴分别相交于点B 、C ,求△ABC 的面积;(3)结合图象,直接写出y 1≥y 2时x 的取值范围.知识点4函数的实际应用19.【跨学科·化学】【教材变式·P64T6变式】药品研究所开发一种抗菌素新药,经过多年的动物实验后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(h)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是.20.【跨学科·物理】(2022湖南郴州中考)科技小组为了验证某电路的电压U(V),电流I(A),电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55(Ω)时,电流I=(A).21.(2022河南南阳镇平期中)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,他选择哪种付费方式,游泳的次数比较多?(3)设方式一的总费用与方式二的总费用的差为y元.①求y与x之间的函数关系式;②小明选择哪种方式比较合算?22.(2022福建泉州安溪期中)某茶叶店计划购进甲、乙两种茶叶共500千克进行销售,进价和售价如下表所示:已知用4 000元购进甲种茶叶的数量与用6 000元购进乙种茶叶的数量相同.(1)求n的值;(2)试写出总利润y(元)与购进甲种茶叶的数量x(千克)之间的函数关系式;(3)在销售过程中发现乙种茶叶滞销,茶叶店决定每千克降价a元,若甲种茶叶的售价不变,且无论乙种茶叶购进多少千克,销售完这500千克茶叶所获利润相同,求a的值.能力提升全练23.(2022湖北荆州中考,6,)下图是同一直角坐标系中函数y1=2x和y2=2x 的图象.观察图象可得不等式2x>2x的解集为()A.-1<x<1B.x<-1或x>1C.x<-1或0<x<1D.-1<x<0或x>124.(2022吉林长春东北师大附中月考,3,)如图,直线y=kx+b(k≠0)与x 轴交于点(-5,0),下列说法正确的是()A.k>0,b<0B.直线上有两点(x1,y1),(x2,y2),若x1<x2,则y1>y2C.直线经过第四象限D.关于x的方程kx+b=0的解为x=-525.【一题多解】(2022江苏泰州中考,12,)一次函数y=ax+2的图象经过点(1,0).当y>0时,x的取值范围是.26.【主题教育·社会主义先进文化】(2022四川成都中考,24,)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?27.(2022四川自贡中考,23,)如图,在平面直角坐标系中,一次函数的图象相交于A(-1,2),B(m,-1)两点.y=kx+b的图象与反比例函数y=nx(1)求反比例函数和一次函数的解析式;(2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.28.【转化思想】(2022福建泉州科技中学期中,23,)如图,已知一次函数y=kx+b与反比例函数y=m交于A(-1,2),B(2,n),与y轴交于C点.x的解集;(1)直接写出不等式kx+b<mx(2)求反比例函数和一次函数的解析式;(3)如图,将y=kx+b向下平移t(t>0)个单位长度,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=6,求t的值.素养探究全练29.【模型观念】(2022河南洛阳嵩县期中)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的图象并探究该函数的过程.结合已有的学习经验,请画出函数y=2x2+1的性质.(1)绘制函数图象.①列表:下表是x与y的几组对应值,其中a=;②描点:根据表中的数值在图中描点(x,y),请补充描出点(0,a);③连线:用平滑的曲线顺次连结各点,请画出函数图象.(2)探究函数性质.的两条性质:①;请写出函数y=2x2+1②.(3)运用函数图象及性质.≥1的解集是.根据函数图象,写出不等式2x2+1答案全解全析基础过关全练1.A 方程kx +b =0的解即为函数y =kx +b 的图象与x 轴交点的横坐标,∴方程kx +b =0的解是x =-2,故选A .2.答案 x =1解析 ∵函数y =kx 和y =-x +b 的图象交于点(1,2),∴关于x 的方程kx =-x +b 的解为x =1.3.解析 (1)当x =2时,y =0,所以方程kx +b =0的解为x =2. (2)当x =1时,y =-1,所以代数式k +b 的值为-1. (3)当x =-1时,y =-3,所以方程kx +b =-3的解为x =-1.4.B ∵一次函数y =-2x +b 的图象与y 轴交于点A (0,3),∴b =3, ∴一次函数的解析式为y =-2x +3, 解不等式-2x +3>0,得x <32.5.B 由题图知,两函数图象的交点坐标是(-1,-2),当x >-1时,直线l 2在直线l 1的上方,故关于x 的不等式k 1x +b <k 2x 的解集为x >-1.故选B.6.A ∵当x >-4时,y =x +b >0,当x <2时,y =kx +4>0, ∴{x +b >0,kx +4>0的解集为-4<x <2.故选A. 7.C 由图象可知,b >0,故A 错误;当x >0时,y 1>0,故B 错误;当x <2时,y 1<y 2,故C 正确;当x >2时,y 1>y 2,故D 错误.故选C. 8.答案 x <-1解析 由题图可知当x <-1时,y >3,即kx +b >3,所以不等式kx +b >3的解集为x <-1.9.答案 -32<x <-12解析 将点A (m ,1)代入y =-x -12得m =-32,∴点A 的坐标为(−32,1).y =-x -12中,令y =0,则-x -12=0,解得x =-12,∴直线y =-x -12与x 轴的交点坐标为(−12,0),∴关于x 的不等式kx +b >-x -12>0的解集为-32<x <-12. 10.答案 x >1解析 观察表格可知,函数值y 随x 的增大而减小,且当x =1时y =0,故关于x 的不等式kx +b <0的解集为x >1. 11.解析 (1)如图.(2)由图象可得当x =2时,y =0,所以方程-2x +4=0的解是x =2.由图象可得当x <1时,y >2.由图象可得当-4≤y ≤0时,2≤x ≤4.12.解析 (1)把A (-1,2)代入反比例函数y =kx,得2=k−1,∴k =-2,∴反比例函数的解析式为y =-2x.(2)易知点B 的坐标为(1,-2). ∵点A (-1,2)与点C 关于y 轴对称, ∴点C 的坐标为(1,2).由点A ,B ,C 的坐标可知AC ∥x 轴,BC ∥y 轴, ∴AC ⊥BC ,∴S △ABC =12AC ·BC =12×2×4=4.(3)由图象可知,不等式kx<mx 的解集为x <-1或0<x <1.13.B ∵两函数图象的交点坐标是(-1,3),∴方程组的解为{x =−1,y =3.故选B.14.A 由题意可得{y =32x +m,y =−12x +3,解得{x =−12m +32,y =14m +94,∵交点在第一象限,∴{−12m +32>0,14m +94>0,解得-9<m <3,故选A.15.A 设过点(1,1)和(0,-1)的直线的解析式为y =kx +b (k ≠0),则{k +b =1,b =−1,解得{k =2,b =−1,所以过点(1,1)和(0,-1)的直线的解析式为y =2x -1.设过点(1,1)和(0,2)的直线的解析式为y =mx +n (m ≠0),则{m +n =1,n =2,解得{m =−1,n =2,所以过点(1,1)和(0,2)的直线的解析式为y =-x +2,所以所解的二元一次方程组为{y =−x +2,y =2x −1.故选A .16.答案 (-1,3)解析 两条直线的交点坐标为两条直线对应的函数解析式组成的二元一次方程组的解. 17.答案 54解析 联立{y =2x −5,y =−x +1,解得{x =2,y =−1,∴点A 的坐标为(2,-1),∴a =2,b =-1,∴a -2+b 0=2-2+(-1)0=14+1=54.18.解析 (1)解方程组{y =−x −2,y =x −4,得{x =1,y =−3,∴点A 的坐标为(1,-3). (2)当y 1=0时,-x -2=0,解得x =-2, ∴B (-2,0),当y 2=0时,x -4=0,解得x =4, ∴C (4,0), ∴CB =6,∴△ABC 的面积为12×6×3=9.