四年级奥数十进制的数字问题(位值原理)2
小学四年级奥数 第13讲:位值原理
![小学四年级奥数 第13讲:位值原理](https://img.taocdn.com/s3/m/11deaff902d276a201292e63.png)
位值原理叁仟陆佰伍拾捌3 6 5 8加油站位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.【例1】(★) 填空:⑴ 123=1个( )+2个( )+3个( ) ⑵234=( )个100+( )个10+( )个1 ⑶24=2×( )+4×( )【例2】(★ ★):⑴ 30300 33⑵22030 2 2 3⑷657=( )×100+( )×10+( )×12 3⑸ ( )=5×100+7×10+9×1 ⑹ 23+45=( )×10+( )×1⑺ 234+321=( )×100+( )×10+( )×1=( )×111⑶ abc 10010+ 1 ⑷ abcd abcd ⑸1【例3】(★★★)【例5】(★★★)(希望杯五年级一试试题)⑴三位数abc比三位数cba小99,若a,b,c彼此不同,则abc最大是_____。
⑵a bab98790807【例6】(★★★★)【例4】(★★★)计算:(123456+234561+345612+456123+561234+612345)÷7 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小至少是多少?最大的至多是多少?【例7】(★★★★★)(希望杯四年级二试试题)本讲总结数abcd,abc,ab,a依次表示四位数、三位数、两位数及一位abcd abc ab a 1787,那么满足条件的是多少?abcd a c=a c重要应用:①计算——分位计算②代数化表示——分类讨论重点例题:例1、例2、例4、例72。
小学奥数知识点拨 精讲试题 位值原理.学生版
![小学奥数知识点拨 精讲试题 位值原理.学生版](https://img.taocdn.com/s3/m/6d4449dcdaef5ef7bb0d3c03.png)
【巩固】有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是 2886,求所有这样的 6 个三位数中最小 的三位数的最小值.
【例 24】从 1~9 九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三位数之和是 3330, 则这六个三位数中最小的可能是几?最大的可能是几?
5-7-1.位值原理.题库
5-7-1.位值原理.题库
学生版
page 6 of 10
【例 31】记四位数 abcd 为 X ,由它的四个数字 a,b,c,d 组成的最小的四位数记为 X ,如果 X X * 999 ,
那么这样的四位数 X 共有_______个.
【例 32】9000 名同学参加一次数学竞赛,他们的考号分别是 1000,1001,1002,…9999.小明发现他的考号是
【例 34】一个三位数除以 11 所得的商等于这个三位数各位数码之和,求这个三位数是多少?
模块三、巧用方程解位值原理
【例 35】有一个两位数,如果把数码 1 加写在它的前面,那么可以得到一个三位数,如果把 1 写在它的后面, 那么也可以得到一个三位数,而且这两个三位数相差 414,求原来的两位数。
5-7-1.位值原理.题库
【巩固】把 5 写在某个四位数的左端得到一个五位数,把 5 写在这个四位数的右端也得到一个五位数,已知 这两个五位数的差是 22122,求这个四位数。
5-7-1.位值原理.题库
学生版
page 8 of 10
【例 39】 如果把数码 5 加写在某自然数的右端,则该数增加 A1111 ,这里 A 表示一个看不清的数码,求这 个数和 A。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
小学数学位值原理
![小学数学位值原理](https://img.taocdn.com/s3/m/1b81ffd184868762cbaed557.png)
位值原理知识框架位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答重难点(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5.【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.【答案】66岁【巩固】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】 设为ab ,即101102b a a b +++=,整理得1981a b =+,3,7a b ==,两位数为37 【答案】37【例 3】 几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】 肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】 小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】 设小明出生那年是,则1+9+a +b =95-10a -b从而11a +2b =85在a ≥8时,11+2b >85;在a ≤6时,11a +2b ≤66+2×9=84,所以必有a =7,b =4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】 一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的 倍.【考点】简单的位值原理拆 【难度】3星 【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】 令这个三位数为0a b ,则由题意可知,10067()a b a b +=+,可得2a b =,而调换个位和百位之后变为:0100102b a b a b =+=,而3a b b +=,则得到的新三位数是它的各位数字之和的102334b b ÷=倍.