热重分析 TGA 完整版

合集下载

热重分析实验报告

热重分析实验报告

热重分析实验报告热重分析(Thermogravimetric analysis,简称TGA)是一种常用的热分析技术,通过测量样品在恒定升温速率下的质量变化,可以研究样品的热稳定性、减量过程、物质含量以及化学反应等信息。

本报告将介绍一次使用TGA技术进行的实验,并对实验结果进行分析和讨论。

1. 实验目的该实验的目的是研究聚合物样品在升温过程中的失重情况,从而了解聚合物的热分解温度、热稳定性以及降解产品的性质。

通过TGA实验可以为聚合物材料的设计合成、性能改进以及应用提供重要的参考依据。

2. 实验仪器和试剂本次实验采用的TGA仪器为型号X,试样为聚合物样品A。

试样经过粉碎和筛分,得到粉末状样品。

3. 实验步骤(1) 将粉末状样品A称取约100mg放入TGA样品分析容器中。

(2) 将样品容器放入TGA仪器中,设置升温速率为X℃/min。

(3) 开始实验,记录样品的质量变化情况,并实时监测样品的温度。

(4) 实验结束后,整理实验数据,进行结果分析。

4. 实验结果实验过程中,我们观察到样品A在升温过程中出现了质量减少。

根据实验数据绘制的质量-温度曲线图,我们可以发现样品A在温度区间X到Y之间发生了明显的失重现象。

进一步分析可以得出结论,样品A在这一温度区间发生了热分解反应。

5. 结果分析聚合物样品的热分解是一个复杂的过程,涉及到分子间的键断裂、自由基的形成以及产物的生成等反应。

通过TGA实验可以了解样品在不同温度下的重量变化情况,从而推测聚合物的热分解温度以及产物的性质。

根据实验结果,我们可以推测样品A在温度区间X到Y之间发生了主要的热分解反应。

随着温度的上升,样品A开始失重,并在温度达到Y时发生质量减少的最大速率。

这表明在这个温度区间内,样品A的热分解反应达到了最大速率。

在此基础上,我们可以进一步探究产物的性质和反应机理。

此外,在实验过程中还可以通过TGA仪器的联用技术,如TGA-FTIR(Fourier transform infrared spectroscopy)和TGA-MS (mass spectrometry)等,对产物的组成进行分析。

材料的热失重分析TGA

材料的热失重分析TGA

材料的热失重分析T G A Newly compiled on November 23, 2020材料的热失重分析(TGA)一、实验目的:1、了解热重分析实验原理、仪器结构及基本特点;2、了解同步热分析仪的应用;3、选用五水硫酸铜为样品,运用同步热分析仪对样品进行热失重分析二、实验原理:热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。

广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。

利用热重分析法,可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析(包括利用TG 测试结果进一步作表观反应动力学研究),可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。

热重分析仪的基本原理示意如下:炉体(Furnace)为加热体,在由微机控制的一定的温度程序下运作,炉内可通以不同的动态气氛(如N2、Ar、He等保护性气氛,O2、air等氧化性气氛及其他特殊气氛等),或在真空或静态气氛下进行测试。

在测试进程中样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。

当样品发生重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。

若对TG曲线进行一次微分计算,得到热重微分曲线(DTG曲线),可以进一步得到重量变化速率等更多信息。

三、实验仪器和材料实验仪器:STA8000,美国PE公司生产实验材料:五水硫酸铜四、实验步骤:1.检查氮气钢瓶内剩余压力是否大于2 MPa,如果总压力小于2 MPa时建议更换新的氮气钢瓶以防止残余气体中水分等杂质气体对实验结果产生负面影响;2.打开氮气钢瓶总压力阀,并调节减压阀压力小于等于;3.打开STA 8000的制冷设备,如自来水或者水浴制冷机;4.打开STA 8000主机电源,等待20分钟以便仪器稳定;5.打开电脑主机,双击打开Pyris控制软件进入主控界面;6.设置STA样品温度至室温,如25度(具体为:在Go To Temp按钮下的输入框内键入目标温度值,然后单击Go To Temp按钮);7.放入左右两个空陶瓷样品皿,点击Zero Weight按钮扣除皮重;8.将样品放入扣除皮重后的陶瓷样品皿中,重新放入STA 8000样品支架左边样品端,点击Sample Weight按钮称取样品重量;9.在Pyris软件的方法编辑窗口设置好测试方法;10.点击开始测试按钮,并切换软件界面至监视窗口,等待实验结束;11.拷贝数据并处理数据;12.将陶瓷样品皿从炉膛中取出并丢弃至指定位置(取样品皿时请确认样品温度已降至50度以下,陶瓷样品统一回收并采用高温灼烧方法清洗);13.检查STA 8000炉膛的污染情况,如污染较为严重,请适时灼烧炉体或做相应清洗工作;14.关闭STA主控Pyris软件;15.关闭STA 主机电源;16.关闭STA制冷设备,如自来水或者水浴制冷机;17.关闭氮气钢瓶总压力阀,减压阀可保持常开状态(如果预见长时间不用STA仪器,请同时关闭总压力阀和减压阀);18.做好仪器使用登记工作,以备后续查阅。