(3)由图象可得y 1≥y 2时,x 的取值范围是x ≤1. 19.答案 83≤y ≤8解析 设当0≤x ≤3时,y 与x 之间的函数关系式为y =kx (k ≠0),把(3,8)代入,得8=3k ,解得k =83,∴当0≤x ≤3时,y 与x 之间的函数关系式为y =83x.设当3<x ≤14时,y 与x 之间的函数关系式为y =k'x +b (k'≠0), 易知(3,8)也满足此关系式,把(3,8),(14,0)代入,得{3k′+b =8,14k′+b =0,解得{k′=−811,b =11211,∴当3<x ≤14时,y 与x 之间的函数关系式为y =-811x +11211,当x =1时,y =83,当x =3时,y 有最大值,为8,当x =6时,y =-811×6+11211=6411,∴当1≤x ≤6时,y 的取值范围是83≤y ≤8.20.答案 4解析 将(100,2.2)代入I =UR ,得U =IR =100×2.2=220(V),∴I =220R,当R =55(Ω)时,I =220R=22055=4(A).21.解析 (1)填表如下:(2)方式一:100+5x =270,解得x =34. 方式二:9x =270,解得x =30. ∵34>30,∴选择方式一,游泳的次数比较多. (3)①由题意,得y =100+5x -9x =100-4x ,∴y 与x 之间的函数关系式为y =100-4x (x 为正整数). ②当y =0时,100-4x =0,解得x =25,∴当x =25时,选择方式一和方式二一样合算. 当y <0时,100-4x <0,解得x >25, ∴当x >25时,选择方式一较合算. 当y >0时,100-4x >0,解得x <25, ∴当0<x <25时,选择方式二较合算.综上,当x =25时,选择方式一和方式二一样合算; 当0<x <25时,选择方式二较合算; 当x >25时,选择方式一较合算. 22.解析 (1)依题意得4 000n=6 000n+40,解得n =80,经检验,n=80是原方程的解,且符合题意,故n的值为80.(2)∵n=80,∴n+40=120,即乙种茶叶的进价为120元/千克,依题意,得y=(120-80)x+(200-120)(500-x),即y=-40x+40 000.(3)设乙种茶叶购进m千克,总利润为w元,则甲种茶叶购进(500-m)千克,由题意得w=(120-80)(500-m)+(200-120-a)m=20 000-40m+80m-ma= (40-a)m+20 000,∵无论乙种茶叶购进多少千克,销售完这500千克茶叶所获利润相同,∴w的取值与m无关,∴40-a=0,∴a=40,即当a=40时,无论乙种茶叶购进多少千克,利润都不变.能力提升全练23.D由图象可知,函数y1=2x和y2=2x的图象分别在第一、三象限有一个交点,交点的横坐标分别为1,-1,∴当-1<x<0或x>1时,函数y1=2x的图象在y2=2x 图象的上方,即2x>2x,故选D.24.D由图象知,直线y=kx+b(k≠0)经过第一、二、三象限,∴k>0,b>0,故A错误;∵k>0,∴y随x的增大而增大,∵(x1,y1),(x2,y2)是直线y=kx+b上的两点,且x1<x2,∴y1<y2,故B错误; 直线y=kx+b经过第一、二、三象限,不经过第四象限,故C错误; ∵直线y=kx+b(k≠0)与x轴交于点(-5,0),∴当x=-5时,y=kx+b=0,∴关于x 的方程kx +b =0的解为x =-5,故D 正确.故选D. 25.答案 x <1解析 解法一:将(1,0)代入y =ax +2,得a +2=0,解得a =-2,∴一次函数的解析式为y =-2x +2, 画出函数图象如图:∴当y >0时,x <1.解法二:把(1,0)代入y =ax +2得a +2=0,∴a =-2,∴一次函数的解析式为y =-2x +2,当y >0时,-2x +2>0,∴x <1. 26.解析 (1)当0≤t ≤0.2时,s =15t ;当t >0.2时,s =20t -1. 详解:当0≤t ≤0.2时,设s 与t 之间的函数表达式为s =k 1t (k 1≠0), 将t =0.2,s =3代入得3=0.2k 1,∴k 1=15. ∴当0≤t ≤0.2时,s =15t.当t >0.2时,设s 与t 之间的函数表达式为s =k 2t +b (k 2≠0), 易知t =0.2,s =3也满足此表达式, 将t =0.2,s =3和t =0.5,s =9代入得, {3=0.2k 2+b,9=0.5k 2+b,解得{k 2=20,b =−1, ∴当t >0.2时,s =20t -1. (2)∵v 甲=18 km/h, ∴s 甲=18t. ∵18>15,∴当0≤t ≤0.2时,乙不可能在甲前面.当t >0.2时,v 乙>v 甲,若乙在甲前面,则s 乙>s 甲,∴20t -1>18t ,解得t >0.5.答:0.5小时后,乙骑行在甲的前面.27.解析 (1)把A (-1,2)代入y =n x , 得2=n −1,∴n =-2,∴反比例函数的解析式为y =-2x . 把B (m ,-1)代入y =-2x ,得-1=-2m , ∴m =2,∴B (2,-1).把A (-1,2),B (2,-1)代入y =kx +b ,得{−k +b =2,2k +b =−1,解得{k =−1,b =1,∴一次函数的解析式为y =-x +1.(2)易知D (2,2),AD =3,∵DC =2DA ,∴DC =6,∵点C 是直线l 上一点,∴点C 的坐标为(2,8)或(2,-4).28.解析 (1)由图象可得不等式kx +b <m x 的解集为-1<x <0或x >2. (2)∵A (-1,2)在反比例函数y =m x 的图象上, ∴m =(-1)×2=-2,∴反比例函数的解析式为y =-2x , ∵B (2,n )在反比例函数y =-2x 的图象上, ∴n =-1,即B (2,-1).把A (-1,2),B (2,-1)代入y =kx +b 中,得{−k +b =2,2k +b =−1,解得{k =−1,b =1,∴一次函数的解析式为y =-x +1.(3)如图,连结AF ,BF ,∵DF ∥AB ,∴S △ABF =S △ABD =6(同底等高的两个三角形的面积相等), ∵直线AB 的解析式为y =-x +1,∴C (0,1),∴将直线AB 向下平移t (t >0)个单位长度后的解析式为y =-x +1-t , ∴F (0,1-t ),∴CF =t ,∴S △ABF =S △ACF +S △BCF =12CF ×|x A |+12CF ×|x B |=12t ×(1+2)=6,∴t =4, 故t 的值为4.素养探究全练29.解析 (1)①2.②描点如图.③连线,画出函数图象如图.(2)①函数y=2的图象关于y轴对称.x2+1②函数y=2有最大值,最大值为2.(答案不唯一) x2+1≥1的解集是-1≤x≤1.(3)不等式2x2+1。
实践与探索(2)教学设计说明
实践与探索(2)教学设计说明海口市第一中学陈佳琪“实践与探索(2)——探索一次函数与一元一次方程、一元一次不等式的联系”它是华东师大版九年义务教育八年级教科书下册第十八章第五节“实践与探索”的第2课时内容。
现对本课教案作如下说明:一、本节教学内容的本质、地位以及作用《义务教育数学课程标准》中提出:“应注重体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生,提高他们的推理能力、抽象能力、想象力和创造力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景。
”《实践与探索(2)》是建立在学生对一元一次方程、一元一次不等式以及一次函数的图象、性质等内容的认识上,对已有知识进行更深入的讨论和探索。
在本节课的前一节,教材已经利用实际问题引入,让学生探索了一次函数和二元一次方程组的联系,而本节课就是在此基础上,进一步探索一次函数和一元一次方程以及一元一次不等式之间的联系,是对一次函数及相关内容更深入更全面的学习,对前面的知识进行了延伸和拓展。
从函数的角度对一次方程、一次不等式重新进行分析,这种再认识不是原来水平的回顾复习,而是站在更高起点上的动态分析,是用函数将上述三个内容统一起来,从“数”和“形”两个角度加深了对一元一次方程的解以及一元一次不等式的解集的理解。
“实践与探索”这一内容也是华东师大版教材的一大特色之一,发挥学生的主动性,让学生亲身经历知识的探索过程,进而获得对数学的兴趣。