【巩固】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】 abc cba -个位是7,明显a 大于c ,所以10+c -a =7,a -c =3,所以他们的差为297【答案】297【例 5】 三位数abc 比三位数cba 小99,若,,a b c 彼此不同,则abc 最大是________【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与cba 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,-=+--=-=,5ab ba a b b a a b(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】 一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星 【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】 设这个两位数是ab ,则100a+b=8(10a+b)-1,化为20a+1=7b ,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】 一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设第一个2位数为10a +b ;第二个为10b +a ;第三个为100a +b ;由题意:(100a +b )-(10b +a )=( 10b +a )-(10a +b ) ;化简可以推得b =6a ,0≤a ,b ≤9,得a =1,b =6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd = 或 .【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259推知b =2;则222+11c +d =259,11c +d =37进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】 有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位 数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所 有这样的6个三位数中最小的三位数为139.【答案】139【例 11】 有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 方法三:设两位数为x ,则有(10x +1)-(100+x )=414,解得:x =57.【答案】57【巩固】 有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设三位数为x ,则有(6000+x )+(10x +6)=9999,解得:x =363.【答案】363课堂检测【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】如果把数码5加写在某自然数的右端,则该数增加1111A,这里A表示一个看不清的数码,求这个数和A.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设这个数为x,则10x+5-x=1111A,化简得9x=1106A,等号右边是9的倍数,试验可得A=1,x=1234.【答案】A=1,x=1234复习总结(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答家庭作业【作业1】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分【难度】3星【题型】解答【解析】设这个巧数为ab,则有ab+a+b=10a+b,a(b+1)=10a,所以b+1=10,b=9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】由a,b,c组成的六个数的和是222()⨯++.因为223422210a b c++>.a b c>⨯,所以10若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6。
小学奥数之进制的计算(含详细解析)
![小学奥数之进制的计算(含详细解析)](https://img.taocdn.com/s3/m/22c5b8c6b8f3f90f76c66137ee06eff9aef84989.png)
⼩学奥数之进制的计算(含详细解析)1. 了解进制;2. 会将⼗进制数转换成多进制;3. 会将多进制转换成⼗进制;4. 会多进制的混合计算;5. 能够判断进制.⼀、数的进制1.⼗进制:我们常⽤的进制为⼗进制,特点是“逢⼗进⼀”。
在实际⽣活中,除了⼗进制计数法外,还有其他的⼤于1的⾃然数进位制。
⽐如⼆进制,⼋进制,⼗六进制等。
2.⼆进制:在计算机中,所采⽤的计数法是⼆进制,即“逢⼆进⼀”。
因此,⼆进制中只⽤两个数字0和1。
⼆进制的计数单位分别是1、21、22、23、……,⼆进制数也可以写做展开式的形式,例如100110在⼆进制中表⽰为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
⼆进制的运算法则:“满⼆进⼀”、“借⼀当⼆”,乘法⼝诀是:零零得零,⼀零得零,零⼀得零,⼀⼀得⼀。
注意:对于任意⾃然数n ,我们有n 0=1。
3.k 进制:⼀般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进⼀”.1k k >()进位制计数单位是0k ,1k ,2k ,.如⼆进位制的计数单位是02,12,22,,⼋进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=?+?++?+()⼗进制表⽰形式:1010101010n n n n N a a a --=+++;⼆进制表⽰形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下⽅写上k ,表⽰是k 进位制的数如:8352(),21010(),123145(),分别表⽰⼋进位制,⼆进位制,⼗⼆进位制中的数.5.k 进制的四则混合运算和⼗进制⼀样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
五年级奥数.位值原理(AB级).教师版
![五年级奥数.位值原理(AB级).教师版](https://img.taocdn.com/s3/m/61b124503968011ca30091e6.png)