第八章热重分析ThermalGravimetricAnalysis(TGA)

第八章热重分析ThermalGravimetricAnalysis(TGA)

第九章 差热分析法(DTA)
( Differential Thermal Analysis)
❖ 定义:在程序控制温度下,测量物质和参比 物之间的温度差与温度关系的一种技术。
❖ 当试样发生任何物理(如相转变、熔化、结 晶、升华等)或化学变化时,所释放或吸收 的热量使试样温度高于或低于参比物的温度 ,从而相应地在DTA曲线上得到放热或吸收 峰。
o-a之间是DTA基线形成过程
此过程中ΔT的变化可用下列方程描述:
Δ CT RK CS 1e x cp Kst
( 91 )
当t足够大时,可得基线的位置:
Ta CRKCS
(92)
✓ 1)程序升温速率Φ恒定才能获得稳定的基 线;
✓ 2参)比C物R与应C选S用越化相学近上,相Δ似Ta的越物小质,;因此试样和
,并且不起催化作用。

对碱性物 类坩埚;
质(
如Na2CO3)



玻璃

陶瓷
➢ 含氟高聚物(如聚四氟乙烯)与硅形成化合物 ,也不能使用玻璃、陶瓷类坩埚;
➢ 铂具有高热稳定性和抗腐蚀性,高温时常选用 ,但不适用于含有P、S和卤素的试样。另外 ,Pt对许多有机、无机反应具有催化作用,若 忽视可导致严重的误差。
•利用DTG的峰面积与样品对应的重 量变化成正比,可精确的进行定量 分析。
8.4 TG在材料研究中的应用
1. 热稳定性的评价 2. 组成的剖析
3. 研究聚合物固化 4. 研究添加剂的作用 5. 研究降解反应动力学
1.材料热稳定性的评价 比较起始失重温度
几种高分子材料的TG曲线
比较失重速率
热稳定性TG曲线比较示意图
变与反应。
8.2 TG基本原理

热重分析(TGA)-完整版资料

热重分析(TGA)-完整版资料

热重分析(TGA)Theory & Applications120612.57% Water (0.8753mg)10019.47% Carbon Monoxide (1.355mg)480Weight (%)30.07% Carbon Dioxide (2.093mg)2600 4020 0 200 400 600 800-2 1000Universal V3.4A TA InstrumentsTemperature (°C)Deriv. Weight (%/min)TGA: The TechniqueThermo gravimetric Analysis (TGA) measures the amount and rate of change in the weight of a material as a function of temperature or time in a controlled atmosphere.•样品在热环境中发生化学变化、分解、成分改变时可能伴随着重量的 变化。

•热重分析就是在不同的热条件(以恒定速度升温或等温条件下延长时 间)下对样品的质量变化加以测量的动态技术。

热重分析的结果用热重曲线或微分热重曲线表示。

2What TGA Can Tell You热稳定性 • Thermal Stability of Materials • Oxidative Stability of Materials 氧化稳定性 • Composition of Multi-component Systems 组成 产品寿命 • Estimated Lifetime of a Product 分解动力学 • Decomposition Kinetics of Materials • The Effect of Reactive or Corrosive Atmospheres 反应或腐蚀气氛对材料的影响 on Materials • Moisture and Volatiles Content of Materials材料水分和挥发份含量3Mechanisms of Weight Change in TGAWeight Loss:Decomposition: The breaking apart of chemical bonds. Evaporation: The loss of volatiles with elevated temperature. Reduction: Interaction of sample to a reducing atmosphere (hydrogen, ammonia, etc). Desorption.Weight Gain:Oxidation: Interaction of the sample with an oxidizing atmosphere. Absorption. All of these are kinetic processes (i.e. there is a rate at which they occur).4TG曲线 积分型曲线DTG曲线 微分型曲线5初始热分解 温度(B、G)最大失重 速率温度反应终了温 度(C、H)6影响热重测定的因素: Purge Gas• TGA: Always purge through balance housing with dry inert gas • TGA: Only introduce reactive/corrosive gases through samplearea/furnace housing • Nitrogen most common. • Helium often provides best baseline but will make furnace work hard at high temperature. • Air can sometimes improve resolution because of differences in the oxidative stability (versus thermal stability) of components. 气氛不同反应机理的不同。

材料的热失重分析(TGA)

材料的热失重分析(TGA)