二、教学目标分析鉴于对教学内容的分析,结合我所教学生的特点和他们已有的认知水平,确定本节课的教学目标为:1.经历知识探究的过程,理解一次函数与一元一次方程以及一元一次不等式之间的联系;2.通过对比、联系,渗透数形结合思想,并能应用其方法解决简单问题;3.在合作学习的过程中培养其观察、分析能力,并应用所学知识解决问题的能力;4.通过实践与探索的过程,加强知识间横向和纵向的融会贯通,体会数学的魅力所在。
八年级数学实践与探索2
八年级数学下册175实践与探索2教案华东师大版
实践与探索进一步培养学生的合作交流的意识,提高学生应用已有知识灵活处理实际问题的能力. 一、设疑自探(10分钟)(一)创设情境,导入新课问题1:画出函数y =23x +3的图象,并利用图象解决下面问题. (1) x 取什么值时,函数值y 等于零?(2) x 取什么值时,函数值y 始终大于零?(3) 一元一次方程23x +3=0的解、不等式y =23x >3的解集与函数y =23x +3的图象有什么关系? (4) 求方程23x +3=0的解和不等式23x +3>0的解集,能否借助函数y =23x +3的图象来解答? 结论:一次函数y =23x +3的函数值为零−−→←对应方程23x +3=0的解. 一次函数y =23x +3的函数值大于零−−→←对应不等式23x +3>0的解集.(二)根据课题,提出问题。
看到这个课题,你想知道什么?请提出来,预设:1. 能通过一次函数图象获得有效信息,培养学生在图形语言、数学语言以及文字语言间相互转化的能力,从中发展形象思维.2. 体会数学建模的思想,增强应用意识.3. 会利用函数图象,求不等式组的解集同学们提出的问题真好,大多都是我们本节应该学习的知识,老师将大家提出的问题归纳、整理,补充为下面的自探提示,希望能对大家本节的学习提供帮助。
(三)出示自探提示,组织学生自探。
( 分钟)自探提示:1. 能通过一次函数图象获得有效信息,培养学生在图形语言、数学语言以及文字语言间相互转化的能力,从中发展形象思维.2. 体会数学建模的思想,增强应用意识3. 会利用函数图象,求不等式组的解集二、解疑合探( 分钟)(一).小组合探。
1.小组内讨论解决自探中未解决的问题;2.教师出示展示与评价分工。
问题展示评价(二).全班合探。
1.学生展示与评价;2.教师点拨或精讲。
① 当x 取什么值时,函数值y 始终小于零?(当x <-2时,y <0)② 当x 取什么值时,函数值小于3?(当x <0时,y <3)③ 当x 取什么值时,函数值0≤y ≤3?(当-2≤x ≤0时,0≤y ≤3)④ 当x 取什么值时,函数图象在第二象限?(三)出示自探提纲,组织学生自探。
八年级数学实践与探索2
电子游戏注册无需存款送体验金
[单选]外阴恶性黑色素瘤的叙述正确的是()A.由结合痣或复合痣发展B.仅发生于老年妇女C.常无明显自觉症状D.宜行外阴根治术E.手术范围应在病变处3~4cm处 [单选]港口与航道工程项目技术管理的重要内容之一是()。A.项目经营目标的确定B.保险种类的比选C.编制施工组织设计D.进度控制的实施 [单选,A2型题,A1/A2型题]不符合β-地中海贫血杂合子的是()A.β-R链合成减少B.HbA减少C.HbA2减少D.HbF增高E.以上都不是 [单选,A2型题,A1/A2型题]男性雄激素的作用不包括()A.皮脂腺分泌多,有痤疮B.腋毛多C.阴毛呈菱形分布D.声音高调E.睾丸和阴茎的发育 [单选]力的作用点是指力在物体上的()。A.作用位置B.重心C.中心D.圆心 [单选,A2型题,A1/A2型题]升药的功效是()A.清热解毒B.杀虫止痒C.拔毒去腐D.敛疮生肌E.消肿散结 [单选,A1型题]患者平卧,患肢抬高70°~80°,持续60秒,若出现麻木、疼痛、苍白,说明()A.Pratt试验阳性B.Buerger试验阳性C.Trendelenburg试验阳性D.Penthes试验阳性E.腰交感神经阻滞试验阳性 [单选]可出现明显意识障碍的疾病是()。A.强迫症B.恐惧症C.疑病症D.癔病E.惊恐发作 [单选,A2型题,A1/A2型题]一颅脑外伤患者,可正确回答问题,可自动睁眼,右侧肢体偏瘫,刺痛可回缩,左侧肢体可随意运动。GCS评分为()。A.15分B.14分C.13分D.12分E.11分 [单选]电动机的多地控制,其线路上控制按钮的连接原则是()。A.启动按钮要并联B.停止按钮要并联C.启动按钮要串联D.都可以 [填空题]安全生产的“三同步”是指安全生产与经济建设、()、()、同步发展、同步实施。Байду номын сангаас[单选,A2型题,A1/A2型题]地高辛的半衰期为40.8h,在体内每天消除剩余量的()A.33.48%B.40.76%C.66.52%D.29.41%E.87.67% [单选]经复议机关复议,复议机关改变原具体行政行为的,()是被告。A.原机关和复议机关B.复议机关C.复议机关的上级机关D.原机关 [单选]雪情通告的标志是().A.NOTAMSB.SNOTAMC.SNOWTAM [单选]当我们每个月给工人发放工资时,货币执行的是()。A.交换媒介B.价值标准C.延期支付标准D.储藏手段 [单选]选择ERP软件产品时,以下哪种因素不在我们的考虑范围?()A.供应商的实力、信誉B.实施队伍、服务C.产品的已有客户群D.企业和产品的宣传 [问答题,简答题]如何检测土方路基的弯沉值? [填空题]仁果类果树有:()、()、()、()、()等 [单选]“原来喜欢的东西现在不喜欢了”体现了()。A.质量的经济性B.质量的时效性C.质量的广义性D.质量的相对性 [单选]一项病例对照研究,500名病例中有暴露史者400例,而500名对照中有暴露史者100例,其OR值为()A.1.25B.1.6C.16D.160E.无法计算 [单选]胃壁固有肌层声像图上回声为()。A.极高回声B.高回声C.中度回声D.低回声E.不确定 [单选]滨湖控制开发带的区域功能是?()A、强化生态功能,禁止开发建设B、构建生态屏障,严格控制开发C、集聚经济人口,高效集约开发。 [单选]处理放射治疗鼻出血时,下列哪项是错误的()A.病人取坐位或卧位,为稳定情绪可用镇静剂B.出血不多可用麻黄素滴鼻或填入棉花块C.出血较多者可做鼻腔、后鼻孔填塞D.难以控制的鼻出血可做颈外动脉结扎E.因放射治疗引起的鼻出血不必做合血准备,输液即可 [单选]县级土地承包主管部门在农村土地承包管理工作中的任务是()。A.设置权证、承包合同登记簿、纠纷调解登记簿、回访检查登记簿B.制定档案科学的检索方法C.妥善保管档案D.指导乡镇档案管理工作 [单选]充分利用原材料,做到物尽其用,这是职业道德中()的要求A、讲究公德B、发对浪费C、钻研业务D、尽职尽责 [单选]提到信用一般就会想到银行和贷款。长期以来我国的信用交易主要集中在()A.企业B.银行C.投资基金D.政府债券 [单选,A1型题]参与特异性抗细胞外病原体感染的主要免疫效应成分是()A.CTLB.Th1C.巨噬细胞D.IgE.NK细胞 [问答题,简答题]在什么情况下需要同时启动两台膨胀机,操作时应该注意什么? [单选]煤矿职工因行使安全生产权利而影响工作时,有关单位不得扣发其工资或给予处分,由此造成的停工、停产损失,应由()负责。A.该职工B.企业法人C.责任者D.工会 [单选]某一阶段的咨询任务是保证项目按设计和计划的进度、质量、投资预算顺利实施建设,最后达到预期的目标和要求,这一阶段是()。A.项目准备阶段B.项目运营阶段C.项目前期阶段D.项目实施阶段 [单选,A2型题,A1/A2型题]临床最常见周围性面瘫的类型是()。A.先天性B.感染性C.外伤性D.原发性E.医源性 [单选]不能载货的专用作业车车辆按()收费。A.行驶证上的总质量B.改为按总质量折半后吨位计量收费C.原核载质量D.计重收费 [填空题]1948年,美国数学家()发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。 [单选]湿疹急性期皮疹无糜烂渗液者外搽()A.硼酸软膏B.氧化锌油C.水杨酸软膏D.炉甘石洗剂E.氧化锌糊剂 [问答题,简答题]母亲节、父亲节分别是哪一天? [单选]双金属片是由两种()不同的金属片叠焊在一起构成的。A、温度B、质量C、体积膨胀系数D、线膨胀系数 [单选]保险合同的当事人是()。A.受益人与保险人B.投保人与被保险人C.投保人与保险人D.被保险人与保险人 [判断题]为了保证錾子具有良好的硬度,应对錾子进行热处理,即淬火。()A.正确B.错误 [多选]关于性病性淋巴肉芽肿描述正确的是()A.病原体为6、11、15血清型沙眼衣原体B.生殖器初疮主要表现为外生殖器小丘疹,疱疹,糜烂或溃疡C.常伴有发热、头痛、乏力等全身症状D.可并发无菌性脑膜炎、心包炎等并发症 [单选]携带进境的动物、动物产品和其他检疫物,经检验检疫不合格又无有效办法处理或经除害处理后不合格的,作限期退回或销毁处理,并由口岸检验检疫机构签发()。A.《携带物检疫处理证》B.《出人境人员携带物检疫处理证》C.《携带物留检/处理凭证》D.《出入境人员携带物留检/处理