位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分 【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5. 【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.例题精讲【答案】66岁【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】设为ab,即101102b aa b+++=,整理得1981a b=+,3,7a b==,两位数为37【答案】37【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】设小明出生那年是,则1+9+a+b=95-10a-b从而11a+2b=85在a≥8时,11+2b>85;在a≤6时,11a+2b≤66+2×9=84,所以必有a =7,b=4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【考点】简单的位值原理拆【难度】3星【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】令这个三位数为0a b,则由题意可知,10067()+=+,可得2a b a b=,而调换个位和百位之后a b变为:0100102=+=,而3b a b a ba b b+=,则得到的新三位数是它的各位数字之和的÷=倍.102334b b【答案】34【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】abc cba-个位是7,明显a大于c,所以10+c-a=7,a-c=3,所以他们的差为297【答案】297【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与c b a 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2010年,希望杯,第八届,六年级,初赛,第5题,6分【解析】 千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,ab ba a b b a a b-=+--=-=,5(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】设这个两位数是ab,则100a+b=8(10a+b)-1,化为20a+1=7b,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】设第一个2位数为10a+b;第二个为10b+a;第三个为100a+b;由题意:(100a+b)-(10b+a)=( 10b+a)-(10a+b) ;化简可以推得b=6a,0≤a,b≤9,得a=1,b=6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】abcd,abc,ab,a依次表示四位数、三位数、两位数及一位数,且满足abcd—abc—ab—a= 1787,则这四位数abcd= 或 .【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答 【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259 推知b =2;则222+11c +d =259,11c +d =37 进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答 【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分【难度】3星【题型】解答【关键词】迎春杯,决赛【解析】设三个数字分别为a、b、c,那么6个不同的三位数的和为:+++++=++⨯+++⨯+++=⨯++2()1002()102()222() abc acb bac bca cab cba a b c a b c a b c a b c所以288622213++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位a b c数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【答案】139【例 11】有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】方法三:设两位数为x,则有(10x+1)-(100+x)=414,解得:x=57.【答案】57【巩固】有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设三位数为x,则有(6000+x)+(10x+6)=9999,解得:x=363.【答案】363【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空 【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的三位数之和为222×(a +b +c )=3330,推知a +b +c =15.所以,当a 、b 、c 取1、5、9时,它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这个数和A .课堂检测【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数为x ,则10x +5-x =1111A ,化简得9x =1106A ,等号右边是9的倍数,试验可得A =1,x =1234.【答案】A =1,x =1234(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 设这个巧数为ab ,则有ab +a +b =10a +b ,a (b +1)=10a ,所以b +1=10,b =9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>. 家庭作业复习总结若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6教学反馈。
小学奥数 数论 位值原则 位值原理.题库版
![小学奥数 数论 位值原则 位值原理.题库版](https://img.taocdn.com/s3/m/50c734c1f705cc1755270951.png)
1. 利用位值原理的定义进行拆分2. 巧用方程解位值原理的题位值原理 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答模块一、简单的位值原理拆分【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字的和是 。
【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。
四年级数学上册第一单元拓展十进制计数法
![四年级数学上册第一单元拓展十进制计数法](https://img.taocdn.com/s3/m/a3725e2571fe910ef12df8c7.png)