材料的热失重分析(TGA)一、实验目的:1、了解热重分析实验原理、仪器结构及基本特点;2、了解同步热分析仪的应用;3、选用五水硫酸铜为样品,运用同步热分析仪对样品进行热失重分析二、实验原理:热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。

广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。

利用热重分析法,可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析(包括利用TG 测试结果进一步作表观反应动力学研究),可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。

热重分析仪的基本原理示意如下:炉体(Furnace)为加热体,在由微机控制的一定的温度程序下运作,炉内可通以不同的动态气氛(如N2、Ar、He等保护性气氛,O2、air等氧化性气氛及其他特殊气氛等),或在真空或静态气氛下进行测试。

在测试进程中样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。

当样品发生重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。

若对TG曲线进行一次微分计算,得到热重微分曲线(DTG曲线),可以进一步得到重量变化速率等更多信息。

三、实验仪器和材料实验仪器:STA8000,美国PE公司生产实验材料:五水硫酸铜四、实验步骤:1.检查氮气钢瓶内剩余压力是否大于2 MPa,如果总压力小于2 MPa时建议更换新的氮气钢瓶以防止残余气体中水分等杂质气体对实验结果产生负面影响;2.打开氮气钢瓶总压力阀,并调节减压阀压力小于等于2.0bar;3.打开STA 8000的制冷设备,如自来水或者水浴制冷机;4.打开STA 8000主机电源,等待20分钟以便仪器稳定;5.打开电脑主机,双击打开Pyris控制软件进入主控界面;6.设置STA样品温度至室温,如25度(具体为:在Go To Temp按钮下的输入框内键入目标温度值,然后单击Go To Temp按钮);7.放入左右两个空陶瓷样品皿,点击Zero Weight按钮扣除皮重;8.将样品放入扣除皮重后的陶瓷样品皿中,重新放入STA 8000样品支架左边样品端,点击Sample Weight按钮称取样品重量;9.在Pyris软件的方法编辑窗口设置好测试方法;10.点击开始测试按钮,并切换软件界面至监视窗口,等待实验结束;11.拷贝数据并处理数据;12.将陶瓷样品皿从炉膛中取出并丢弃至指定位置(取样品皿时请确认样品温度已降至50度以下,陶瓷样品统一回收并采用高温灼烧方法清洗);13.检查STA 8000炉膛的污染情况,如污染较为严重,请适时灼烧炉体或做相应清洗工作;14.关闭STA主控Pyris软件;15.关闭STA 主机电源;16.关闭STA制冷设备,如自来水或者水浴制冷机;17.关闭氮气钢瓶总压力阀,减压阀可保持常开状态(如果预见长时间不用STA仪器,请同时关闭总压力阀和减压阀);18.做好仪器使用登记工作,以备后续查阅。

热重分析 实验报告

热重分析 实验报告

热重分析实验报告热重分析实验报告引言:热重分析(Thermogravimetric Analysis,简称TGA)是一种常用的热分析技术,通过测量样品在升温过程中的质量变化,可以分析样品的热稳定性、热分解过程以及含水量等信息。

本实验旨在通过TGA技术对某种材料的热分解特性进行研究,从而为材料的应用提供参考。

实验方法:1. 样品制备:将待测试的材料样品细细磨碎,并通过筛网筛选,以获得均匀颗粒大小的样品。

2. 仪器准备:将样品放置在热重分析仪的样品盘中,并确保样品盘平整。

3. 实验条件设定:根据样品的特性和预期结果,设置合适的升温速率和温度范围。

一般来说,较快的升温速率可以更好地展现样品的热分解特性,但过快的升温速率可能导致数据失真。

4. 实验操作:启动热重分析仪,开始实验。

在实验过程中,记录样品质量随温度变化的曲线,并观察样品的颜色、形态等变化情况。

5. 数据分析:根据实验结果,分析样品的热分解特性,包括起始分解温度、峰值温度、分解过程等。

实验结果与讨论:通过对某种材料的热重分析实验,我们得到了如下结果:在升温过程中,样品的质量随温度的升高而逐渐减少。

在温度范围X到Y之间,样品质量变化较为剧烈,表明该温度范围内发生了较为显著的热分解反应。

进一步观察发现,在温度T处,样品的质量变化达到峰值,表明该温度是样品热分解反应的峰值温度。

此后,样品质量的减少速率逐渐减缓,直至温度达到Z时,样品质量变化趋于平缓,热分解反应基本结束。

根据实验结果,我们可以推断出该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。

进一步分析样品的颜色、形态等变化情况,可以推测该材料的热分解反应可能是由于化学反应引起的。

结论:通过热重分析实验,我们成功地研究了某种材料的热分解特性。

实验结果表明该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。

这些结果对于该材料的应用具有重要意义,可以为材料的加工、储存和安全性评估提供参考。

热分析(TGA)