八年级数学下册 17.5 实践与探索(第1课时)教案 (新版)华东师大版
实践与探索
一、学习目标确定的依据
1、课程标准
探索根据一次函数的图象求二元一次方程组的解,并能从图象上获取信息的能力。
利用数形结合解决实际问题
2、教材分析
本节课是初中数学华师大版八年级下册第17章函数及其图象第五大节:实践与探索问题1,是学生在掌握正比例函数和一次函数性质及图象的基础上,进一步利用函数解决实际问题。
教材通过实例提出问题,通过对问题的观察、分析综合应用函数及其图象解决实际问题。
为学生能够灵活利用函数及其图象解决综合性实际问题奠定基础。
3、中招考点
函数及其图象中的实践与探索是中招的常考题,多与其它几何综合性问题渗透在一起。
4、学情分析
实践与探索问题是学生在掌握函数的性质及图象的基础上进行学习的,学生已经对函数和函数图象有了初步的了解,因此学生对利用函数图象决问题会有较浓厚的兴趣。
二、学习目标
1、能根据一次函数的图象求二元一次方程组的解。
2、会从图象上获取信息,利用数形结合解决实际问题
三、评价任务
学生通过对例题的学习能正确利用数形结合解决实际问题。
四、教学过程
、对于y1=2x-1, y2=4x-2,下列说法:
①两直线平行;②两直线交y轴于同一点;
③两直线交于x轴于同一点;④方程2x-1 =0与
的解相同;⑤当x=1时,y1=y2=1. 其中。
数学:18.5《实践与探索》(第3课时)课件(华东师大版八年级下)
自助取袋机
[单选]当归采收加工中所用的干燥方法是A.烘干B.阴干C.煤火熏干D.晒干E.烟火慢慢熏干 [单选,A1型题]前置胎盘的主要临床特征是()。A.腹部小于妊娠月份B.无痛性反复阴道出血C.突然发生持续性腹痛或腰酸D.恶心、呕吐E.贫血 [填空题]带变频调速的螺旋给料机在运行中突然跳停,可能的原因是()故障、给料电动机本体()或机械传动部分卡涩。 [配伍题]属病因诊断的是()</br>属病理生理诊断的是()</br>属病理解剖诊断的是()A.心房颤动B.心慌气短C.下肢浮肿D.二尖瓣狭窄E.风湿性心脏病 [单选,A4型题,A3/A4型题]患者女,5岁。1岁前妈妈就觉得她跟其他小孩不同,抱她的时候患儿不期待,没有愉悦满足的情感表达,目光一般不追随和注视大人,1岁会走路,到目前为止仍不会叫爸妈,和其他小朋友在一起时,总自己玩自己的,有时和别人凑到一起也只会搞破坏,不会玩过家家的 [单选]原发性醛固酮增多症病人可出现碱中毒,与其有关的电解质紊乱是()A.钠B.钾C.氯D.钙E.镁 [填空题]“解放思想、实事求是”是邓小平理论的()。 [单选]关于饭店营销,下列说法错误的是()。A.饭店营销是指饭店经营者通过为客人创造产品和价值并进行交换而满足其需要和欲望的一系列有计划、有组织的活动B.饭店营销就是对饭店所提供服务的销售C.饭店营销是通过客人的满意来实现饭店目标D.饭店营销先通过确定客人的需求,然后向 [单选]公司法规定,有限责任公司可以设经理,由()决定聘任或者解聘。A.董事会B.监事会C.股东会D.经理会 [单选]正常情况下下列哪项不对A.主动脉压>肺动脉压B.左室压>右室压C.左房压>右房压D.肺毛压>肺动脉压E.肺动脉压>肺静脉压 [单选]仓储管理包括()两部分。A.仓库管理和库存管理B.仓库管理和储存管理C.库房管理和储存管理D.库房管理和库存管理 [单选]生产物流控制的核心是()。A.在制品B.过程C.进度D.偏差 [单选,A1型题]儿童生活安排基本原则中,错误是()A.针对不同年龄阶段和不同健康状况儿童制定作息制度B.根据大脑皮质功能活动特点及脑力工作能力变化规律安排日常生活C.既能满足规定的学习任务,又能满足生活需要D.学校、托幼机构与家庭作息时间一致E.学校和家长可根据孩子个体的 [单选,A2型题,A1/A2型题]关于临床生物化学的作用中,哪一个不正确()A.研究药物在体内的代谢B.阐明疾病发生发展过程中的生物化学变化C.阐明疾病生化诊断的原理D.论述疾病的生化机制E.阐明有关疾病的生物化学基础 [单选,A1型题]能涌吐痰食,祛湿退黄的药物是()A.瓜蒂B.半夏C.天南星D.桔梗E.胆矾 [单选]关于行政不当的说法,正确的是()。A.行政不当与行政违法一样,也会引起相应的法律效果B.目前在我国,行政不当一律导致该行为无效C.行政不当与承担行政责任之间具有必然的因果联系D.行政不当不要寻求法律救济,以保障相对人的合法权益 [单选]甲公司本月销售情况如下(1)现款销售20台A产品,总售价80000元(不含增值税,下同)已入账(2)附有退货条件的销售2台B产品,总售价23000元已入账,退货期3个月,退货的可能性难以估计(3)需要安装的销售5台C产品,总售价30000元,款项尚未收取,安装工作属于销售业务的重要组成部 [单选]流行性斑疹伤寒多于何时出现皮疹()A.第1病日B.第2~3病日C.第4~5病日D.第8~10病日E.第11~14病日 [多选]依照《商业银行并购贷款风险管理指引》,下列属于商业银行应评估的是()。A、并购双方的产业相关度和战略相关性,以及可能形成的协同效应B、并购双方从战略、管理、技术和市场整合等方面取得额外回报的机会C、并购后的预期战略成效及企业价值增长的动力来源D、并购后新的管 [单选,A2型题,A1/A2型题]透明大体标本的制作中有关填充剂及其配制,下面的描述不妥当的是()。A.填充剂包括:明胶填充剂和乳胶填充剂B.填充剂配制时根据需要添加染料C.加染料时,边加边搅拌直到染色满意为止D.配制填充剂时,不必过滤即可使用E.配制填充剂时,通常用纱布过滤后使 [填空题]填料塔与板式塔相比,其有结构()()低等优点。 [问答题,案例分析题]阅读下列说明,回答问题1至问题3【说明】某学校见到其他学校都陆续建立了多媒体网站作为学校的一个窗口,也想自己建立一个,就请一个计算机公司帮助建立。在公司人员和学校负责人讨论需求时,学校负责人并不能清晰表达,只能简要表达要满足学校教学和办公需求 [填空题]在认识论层次上研究信息的时候,必须同时考虑到()、()和()三个方面的因素。 [单选,A2型题,A1/A2型题]椎弓和椎体围成()A.椎间孔B.椎孔C.横突孔D.椎骨上下切迹E.椎管 [单选]投资体制改革充分体现了科学发展观的要求,项目核准咨询也完全不同于传统的项目评估,这体现于()。A.由项目的外部条件评价转变到项目内部影响评价B.由项目的微观层次分析上升到国家的宏观层次C.由项目的宏观层次分析上升到地区的微观层次D.由工程项目分析为主变为以经济、社 [单选,A2型题,A1/A2型题]DSA基于()A.数字荧光成像B.超声波成像C.断层成像D.核素成像E.模拟成像 [问答题,简答题]压缩机内有撞击声的原因? [填空题]开水蒸气阀门时,开阀前应先打开排凝阀,将设备或管道内的()排净,关闭排凝阀后再由()到()逐渐把蒸汽阀打开,以防止蒸汽遇水造成水锤现象,产生震动而损坏设备和管道。 [填空题]党的七届二中全会提出的“两个务必”的具体内容是()。 [单选]()可以使一些不适宜通过劳动力市场调节实现就业的残疾人开辟特殊并且可行的就业领域。A.自主创业B.灵活就业C.集中就业D.按比例就业 [单选]AATCC15-2009耐汗渍色牢度测试试样的组合重锤重约()A.4.0kgB.4.5kgC.5.0kgD.5.5kg [单选]在稀溶液凝固点降低公式△tf=Kfb中,b表示的是溶液的。A.摩尔分数B.质量摩尔浓度C.物质的量浓度D.质量分数 [单选]肺癌病人的手术治疗是指()A.肺叶切除术B.肺楔形切除术C.肺段切除术D.肺叶切除+肺萎陷疗法E.肺叶切除术+淋巴结清扫术 [单选]HFDSC的遇险与安全频率之一是8414.5kHz,其波长是()。A、36千米B、3.6米C、36米D、无法计算 [单选]下列哪一项符合高血压的治疗原则().A.联合用药,达到降压目标后停药B.症状不重者不宜使用降压药C.联合用药,达到降压目标后短期服用维持量D.联合用药,达到降压目标后长期服用维持量E.间断用药,避免产生抗药性 [问答题]教师的权利有哪些? [单选]某男,45岁,病起5日,恶寒发热,鼻塞流涕,少汗身痛,咳嗽气急,痰稠色黄,咽痛声哑,苔薄黄,舌尖红,脉浮数。证属()A.风寒束表证B.风热犯表证C.暑湿伤表证D.气虚感冒E.阴虚感冒 [名词解释]需要 [单选,A1型题]参与特异性抗细胞外病原体感染的主要免疫效应成分是()A.CTLB.Th1C.巨噬细胞D.IgE.NK细胞 [填空题]若已知两点的坐标为A(100,100)和B(150,50),则直线AB的坐标方位角为()。
2022年华师大版《 实践与探索2》公开课教案
26.3 实践与探索〔2〕教学目标【知识与能力】图象与x轴交点的个数与一元二次方程的根的个数之间的关系.2.理解二次函数与一元二次方程、一元二次不等式之间的联系,会利用二次函数的图象求一元二次方程的近似解、一元二次不等式的解集。
【过程与方法】能够从函数表达式的角度分析二次函数与一元二次方程和一元二次不等式之间的关系,同时也能够从函数图象的角度分析函数与方程、不等式之间的关系。
【情感态度价值观】通过观察二次函数的图象与x轴的交点个数,讨论一元二次方程根的情况,进一步体会数形结合思想。
教学重难点【教学重点】利用二次函数图象求一元二次方程的近似解及一元二次不等式的解集。
【教学难点】理解二次函数的图象与x轴的交点个数与一元二次方程的根的个数之间的关系,渗透数形结合思想是教学的难点。
课前准备多媒体教学过程图26-3-55-3-55所示,以40 m/s的速度将小球沿与∴抛物线的函数表达式为y=x2-4x+3.【拓展提升】例3 如图26-3-60,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.图26-3-60(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.解:(1)将点A(1,0)的坐标代入y=(x-2)2+m得(1-2)2+m=0,解得m=-1,所以二次函数的表达式为y=(x-2)2-1=x2-4xx=0时,y=4-1=3,所以点C的坐标为(0,3),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=2,所以点B的坐标为(4,3),将A(1,0),B(4,3)的坐标代入y=kx+b,所以一次函数表达式为y=x-1.(2)当kx+b≥(x-2)2+m时,1≤x≤4.师生活动:学生自主解答后,教师进行讲解,学生再次审题,完成对题目的重新整理.【达标测评】1.4 解直角三角形教学重点归纳直角三角形的边、角之间的关系,利用这些关系式解直角三角形,并利用解直角三角形的有关知识解决实际问题.教学难点利用解直角三角形的有关知识解决实际问题.教学用具执教者教学内容共案个案一、新课引入:1、什么是解直角三角形?2、在Rt△ABC中,除直角C外的五个元素间具有什么关系?请学生答复以上二小题,因为本节课主要是运用以上关系解直角三角形,从而解决一些实际问题.学生答复后,板书:(1)三边关系:a2+b2=c2;(2)锐角之间关系:∠A+∠B=90°;(3)边角之间关系第二大节“解直角三角形〞,安排在锐角三角函数之后,通过计算题、证明题、应用题和实习作业等多种形式,对概念进行加深认识,起到稳固作用.同时,解直角三角形的知识可以广泛地应用于测量、工程技术和物理之中,主要是用来计算距离、高度和角度.其中的应用题,内容比较广泛,具有综合技术教育价值.解决这类问题需要进行运算,但三角的运算与逻辑思维是密不可分的;为了便于运算,常常先选择公式并进行变换.同时,解直角三角形的应用题和实习作业也有利于培养学生空间想象能力,要求学生通过观察,或结合文字画出图形,总之,解直角三角形的应用题和实习作业可以培养学生的三大数学能力和分析问题、解决问题的能力.解直角三角形还有利于数形结合.通过这一章学习,学生才能对直角三角形概念有较完整认识,才能把直角三角形的判定、性质、作图与直角三角形中边、角之间的数量关系统一起来.另外,有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章知识加以处理.基于以上分析,本节课复习解直角三角形知识主要通过几个典型例题的教学,到达教学目标.二、新课讲解:1、首先出示,通过一道简单的解直角三角形问题,为以下实际应用奠定根底.根据以下条件,解直角三角形.教师分别请两名同学上黑板板演,同时巡视检查其余同学解题过程,对有问题的同学可单独指导.待全体学生完成之后,大家共同检查黑板上两题的解题过程,通过学生互评,到达查漏补缺的目的,使全体学生掌握解直角三角形.如果班级学生对解直角三角形掌握较好,这两个题还可以这样处理:请二名同学板演的同时,把下面同学分为两局部,一局部做①,另一局部做②,然后学生互评.这样可以节约时间.2、出例如题2.在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB.此题一方面可引导学生复习仰角、俯角的概念,同时,可引导学生加以分析:如图6-39,根据题意可得AB⊥BC,得∠ABC=90°,△ABD和△ABC都是直角三角形,且C、D、B在同一直线上,由∠ADB=45°,AB=BD,CD=20米,可得BC=20+AB,在Rt△ABC中,∠C=30°,可得AB与BC之间的关系,因此山高AB可求.学生在分析此题时遇到的困难是:在Rt△ABC中和Rt△ABD中,都找不出一条边,而题目中的条件CD=20米又不会用.教学时,在这里教师应着重引②,通过①,②两式,可得AB长.解:根据题意,得AB⊥BC,∴∠ABC=Rt△.∵∠ADB=45°,∴AB=BD,∴BC=CD+BD=20+AB.在Rt△ABC中,∠C=30°,通过此题可引导学生总结:有些直角三角形的条件中没有一条边,但二边的关系,结合另一条件,运用方程思想,也可以解决.3.例题3(出示投影片)如图6-40,水库的横截面是梯形,坝顶宽6m,坝高23m,斜坡AB坝底宽AD(精确到0.1m).坡度问题是解直角三角形的一个重要应用,学生在解坡度问题时常遇到以下问题:1.对坡度概念不理解导致不会运用题目中的坡度条件;2.坡度问题计算量较大,学生易出错;3.常需添加辅助线将图形分割成直角三角形和矩形.因此,设计此题要求教师在教学中着重针对以上三点来考查学生的掌握情况.首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,那么BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.。
新版华东师大版八年级数学下册《17.5实践与探索第2课时》教学设计
新版华东师大版八年级数学下册《17.5实践与探索第2课时》教学设计一. 教材分析华东师大版八年级数学下册《17.5实践与探索第2课时》的主要内容是立体几何图形的性质和判定。
这部分内容是学生在学习了平面几何的基础上,进一步拓展到立体几何的学习,对于培养学生的空间想象能力和思维能力具有重要意义。
本节课的内容主要包括长方体的对角线、长方体的表面积和体积等性质,以及如何运用这些性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本知识,对于图形的性质和判定有一定的了解。
但立体几何的学习对于学生来说是一个新的挑战,需要学生在空间中进行思考。
此外,学生对于实际问题的解决能力也有待提高。
三. 教学目标1.让学生掌握长方体的对角线、表面积和体积的性质。
2.培养学生运用立体几何知识解决实际问题的能力。
3.提高学生的空间想象能力和思维能力。
四. 教学重难点1.长方体的对角线、表面积和体积的性质。
2.如何运用立体几何知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探究;通过案例分析,让学生了解实际问题是如何转化为立体几何问题的;通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.PPT课件2.立体几何模型3.实际问题案例七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,如点、线、面的性质和判定。
然后引入立体几何的概念,让学生了解本节课将要学习的内容。
2.呈现(15分钟)利用PPT课件和立体几何模型,展示长方体的对角线、表面积和体积的性质。
让学生直观地了解长方体的结构特征,并引导学生进行观察和思考。
3.操练(20分钟)针对长方体的对角线、表面积和体积的性质,设计一系列练习题。
让学生通过计算和证明,加深对性质的理解和运用。
同时,引导学生将实际问题转化为立体几何问题,运用所学的知识解决。
4.巩固(10分钟)通过小组合作学习,让学生互相讨论和交流,巩固所学知识。
八年级数学实践与探索2
《探究在线》P39—P40 基础练兵 13—17
解:过(-2,0),(0,-2)作直线,如图.