热分析(TGA)

试样受热分解或升华,逸出的挥发物往往在热
重分析仪的低温区冷凝,这不仅污染仪器,而
且使实验结果产生严重的偏差。尤其是挥发物
在支撑杆上的冷凝,会使测定结果毫无意义。4. 温度测量上的误差
CHANGZHOU UNIVERSITY
在热重分析仪中,由于热电偶不与试样接触,显然试样 真实温度与测量温度之间是有差别的,另外,由升温和 反应所产生的热效应往往使试样周围的温度分布紊乱, 而引起较大的温度测量误差。
热分析
热重分析(TGA)
基本原理
热重分析(Thermogravimetric Analysis)是在程序控温下,测量
CHANGZHOU UNIVERSITY
物质的质量变化与温度关系的一种技术,其基本原理就是热天平。
热天平分为零位法和变位法两种。 变位法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用
静态法
—等压质量变化测定:在程序控制温度下,测量物质在恒定定挥 发物分压下平衡质量与温度关系的一种方法。
CHANGZHOU UNIVERSITY
—等温质量变化测定:在恒温条件下测量物质质量与温度关系的
一种方法。 —准确度高,费时。 动态法 —热重分析、微商热重分析 —热重分析:在程序升温下,测定物质质量变化与温度的关系。 —微商热重分析(Derivative thermogravimetry, DTG)。
动态力学分析基础
材料受力后会产生形变,根据除去外力后,应 变可否回复,可分为
理想弹性固体 小分子固体—弹性
CHANGZHOU UNIVERSITY
受到外力作用形变很小,符合胡克定律ζ=E1ε,E1普弹模量
特点:受外力作用瞬时达到平衡,除去外力应变立即恢复。

【2017年整理】实验7聚合物的热重分析(TGA)

【2017年整理】实验7聚合物的热重分析(TGA)

实验7 聚合物的热重分析(TGA)热重分析(TGA)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。

此外,也可在恒定温度下,将失重作为时间的函数进行测定。

应用TGA可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。

因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。

1. 实验目的(1)了解热重分析法在高分子领域的应用。

(2)掌握热重分析仪的工作原理及其操作方法,学会用热重分析法测定聚合物的热分解温度Td。

2. 实验原理热重分析法(thermogravimetric analysis,TGA)是在程序控温下,测量物质的质量与温度关系的一种技术。

现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。

通常,TGA谱图是由试样的质量残余率Y(%)对温度T的曲线(称为热重曲线,TG)和/或试样的质量残余率Y(%)随时间的变化率dY/dt(%/min)对温度T的曲线(称为微商热重法,DTG)组成,见图2-40。

温度/℃图2-40 TGA谱图开始时,由于试样残余小分子物质的热解吸,试样有少量的质量损失,损失率为(100-Y1)%;经过一段时间的加热后,温度升至T1,试样开始出现大量的质量损失,直至T2,损失率达(Y1-Y2)%;在T2到T3阶段,试样存在着其他的稳定相;然后,随着温度的继续升高,试样再进一步分解。

图2-40中T1称为分解温度,有时取C点的切线与AB延长线相交处的温度T1′作为分解温度,后者数值偏高。

TGA在高分子科学中有着广泛的应用。

例如,高分子材料热稳定性的评定,共聚物和共混物的分析,材料中添加剂和挥发物的分析,水分(含湿量)的测定,材料氧化诱导期的测定,固化过程分析以及使用寿命的预测等。

热重分析TGA完整版

热重分析TGA完整版

热重分析TGA完整版热重分析(Thermogravimetric Analysis,TGA)是一种热分析技术,通过对样品在不同温度条件下质量的变化进行检测和分析,可以获得样品热稳定性、反应性以及成分等信息。