(1)当x=-2时,y=0; (2)当x<-2时,y>0.
实践运用
例2 利用图象解不等式: (1)2x-5>-x+1, (2) 2x-5<-x+1.
解:设y1=2x-5,y2=-x+1,
在直角坐标系中画出这两条直线,如图.
两条直线的交点坐标是(2, -1) ,可知: (1)2x--5>-x+1的解集是y1>y2时
x的取值范围,为x>-2; (2)2x-5<-x+1的解集是y1<y2时
x的取值范围,为x<-2.Fra bibliotek反馈练习
1.已知函数y=4x-3.当x取何值时,函数的 图象在第四象限?
2.画出函数y=3x-6的图象,根据图象,指出: (1) x取什么值时,函数值 y等于零? (2) x取什么值时,函数值 y大于零? (3) x取什么值时,函数值 y小于零?
教学课件网:/
木丛样的墨灰色飞烟,加速射向远方琳可奥基官员怒哮着音速般地跳出界外,狂速将细长的淡灰色怪石一样的脑袋复原,但元气已受损伤转壮扭公主:“哈哈!这位官家的技术空前温柔哦!相当 有迷信性呢!”琳可奥基官员:“哇咻!我要让你们知道什么是威猛派!什么是疯狂流!什么是野蛮科学风格!”壮扭公主:“哈哈!小老样,有什么创意都弄出来瞧瞧!”琳可奥基官员:“哇 咻!我让你享受一下『彩鸟骨怪船头宝典』的厉害!”琳可奥基官员突然搞了个,醉兽花生翻九千度外加鹤喝水管旋一百周半的招数,接着又演了一套,波体鱼摇腾空翻七百二十度外加飞转三周 的壮观招式!接着像天蓝色的悬角丛林兽一样猛啐了一声,突然玩了一个独腿狂跳的特技神功,身上眨眼间生出了九十只很像水桶一样的纯黑色脖子。紧接着颤动很大的牙齿一喊,露出一副秀丽 的神色,接着摇动结实的仿佛扫帚般的腿,像水蓝色的亿血牧场鳄般的一吼,寒酸的硕长的眉毛猛然伸长了九十倍,散射的土黄色水精一样的气味也顿时膨胀了九十倍……最后颤起仿佛扫帚般的 腿一摆,变态地从里面抖出一道神光,他抓住神光野性地一扭,一件黑森森、灰叽叽的咒符『彩鸟骨怪船头宝典』便显露出来,只见这个这件东西儿,一边抽动,一边发出“啾啾”的幽响……… …猛然间琳可奥基官员快速地念起念念有词的宇宙语,只见他轻飘的暗橙色细小棕绳一样的胡须中,猛然抖出四十道风车状的天网,随着琳可奥基官员的抖动,风车状的天网像球拍一样在额头上 独裁地弄出团团光甲……紧接着琳可奥基官员又连续使出五十五路玄雀田埂飞,只见他老态的舌头中,轻飘地喷出四十组旋舞着『金丝春神石板珠』的椰壳状的嘴唇,随着琳可奥基官员的旋动, 椰壳状的嘴唇像泡菜一样念动咒语:“金掌哔 嘟,水桶哔 嘟,金掌水桶哔 嘟……『彩鸟骨怪船头宝典』!大爷!大爷!大爷!”只见琳可奥基官员的身影射出一片葱绿色灵光,这时 裂土而出快速出现了四群厉声尖叫的紫玫瑰色光犀,似幻影一样直奔葱绿色金辉而来……,朝着壮扭公主大如飞盘的神力手掌狂劈过来!紧跟着琳可奥基官员也摇耍着咒符像弯弓般的怪影一样向 壮扭公主狂劈过来壮扭公主突然耍了一套,窜豹石板翻九千度外加犀哼撬棍旋一百周半的招数!接着又玩了一个,妖体马飞凌空翻七百二十度外加呆转九百周的震撼招式。接着像亮紫色的万喉戈 壁豹一样怒咒了一声,突然搞了个倒地蠕动的特技神功,身上瞬间生出了九十只活像烟斗般的深红色脚趾……紧接着扭动刚劲有力、无坚不摧的粗壮手指一吼,露出一副典雅的神色,接着晃动奇 如熨斗的手掌,像湖青
八年级下学期数学函数及其图象实践与探索02
一次函数实践与探索02一、选择题1.将直线2y x =向上平移1个单位,得到的直线的解析式为 ( ) (A )21y x =+. (B )21y x =-. (C )()21y x =+. (D )()21y x =-.2.直线1y x =-关于y 轴对称的直线的解析式为( )(A )1y x =+.(B )1y x =-+.(C )1y x =--.(D )1y x =-.3.已知函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是 ( )(A ) (B )(C )(D ) (第3题)4.直线1y x =-绕点(1,0)逆时针旋转90︒后得到的直线是( )(A )1y x =+.(B )1y x =-+.(C )1y x =--.(D )1y x =-.5.下列不能表示y 是x 的函数的图像的是 ( )(A ) (B ) (C ) (D )二、填空题6.将直线31y x =+向右平移4个单位后,得到的直线为______________.7.将直线21y x =-绕原点顺时针旋转90︒,所得直线与该直线及x 轴围成的三角形的面积为______________.8.直线2y x =-+关于直线1x =轴对称的直线的解析式为______________.9.经过点(1,0)且与两坐标轴围成的三角形的面积为2的直线的解析式为______________. 三、解答题10.如图,直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A 、B 两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M 、N 两点,设运动时间为t 秒(04t <≤).(1)求A 、B 两点的坐标.(2)用含t 的代数式表示△MON 的面积S 1.(3)以MN 为对角线作矩形OMPN ,记△MPN 和△OAB 重合部分的面积为S 2,①当24t <≤时,试探究S 2与t 之间的函数关系式. ②在直线m 的运动过程中,当t 为何值时,S 2为△OAB 面积的516?11.设关于x 的一次函数11y a x b =+与22y a x b =+,则称函数()()1122y m a x b n a x b =+++(其中1m n +=)为此两个函数的生成函数.(1)当1x =时,求函数1y x =+与2y x =的生成函数的值.(2)若函数11y a x b =+与22y a x b =+的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.12.如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究(1)由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B(5,3),C (2-,5)关于直线l 的对称点B '、C '的位置,并写出他们的坐标:B '___________,C '_____________.归纳与发现(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为_______________.运用与拓广(3)已知两点D (1,3)、E (-1,4-),试在直线l 上确定一点Q ,使点Q 到D 、E 的距离之和最小,并求出Q 点的坐标.。
数学乐趣探索之旅八年级上册数学游戏推荐与分享经验与实践案例
数学乐趣探索之旅八年级上册数学游戏推荐与分享经验与实践案例数学乐趣探索之旅——八年级上册数学游戏推荐与分享经验与实践案例随着社会的变迁和科技的进步,数学教育不再是枯燥乏味的背诵和计算,而是变得越来越有趣和实际。
在数学学科中,游戏成为了一种有效的学习工具,可以帮助学生更轻松地理解和掌握数学知识。