本文将介绍热重分析的原理、仪器设备、实验步骤以及应用等内容。

热重分析的原理是利用热电偶作为探头,将样品加热至一定温度范围内,并监测样品质量的变化。

当样品受热时,会发生热分解、脱水、脱插等反应,此时会产生质量的变化,通过记录样品质量与温度之间的关系,可以获得样品的热重曲线。

通过分析热重曲线,可以得到样品的热分解温度、失重量、反应动力学等信息。

热重分析的仪器设备主要由加热器、电子天平和温度控制系统组成。

其中,加热器提供恒定的温度场,电子天平能够检测样品质量的变化,并将数据传输到计算机上,温度控制系统能够精确控制样品的加热温度。

进行热重分析的实验步骤如下:1.准备样品:将需要进行热重分析的样品制备成适当的形式,如粉末状或块状。

2.称取样品:使用精确的天平称取适量的样品,通常是数毫克至数十毫克。

为了减小试样质量的不确定性,可以进行多次称重取平均值。

3.装样:将样品放置在热重秤上,并确保样品均匀分布在秤盘上,以减小实验误差。

4.实施实验:将热重秤放入热重仪器中,并设置合适的实验参数,如加热速率、温度范围等。

开始实验后,仪器将按照参数进行加热,并记录样品质量的变化。

5.数据处理:根据实验得到的质量变化数据,绘制热重曲线。

可以通过计算失重率、热分解温度、半失重温度等参数来进一步分析样品的性质。

热重分析广泛应用于材料科学、化学、生物科学、制药工业等多个领域。

在材料科学中,可以通过热重分析来研究材料的热稳定性、热分解机理等。

在化学领域,可以通过热重分析来研究催化剂的活性以及催化反应的动力学。

在生物科学中,可以使用热重分析来研究生物大分子的热稳定性和降解动力学。

在制药工业中,可以通过热重分析来研究药物的热稳定性,以指导药物的储存和使用。

热重分析技术TGADTG

热重分析技术TGADTG
高图分3 一子般材聚料合热物稳温的定D性S能度C升的温评的曲价线控制须按程序方式进行,主要包括等速升
Thermal Analysis, TA
温、等速降温、恒温、循环等方式。 微熵热重分析
酚醛树脂固化过程有低分子副产物水生成,借助热重曲线上水的失重比例 采用Doyle近似处理,可得到: 图23 热重-红外联用仪(Q5000,TA) 热重分析 根据曲线上乙酸失重比例,可推算共聚物结构中乙酸乙烯酯的组成比例。 第一台商品化热重分析仪 气态样品:无法进行。 静态热机械法 图13 本多光太郎热天平结构示意图 6 仪器结构及工作原理 微熵热重分析 测试影响因素 按是否采用联用技术分类 Wedgwood首次报道了第一条瓷土的重量随温度变化的热重曲线。 Ambient to 1200 oC; 热分析的基本内涵 图7 受污染土壤的热重-红外光谱联用分析 8 主要应用领域
18
联用技术的发展
图16 热重-差热分析联用仪
1955-1958年L.Erdey 等 发明了可同时记录热重 、微熵热重、差热曲线 的联用多谱仪。有效拓 宽了热重分析技术的应 用范围。
19
目前发展状况
自上世纪60年代,各种高性能热 重分析仪竞相问世,我国第一台 商品热重分析仪于上世纪60年代 初问世。
07
2.2 热分析的类型
按所测物理性质的类型分类
热分析技术:P = f(T)
质量变化 热学性质变化 力学性质变化 其他性质
热重法 微熵热重法
……
差热分析 差示扫描量热法
……
静态热机械法 动态热机械法
……
热声法 热电法 热磁法 热光法 ……
图5 热分析方法的基本类型
08
按是否采用联用技术分类
热分析技术:P = f(T)

第2章热重分析技术TGA(DTG)

第2章热重分析技术TGA(DTG)
第2章热重分析技术TGA(DTG)
汇报人:XX
contents
目录
• 热重分析技术概述 • TGA(DTG)技术介绍 • 热重分析实验方法与步骤 • 热重曲线解析及参数计算 • 热重分析技术在材料科学中应用案例 • 热重分析技术发展趋势与挑战
01
热重分析技术概述
热重分析技术定义
热重分析技术原理
热重分析技术应用领域
化学工程
用于研究化学反应的动力学过 程、催化剂的活性评价、反应 机理的探讨等。
生物医药
用于研究药物的稳定性、生物 大分子的热变性、生物组织的 热损伤等。
材料科学
用于研究材料的热稳定性、热 分解、相变等过程,以及材料 的组成和结构对性能的影响。
环境科学
用于研究大气污染物的来源和 转化过程、固体废弃物的热解 和焚烧过程等。
金属材料氧化过程分析
氧化过程定义
金属材料在加热过程中与氧气反 应形成氧化物的过程。
TGA(DTG)应用
通过TGA(DTG)技术可以分析金属 材料的氧化过程。例如,可以测 定金属在程序升温下的质量变化 和氧化速率,进而评估其抗氧化 性能。
案例分析
以钢铁为例,通过TGA(DTG)测试 ,可以研究其在加热过程中的氧 化行为,为钢铁材料的防腐蚀和 表面处理技术提供指导。
多种气氛可选
TGA(DTG)实验可在不同气 氛(如空气、氧气、氮气等 )中进行,以模拟不同环境 下的物质变化过程。
定量分析
通过对热重曲线的分析,可 以定量计算样品中各组分的 含量,为物质组成分析提供 依据。
TGA(DTG)技术应用范围
材料科学
用于研究材料的热稳定性、热分解过程 、氧化还原反应等,为材料设计和性能
高分子材料热稳定性评价

热重分析仪(TGA)ppt课件

热重分析仪(TGA)ppt课件
45
微商曲线(DTG)表示和意义
DTG
质量变化 Dw/dt
TG
T/゜C
重量的变化率与温度(时间)的函数关系。
DTG是峰形曲线,可精确反映出样品T起、 T,T终;
DTG曲线峰面积与样品对应的重量变化成正比。
可将热失重阶段分成不同部分,区分各反应阶段。
46
六、材料热稳定性的评价方法
➢ 热重曲线直接比较法 将几种材料的TG曲线叠加到同一张图纸上,进行直观的比较
一、 热重法( TG) 热重法是在程序控制温度下,测量物质重量与温度关系的一 种技术。
二、差示扫描量热法( DSC ) 差示扫描量热法是在程序控制温度下,测量输给待测物质和 参比物的能量差与温度 ( 或时间 ) 关系的一种技术。
三、差热分析法( DTA ) 差热分析法是在程序控制温度下,测量待测物质和参比物之 间的温度差与温度 ( 或时间 ) 关系的一种技术。
19
TGA图怎么看?
20
TGA举例1:
80℃-120℃左右,一般为游 离水的失重造成
21
TGA举例2:
这个失重的开时温度比 前一个要早一些。推测 它的失重是由水或某种 有机溶剂的残留引起的
22
TGA举例3:
30℃-60℃可能是因 为有机溶剂引起的 失重,例如乙醇等。
150℃和300℃是样 品的分部分解引起
结果:试样质量不变时,随温度升高,试样增重——表观增重
28
➢ 什么是浮力效应?
自浮 动力 扣效 除应
的 修 正 : 基 线 的 测 试 与
29
TG
4.1.2 试样皿的影响
影响因素:皿的大小、材质、形状 影响原因:涉及试样的热传导和热扩散形状与表面积有关,

材料的热失重分析(TGA)(优质严选)

材料的热失重分析(TGA)(优质严选)
16.关闭STA制冷设备,如自来水或者水浴制冷机;
17.关闭氮气钢瓶总压力阀,减压阀可保持常开状态(如果预见长时间不用STA仪器,请同时关闭总压力阀和减压阀);
18.做好仪器使用登记工作,以备后续查阅。
五、结果与分析
测试完成后,记录仪器绘制的曲线,处理数据,得出五水硫酸铜分几步失水,每步失水温度、失水量,并通过计算推断出其分步失水过程。
7.放入左右两个空陶瓷样品皿,点击Zero Weight按钮扣除皮重;
8.将样品放入扣除皮重后的陶瓷样品皿中,重新放入STA 8000样品支架左边样品端,点击Sample Weight按钮称取样品重量;
9.在Pyris软件的方法编辑窗口设置好测试方法;
10.点击开始测试按钮,并切换软件界面至监视窗口,等待实验结束;
11.拷贝数据并处理数据;
12.将陶瓷样品皿从炉膛中取出并丢弃至指定位置(取样品皿时请确认样品温度已降至50度以下,陶瓷样品统一回收并采用高温灼烧方法清洗);
13.检查STA 8000炉膛的污染情况,如污染较为严重,请适时灼烧炉体或做相应清洗工作;
14.关闭STA主控Pyris软件;
15.关闭STA主机电源;
3.打开STA 8000的制冷设备,如自来水或者水浴制冷机;
4.打开STA 8000主机电源,等待20分钟以便仪器稳定;
5.打开电脑主机品温度至室温,如25度(具体为:在Go To Temp按钮下的输入框内键入目标温度值,然后单击Go To Temp按钮);
三、实验仪器和材料
实验仪器:STA8000,美国PE公司生产
实验材料:五水硫酸铜
四、实验步骤:
1.检查氮气钢瓶内剩余压力是否大于2 MPa,如果总压力小于2 MPa时建议更换新的氮气钢瓶以防止残余气体中水分等杂质气体对实验结果产生负面影响;

热重分析(TGA)完全版资料

热重分析(TGA)完全版资料

80
60
Weight (%)
40
20
0
-20
20
40
60
80
100
120
140
160
180
Time (min)
Universal V3.7A TA Instruments
22
Q5000 IR – High-Heating Rate TGA Analysis
23
Typical Applications
500
600
17
Mass Effect – Semi-crystalline PE
120
436.28癈 457.57癈
100
80
Weight (%)
60
0.492mg
40
48.422mg
20
0
-20 0
100
200
300
400
500
600
Temperature (癈 )
Universal V3.8A TA Instruments
pin-hole lid
13
TGA: Sample Pan Selection
• Platinum (useful for most materials)
Easy to Clean Nonporous Alloys with most metals
• Alumina (Ceramic)
Corrosives/Inorganics Large samples
热稳定性
• Oxidative Stability of Materials
氧化稳定性
• Composition of Multi-component Systems 组成