在本文中,我们将介绍一些适合八年级上册学生的数学游戏,并分享一些经验与实践案例。
一、数学游戏推荐1. 数字方阵游戏数字方阵游戏是一种能够锻炼学生逻辑思维和推理能力的游戏。
游戏规则是在一个方阵中填充数字,保证每行、每列和对角线上的数字之和相等。
通过这个游戏,学生可以加深对数字特性和规律的理解,提高计算能力和逻辑思维。
2. 数学拼图游戏数学拼图游戏是一种结合了拼图和数学运算的游戏。
游戏中,学生需要将数字块按照规定的顺序和方式进行拼接,形成一个正确的数学运算式或图形。
通过这个游戏,学生可以锻炼手眼协调能力,提高数学计算能力和发散思维。
3. 数学迷宫游戏数学迷宫游戏是一种将迷宫和数学问题结合在一起的游戏。
游戏中,学生需要通过解决数学问题来找到通往下一关的路径。
通过这个游戏,学生可以提高解决问题的能力,培养数学思维和逻辑推理能力。
二、分享经验与实践案例1. 数字方阵游戏实践案例在八年级上册数学课堂上,我曾经设计了一个数字方阵游戏的实践活动。
首先,我将学生分成小组,每个小组通过互相合作,在规定时间内填充数字方阵。
然后,我设置了一些挑战,要求学生在保证每行、每列和对角线上数字之和相等的情况下,使得数字之差最大。
学生们积极参与,通过讨论和思考,不断尝试各种方案,并在比赛中展示自己的成果。
这个实践案例不仅锻炼了学生的团队合作和解决问题的能力,还培养了他们对数字特性和规律的理解。
2. 数学拼图游戏实践经验在数学拼图游戏的实践中,我鼓励学生自主设计并制作数学拼图,通过动手操作来加深对数学运算符号和图形的理解。
我组织学生自行选取数学题目,然后通过切割纸板或者使用数学拼图软件制作拼图。
八年级数学实践与探索2
红宝石官方网站
常作为白血病诊断标志物的是()A.乙醇脱氢酶B.铁蛋白C.血红素D.PSAE.AFP 一个5岁男孩在随母亲旅游中,吃小店所卖水果沙拉,回家3天后,出现严重腹部痉挛痛,大便次数不断增加,且多次血便,伴发热,呕吐,医院急诊,检查有溶血性贫血及溶血性尿毒综合征,你判断可能的细菌感染A.伤寒沙门菌B.鲍氏志贺菌C.肠出血性大肠杆菌D.副溶血性弧菌E.霍乱弧菌 心理防御机制来自于以下理论A.行为学习理论B.精神分析理论C.认识理论D.人本主义理论E.森田理论 心房颤动的f波频率为A.100~200次/分B.60~100次/分C.300~500次/分D.250~350次/分E.350~600次/分 注册建造师执业管理办法(试行)》(建市[2008]48号)第四条规定:注册建造师应当在其注册证书所注明的专业范围内从事活动,具体执业按照本办法附件《注册建造师执业工程范围》执行。A.建设工程项目管理B.建设工程施工管理C.建设工程施工监理D.建设工程质量管理 支付结算由谁分级管理: 属于Ⅳ型超敏反应的疾病是A.血清病B.过敏性休克C.免疫复合物性肾小球肾炎D.类风湿关节炎E.感染性迟发型超敏反应 当一国降低利率或本国利率低于外国利率时,外汇贬值,本币升值。A.正确B.错误 鉴别甲状腺结节性质最有价值的检查方法是。A.B超B.CTC.同位素扫描D.测血T3、T4E.穿刺细胞学检查 弹簧管压力表的校验内容? 对分包商的审批由()负责。A.业主B.监理工程师C.总包商D.建设单位主管部门 一般检查细菌形态最常用的是。A.荧光显微镜B.暗视野显微镜C.电子显微镜D.普通光学显微镜E.相差显微镜 飞机有3个连续工作的液压系统,他们是A、绿系统蓝系统黄系统B、绿系统黄系统红系统C、黄系统白系统蓝系统 小鼠的淋巴系统。A、不发达,腭或咽部有扁桃体,淋巴系统对外界刺激不敏感。B、不发达,腭或咽部无扁桃体,外界刺激可使淋巴系统增生,导致淋巴系统疾病。C、很发达,腭或咽部有扁桃体,外界刺激可使淋巴系统增生,导致淋巴系统疾病。D、很发达,腭或咽部无扁桃体,外界刺激可使淋 输血相关疾病检测实验室的建筑与设施应符合《实验室生物安全通用要求》和《微生物和生物医学实验室生物安全通用准则》中的规定。下列说法不正确的是。A.输血相关疾病检测实验室属于一级生物安全防护实验室B.实验室的实验用房、辅助用房应满足血液检测工作的需求C.实验室需保持卫生 企业开发房地产取得土地使用权支付的出让金是1000万元,房地产开发成本是6000万元,向金融机构支付借款利息400万元,其中包括超过国家规定上浮幅度的金额是100万元。该省规定能够提供借款证明的,其他房地产开发费用按照5%计算扣除。假设该企业能够提供证明,计算土地增值税时能够 治疗脓毒性休克的措施包括A.病原菌未明时,选择广谱抗生素控制感染B.清除感染灶C.早期应用大剂量糖皮质激素D.晚期应用纳洛酮提高收缩压效果好E.应用单克隆抗体中和毒素 腕不能伸直是何神经损伤A.桡神经B.尺神经C.正中神经D.腋神经E.肌皮神经 关于血培养标本的采集原则中,错误的一项是()A.已使用抗生素者在检验单上注明B.必须空腹采集C.培养瓶内不可混入消毒剂和防腐剂D.采集量一般为5mlE.严格无菌操作 什么是汽轮机速比和最佳速比? 中国古代的财政收入制度,为什么会经历从控制人丁为主到控制地产为主的演变过程? 慢性乙、丙型肝炎治疗的趋势是强调A.保肝治疗B.促进肝细胞再生C.免疫调节治疗D.防治肝纤维化E.抗病毒治疗 在传统上,酒店和休闲设施这类物业经营管理活动属于。A.酒店管理行业B.商业物业活动C.写字楼D.饭店管理行业 求两个平行平面之间的距离。 下列哪种行为可减轻头痛的发作A.摇头B.活动C.饮酒D.饥饿E.睡眠 关于日常生活活动能力评定注者的理解与合作B.评定前还必须对患者的基本情况有所了解C.应考虑到患者生活的社会环境、反应性、依赖性D.重复进行评定时可在不同条件或环境下进行E.在分析评定结果时应考虑有关的影响因素 素质发育特点中,表述错误的是A.速度发育较早B.速度耐力发育最晚C.腰腹肌力发育较早D.下肢爆发力居中E.臂肌、静止性耐力发育比较晚 导电性、导热性、可加工性是所有金属的,。A、通性B、属性C、共性D、特性 大黄与芒硝配伍,能增强攻下泄热的功效,这种配伍关系是。A.相须B.相使C.相杀D.相反E.相畏 支气管扩张的主要发病因素是A.先天性发育缺损B.有害气体的吸入(大气污染)C.长期大量的吸烟D.支气管肺组织的感染和支气管阻塞E.遗传因素 关于先天性甲状腺功能减低的新生儿筛查,哪项是错误的A.经皮采新生儿足后跟血,滴于特制的滤纸片上送检B.生后3天采血C.筛查测定血T3和T4D.筛查测定血TSHE.阳性结果需再抽静脉血测定T、T、TSH进一步证实 张某因采购货物签发一张票据给王某,胡某从王某处窃取该票据,陈某明知胡某系窃取所得但仍受让该票据,并将其赠与不知情的黄某。根据票据法律制度的规定,下列当事人中,享有票据权利的是。A.王某B.胡某C.陈某D.黄某 《传染病防治法》规定了传染病疫情通报制度,下列不属于通报规定的是A.国务院卫生行政部门向国务院其他有关部门B.国务院卫生行政部门向国务院C.国务院卫生行政部门向省、自治区、直辖市人民政府卫生行政部门D.解放军卫生主管部门向国务院卫生行政部门E.地方人民政府卫生行政部门向 土壤水分类型有、、和。 设制隔离室的目的是A.单独设制房间以提醒医务人员离开时洗手B.便于医护人员对患者进行监护C.将感染源与传播途径分开D.将感染源与易感宿主从空间上分开E.方便家属探视 收购是指A公司通过购买目标公司的,达到对B公司的控制。 肥胖的手术治疗不包括A.吸脂术B.切脂术C.空肠回肠分流术D.胃大部切除术E.垂直结扎胃成型术 据材料统计:1820—1875年之间,里尔(资产阶级)上层阶级的人数占总人口的7%增加到9%,而其遗嘱上所载明的财富则从58%增加到90%。“大众阶级”从总人口的62%增加到68%,而遗嘱写明的财富只占0.23%,1821年时他们的财产尚占1.4%。这一材料表明A.工业革命使社会分化为两大对立阶 信息不泄露给非制空权的用户、实体或过程,指的是信息的。A.保密性B.完整性C.可用性D.可控性 能产生淋巴细胞的器官是A.肺B.肾C.脾D.心脏E.脑