第2章 热重分析技术 TGA(DTG)(完整版)

第2章 热重分析技术 TGA(DTG)(完整版)

W
在程序控温下测量样品的
质量变化速度与温度关系
的技术。 Derivative
Thermogravimetry, DTG
dW/dT = f(T或t)
dW/dT 或 dW/dt 微熵热重曲线
T 27
2.4.3 微熵热重分析
在同一次热重分析过程,可以同时得到热重曲线和微 熵热重曲线。常采用双坐标格式表示。
图14 P.Chevenard(法国)
17
2.3.8 微熵热重法的提出
1953年 W.L.De Keyser在热重分析仪器 基础上发明了微熵热重 仪,得到了热重—微熵 热重曲线图。
图15 热重-微熵热重曲线
18
2.3.9 联用技术的发展
图16 热重-差热分析联用仪
1955-1958年L.Erdey 等 发明了可同时记录热重 、微熵热重、差热曲线 的联用多谱仪。有效拓 宽了热重分析技术的应 用范围。
升温速度; 记录速度或走纸速度; 炉内气氛; 量程(灵敏度)选择;
样品用量; 样品装填; 样品性质;
45
2.7.3 测试影响因素
(1)样品用量
样品用量过多,导 致传热和挥发物挥 发速度变慢,导致 相邻失重转变靠近 。因此,在灵敏度 许可的范围,样品 量尽可能少,一般 5-10 mg。
TB:失重速率为零;
DTG曲线
TC:失重速率最大;
失重质量:
A
B
TB ( dW )dT
TA dT
T
32
2.6 仪器结构及工作原理
2.6.1 零位式热重分析仪(结构示意)
图22 零位式热重分析仪结构示意图
33
2.6.2 零位式热重分析仪(结构组成)

材料的热失重分析(TGA)

材料的热失重分析(TGA)

材料的热失重分析(TGA)一、实验目的:1、了解热重分析实验原理、仪器结构及基本特点;2、了解同步热分析仪的应用;3、选用五水硫酸铜为样品,运用同步热分析仪对样品进行热失重分析二、实验原理:热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。

广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。

利用热重分析法,可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析(包括利用TG 测试结果进一步作表观反应动力学研究),可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。

热重分析仪的基本原理示意如下:炉体(Furnace)为加热体,在由微机控制的一定的温度程序下运作,炉内可通以不同的动态气氛(如N2、Ar、He等保护性气氛,O2、air等氧化性气氛及其他特殊气氛等),或在真空或静态气氛下进行测试。

在测试进程中样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。

当样品发生重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。

若对TG曲线进行一次微分计算,得到热重微分曲线(DTG曲线),可以进一步得到重量变化速率等更多信息。

三、实验仪器和材料实验仪器:STA8000,美国PE公司生产实验材料:五水硫酸铜四、实验步骤:1.检查氮气钢瓶内剩余压力是否大于2 MPa,如果总压力小于2 MPa时建议更换新的氮气钢瓶以防止残余气体中水分等杂质气体对实验结果产生负面影响;2.打开氮气钢瓶总压力阀,并调节减压阀压力小于等于2.0bar;3.打开STA 8000的制冷设备,如自来水或者水浴制冷机;4.打开STA 8000主机电源,等待20分钟以便仪器稳定;5.打开电脑主机,双击打开Pyris控制软件进入主控界面;6.设置STA样品温度至室温,如25度(具体为:在Go To Temp按钮下的输入框内键入目标温度值,然后单击Go To Temp按钮);7.放入左右两个空陶瓷样品皿,点击Zero Weight按钮扣除皮重;8.将样品放入扣除皮重后的陶瓷样品皿中,重新放入STA 8000样品支架左边样品端,点击Sample Weight按钮称取样品重量;9.在Pyris软件的方法编辑窗口设置好测试方法;10.点击开始测试按钮,并切换软件界面至监视窗口,等待实验结束;11.拷贝数据并处理数据;12.将陶瓷样品皿从炉膛中取出并丢弃至指定位置(取样品皿时请确认样品温度已降至50度以下,陶瓷样品统一回收并采用高温灼烧方法清洗);13.检查STA 8000炉膛的污染情况,如污染较为严重,请适时灼烧炉体或做相应清洗工作;14.关闭STA主控Pyris软件;15.关闭STA 主机电源;16.关闭STA制冷设备,如自来水或者水浴制冷机;17.关闭氮气钢瓶总压力阀,减压阀可保持常开状态(如果预见长时间不用STA仪器,请同时关闭总压力阀和减压阀);18.做好仪器使用登记工作,以备后续查阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
650.00°C 55.59%
PEEK
650.00°C 14.32%
Weight (%)
0 50
650.00°C 5.928%
250
450
650
850
1050
热重分析(TGA)
Theory & Applications
120 100
80 60 40 20
0
12.57% Water (0.8753mg)
6
19.47% Carbon Monoxide (1.355mg)
4
30.07% Carbon Dioxide (2.093mg)
2
0
-2
200
400
600
pin-hole lid
13
TGA: Sample Pan Selection
• Platinum (useful for most materials)
Easy to Clean Nonporous Alloys with most metals
• Alumina (Ceramic)
Corrosives/Inorganics Large samples
which they occur).
4
TG曲线 积分型曲线
DTG曲线 微分型曲线
5
初始热分解 温度(B、G)
最大失重 速率温度
反应终了温 度(C、H)
6
影响热重测定的因素: Purge Gas
• TGA: Always purge through balance housing with dry inert gas • TGA: Only introduce reactive/corrosive gases through sample
•Thermal Stability •Compositional Analysis •Oxidative Stability
24
Thermal Stability of Polymers
100
PVC
80
PMMA
60
PET
40
LDPE
20
Method Log: 1:Select gas: 1 - N2 2: Ramp 20.00 °C/min to 650.00 °C 3: Select gas: 2 - Air 4: Ramp 20.00 °C/min to 1000.00 °C
• Plot weight in µg vs. temperature.
11
TGA: Accurate Residuals
120
Polyolefin
4
100
2 80
60
0
Expanded Scale
0.28%
Weight (%)
40 -2
20
Baseline
0
-20 0
200
400
600
800
1000
分解动力学
• The Effect of Reactive or Corrosive Atmospheres
on Materials
反应或腐蚀气氛对材料的影响
• Moisture and Volatiles Content of Materials
材料水分和挥发份含量
3
Mechanisms of Weight Change in TGA
• Aluminum (TGA) (designed for one-time use)
Lower cost Lower temperature limit (<=600°C)
14
TGA: Sample Pans - Types/Sizes
Platinum Aluminum
Ceramic
50 µL
Universal V3.8A TA Instruments
19
Sample Morphology Effects – PET
120
419.58癈 424.58癈
100
80
Weight (%)
60
2.9 2m.9gm; ga;mamoorrpphhoouussPEPTET
2.8 mg2.;8smegm; cir-ycsrtaylslintaelPlinETe PET
18
Pan Shape Effect – Amorphous PMMA
120
100
365.01癈 369.13癈
80
Weight (%)
60
4.6mg; spread evenly
40
4.6mg; in tall S.S. pan (150 mg)
20
0
-20 0
100
200
300
400
500
Temperature (癈 )
500
600
17
Mass Effect – Semi-crystalline PE
120
436.28癈 457.57癈
100
80
Weight (%)
60
0.492mg
40
48.422mg
20
0
-20 0
100
200
300
400
500
600
Temperature (癈 )
Universal V3.8A TA Instruments
area/furnace housing • Nitrogen most common. • Helium often provides best baseline but will make furnace
work hard at high temperature. • Air can sometimes improve resolution because of differences
100 µL
100 µL
Platinum and Aluminum pans have attached wire bail.
250 µL
500 µL
Ceramic pans have removable wire bail.
15
Weight (%)
Effect of Sample Size
100
losses associated with volatilization or small amounts of residue.
• Run clean, empty, tared pan, over temperature
range of interest, at desired heating rate.
80
60
40
20
0
0
100
200
300
400
Temperature (°C)
Polystyrene 17.6 mg Polystyrene 10.2 mg Polystyrene 5.4 mg Polystyrene 2.7 mg
500
600
Universal V4.2D TA Instruments 16
450
500
550
600
Temperature (°C)
2.5°C/min 5°C/min 10°C/min 20°C/min
650
700
Universal V3.7A TA Instruments
21
Time to Complete Degradation
120
100
2.5°C/min 5°C/min 10°C/min 20°C/minj
80
60
Weight (%)
40
20
0
-20
20
40
60
80
100
120
140
160
180
Time (min)
Universal V3.7A TA Instruments
22
Q5000 IR – High-Heating Rate TGA Analysis
23
Typical Applications
0
40 0
-1
100
200
300
400
500
600
Temperature (°C)
9
Effect of Oxygen on Copper Oxalate Decomposition
46
45
Weight (%)
44
High Oxygen
43
Medium Oxygen
42
Low Oxygen
41
300
40
20
0
0
100
200
300
400
500
600
Temperature (癈 )
Universal V3.8A TA Instruments
20
Shift in Onset with Ramp Rate
120
100
524.26°C 563.82°C
80
60
Weight (%)
40
20
0
-20
400
in the oxidative stability (versus thermal stability) of components. 气氛不同反应机理的不同。
7
TGA: Purge Gas Flow
40ml/min
10ml/min
90ml/min
Standard Furnace
60ml/min
Weight (%)
相关文档
最新文档