八年级数学实践与探索2
可在门诊了解胎儿储备功能,并可作为催产素激惹试验的筛选试验是A.多普勒测胎心率B.自测胎动C.NSTD.OCTE.尿E3测定 厂内机动车辆 提倡使用或更改抗菌药物应采集标本作病原学检查,力求做到有样必采,住院病人有样可采送检率力争达到以上。 变速器油正常的工作温度是82度-93度,如果温度超过121度,应当立即关闭发动机。A.正确B.错误 电缆敷设前应按下列要求进行检查? 患者因严重烧伤住院,需给予鼻饲要素饮食补充营养。给患者插管时,下列哪一项不妥()A.做好解释,取得配合B.取半坐卧位C.插管前测量胃管插入长度D.插管时有呛咳,呼吸困难,嘱其张口做深呼吸E.检查胃管是否在胃内后再固定 厚壁空洞和薄壁空洞壁厚的界定标准为A.1mmB.2mmC.3mmD.4mmE.5mm 在密闭的容器内的水蒸气与同温度条件下纯水的水蒸气压力的比值称为.A.HACCPB.水分活度(Aw)C.PSE肉D.嫩度 一位急性白血病患者,检出染色体结构异常,t(8,21)(q22;q22)最可能是哪型白血病A.慢粒急单变B.急性淋巴细胞白血病C.急非淋白血病M5D.急性髓细胞白血病M2E.急非淋白血病M3 某外国投资者协议购买境内公司股东的股权,将境内公司变更为外商投资企业,该外商投资企业的注册资本为1200万美元。根据外商投资企业法律制度的规定,该外商投资企业的投资总额的上限是。A.1200万美元B.2400万美元C.3000万美元D.3600万美元 患者,女,20岁。溺水,救出时呼吸、心跳已停止,立即由两人行心肺复苏术。口对口人工呼吸的频率为()A.10~12次/分B.12~16次/分C.18~20次/分D.20~24次/分E.30~40次/分 犬所需要的不饱和脂肪酸主要来源于动物性饲料中的A.鱼粉B.植物油C.动物油D.乳类及其乳制品 家庭的功能有.A.满足感情需要的功能B.生殖和性需要的调节功能C.抚养和赡养的功能D.经济社会化的功能E.以上都对 乙型脑炎治疗中哪种疗法最重要A.支持疗法B.对症疗法C.抗病原体疗法D.康复疗法E.中医药疗法 女性,60岁,间断双手远端指间关节疼痛3年,晨僵30分钟,查体可见双手指的Heberden结节(远端指间关节肿大结节),最可能的诊断()A.类风湿关节炎B.痛风C.骨关节炎D.银屑病关节炎E.系统性红斑狼疮 不属于医院感染的情况是A.入院48小时内发生的感染B.本次感染与上次住院有关C.在原有感染基础上出现新的感染D.由于诊疗措施激活的潜在性感染E.新生儿经母体产道时获得的感染 运用谈话法的关键是A.问题的设计B.活动的组织C.问题的实施D.教学内容的趣味性E.语言的艺术性 商业银行的下列业务中,存在信用风险的有。A.债券投资业务B.贷款承诺业务C.贸易融资业务D.信用担保业务E.金融衍生业务 患者因严重烧伤住院,需给予鼻饲要素饮食补充营养。检查胃管是否在胃内的最好方法是()A.用注射器抽出胃内容物B.用注射器向胃内注入10ml空气听气过水声C.用听诊器听胃管是否在胃内D.将胃管末端放入盛水的碗中,观察有无气泡溢出E.让患者感觉胃管是否在胃内 青春期功血的治则。A.防止子宫内膜病变B.直接调整周期促排卵C.减少周期D.调整垂体与性腺功能E.止血,减少经量 [单选,案例分析题]某区域电网中现运行一座500kV变电所,根据负荷发展情况需要扩建,该变电所现状、本期及远景建设规模见表15-1。该变电所220kV为户外配电装置,采用软母线(JLHA2)型钢芯铝合金绞线,若远景220kV母线最大穿越功率为1200MVA,在环境温度为35℃,海拔高度低于1000m 医疗废物管理条例适用于医疗废物的、、、以及监督管理等活动。 [单选,共用题干题]男性,8岁。于8月19日开始发热,头痛,当时测体温38℃,在外院诊断为上感,给予布洛芬退热,头孢菌素静滴无效,8月22日出现嗜睡,体温高达40℃,8月23日因昏迷伴抽搐入院。查体:神志不清,压眶有反应,体温40.5℃,血压、呼吸正常,双瞳孔等大,皮肤黏膜无出血 巴豆制霜的目的是A.增效B.矫味C.减毒D.矫臭E.改性 低渗性缺水时,体液的容量改变为。A.细胞外液正常,细胞内液减少B.细胞外液减少,细胞内液正常C.细胞外液显著减少,细胞内液轻度减少D.细胞外液轻度减少,细胞内液显著减少E.细胞内外液按比例减少 吸气时进入肺泡进行气体交换的气量,称为A.潮气量B.每分通气量C.肺泡通气量D.最大通气量E.肺活量 商业空间设计环境特征较为活跃,讲求极佳的展示效果并具有较强的,其目的是为了吸引购物者。A.顾客吸引力B.设计特征C.视觉冲击力D.第一印象 生命伦理学研究的主要内容是。A.义务论B.公益论C.公平理论D.生命道德理论E.生命科学 不论哪类配合,配合公差均等于相配合的孔公差与轴公差之。A、差B、和C、积D、商 舌侧矫正技术出现于A.1982年B.1987年C.1978年D.1990年E.1995年 正常运行时下降管及水冷壁下联箱是否可以作为放水阀来使用? 当代中国最大的实际是()A.生产力落后,商品经济不发达B.社会主义生产关系、上层建筑不完备,不成熟C.人口基数大,人均资源水平很低D.处于并特长期处于社会主义初级阶段 中国内地房地产经纪人员包括房地产经纪人和。A.初级房地产经纪人B.房地产经纪人协理C.助理房地产经纪人D.房地产销售员 4级导流建筑物洪水标准,对混凝土材质导流建筑物洪水重现期为年。A.5~3B.10~5C.20~10D.50~20 《环境保护法》第二十六条规定,建设项目的“三同时”制度是。A、同时设计、同时施工、同时投产;B、同时建设、同时使用、同时检查;C、同时设计、同时投产、同时评比。 65~74岁老年人口腔健康的目标是A.养成良好口腔卫生习惯B.至少保持20颗功能牙C.定期口腔健康检查D.戒除不良嗜好E.全口龈上洁治 以下对医疗机构从业人员行为规范表述不正确的是。A.遵纪守法,依法执业B.优质服务,医患和谐C.以医疗为中心,全心全意为人民健康服务D.尊重患者的知情同意权和隐私权E.不索取和非法收受患者财物 根据监理(业主)确认的工程量计量结果,承包商向监理(业主)提出支付工程进度款申请,监理(业主)应在天内向承包商支付工程进度款。A.7B.10C.14D.28 伤寒的主要传染源为A.伤寒患者B.潜伏期的伤寒患者C.恢复期的伤寒患者D.伤寒暂时带菌者E.伤寒慢性带菌者 营养不良主要指。A.蛋白质不足B.体重未减轻C.营养物不缺乏D.热量不足E.A+D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。