四年级数学上册第一单元拓展十进制计数法逐位分析1、将下列式子展开(1)854_____100_____10_____1=⨯+⨯+⨯;(2)55984________1000________10________1=⨯+⨯+⨯;(3)________100________10________1nab=⨯+⨯+⨯;(4)352________10000________100________1=⨯+⨯+⨯下除.2、已知一个三位数,它的百位上是a,十位上是b,个位上是c,则这个三位数用a、b、c表示为________.a代表有________个百,b代表有________个十,c代表有________个一.3、有一个两位数ab,一个三位数cba,若用含有a、b、c三个字母的式子来表示它们的和与差,则它们的和是________,差为________.4、一个两位数,将它的十位数字和个位数字对调,得到的数比原来的数大18,这样的两位数有________个.5、在一个两位数的两个数字中间加一个0,那么所得的三位数比原数大5倍,那么这个两位数是多少?6、一个两位数,把它的两个数字相加,再乘4,就是原数,这样的两位数共有多少个?7、一个两位数等于它的数字和的7倍,这个两位数可能是多少?8、一个三位数,把它的个位和百位调换位置后,得到一个新三位数,已知这两个数的差为396.那么原来的三位数最小是________.9、将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它与原来的两位数的和是187,那么原来的两位数最小是__________.10、由数字a、b、c各一个可以组成六个不同的三位数,其中五个三位数的和是2075,那么a b c++是多少?11、将下列式子展开(1)23452______3______4______5______=⨯+⨯+⨯+⨯;(2)________________________=⨯+⨯+⨯+⨯.abcd a b c d12、一个两位数等于它的数字和的6倍,求这个两位数.13、已知三位数abc与cba的差198-=,则abc最大是__________.abc cba14、 用3个不同的数字能组成6个不同的三位数,这6个三位数的和是2886,则6个三位数中最小的一个是________.15、 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数.它与原来的两位数小54,那么原来的两位数最小是__________.整体分析1、(1)1564=____100____10____1⨯+⨯+⨯(2)45642154=456________1000021________1⨯+⨯+⨯+⨯(3)3659454=3____65____945____4____⨯+⨯+⨯+⨯(4)532____10____10____10____1abcdef =⨯+⨯+⨯+⨯2、 根据位值原理,填空.__________________XYZWNMQ XY Z WNM Q =⨯+⨯+⨯+.3、 若a 是一位数,b 是两位数,把b 放在a 的左边,所得的三位数可以表示为( )A.10a +bB.10b +aC.100a +bD.ab 4、 把5写在某个四位数的左端得到一个五位数,把5写在这个数的右端也得到一个五位数,已知这两个五位数的差是22122,原来的四位数最大是__________.5、 有一个四位数的首、尾两个数字相同.把首、尾两个数字去掉后得到一个两位数,而原四位数恰好是所得两位数的76倍,那么原四位数是__________.6、 将下列式子展开(1)3456734________56________7=⨯+⨯+;(2)________________abcdefg ab cde fg =⨯+⨯+.7、 某个两位数的个位数字和十位数字的和是12,个位数字和十位数字交换后所得两位数比原数小36,则原数是___________.8、 设有一个六位数1abcde ,乘以3后,变为1abcde ,求这个六位数.9、 有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666.求原来的两位数.答案解析十进制计数法逐位分析1、【答案】 (1)8,5,4(2)55,98,4(3)n ,a ,b (4)3,5下,2除【解析】 (1)854810051041=⨯+⨯+⨯;(2)55984551000981041=⨯+⨯+⨯;(3)100101nab n a b =⨯+⨯+⨯;(4)352310*********=⨯+⨯+⨯下除下除.2、【答案】 abc ,a ,b ,c【解析】 abc ,a ,b ,c3、【答案】 1111100a b c ++,10099c b a +-【解析】 10100101111100ab cba a b c b a a b c +=++++=++()1001010100101010099cba ab c b a a b c b a a b c b a -=++-+=++--=+-4、【答案】 7【解析】 设这个两位数为ab ,则18ab ba +=.所以1018102a b b a a b ++=+⇒+=,又因为1a ≥,所以a 可取1~7,对应的b 取3~9,因此这样的两位数有7个.5、【答案】 18【解析】 设两位数为()0ab a ≠,则()051a b ab =+⨯,化简得8b a =,18a b =⎧⎨=⎩,即两位数是18.6、【答案】 4【解析】 设两位数为()0ab a ≠,则()4ab a b =+,化简得2b a =.a 可能为1、2、3、4,进而这样的两位数共有4个.7、【答案】 21,42,63,84【解析】 设这个两位数为ab ,根据题意得()107a b a b +=+,化简得2a b =,由于a 、b 都是0~9之间的数字且a 不能为0,所以这个两位数可能是21、42、63或84.8、【答案】 105【解析】 设原来的三位数为abc ,个位和百位调换位置后是cba ,则()()()100101001099396cba abc c b a a b c c a -=++-++=-=,所以4c a -=.当1,0,5a b c ===时,这个数最小是105.9、【答案】 89【解析】 这个两位数是ab ,根据题意()()1010187a b b a +++=,整理得17a b +=,所以a 最小是8,b 最小是9,即原来的两位数最小是89.10、【答案】 10【解析】 这六个数分别为abc 、acb 、bac 、bca 、cab 、cba ,这六个数的和是()222a b c ++,所以2075加上另外那个三位数后应该是222的倍数,可能的222的倍数有222102220⨯=、222112442⨯=、222122664⨯=、222132886⨯=,对应的另外那个三位数是145、367、589、811.因为14510++=,符合;36711++≠,排除;58912++≠,排除;81113++≠,排除.所以a b c ++是10.11、【答案】 (1)1000,100,10,1(2)1000,100,10,1【解析】 (1)234521000310041051=⨯+⨯+⨯+⨯;(2)1000100101abcd a b c d =⨯+⨯+⨯+⨯.12、【答案】 54【解析】 设这个两位数是ab ,根据题目条件,有()6ab a b =+⨯.用位值原理展开,1066a b a b ⨯+=⨯+⨯,得45a b ⨯=⨯.从等式可以看出,a 应该是5的倍数,且首位不能为0,所以a 只能为5,b 为4,这个两位数为54.13、【答案】 997【解析】 根据位值原理,()()()100101001099198abc cba a b c c b a a c -=++-++=-=,所以2a c -=.当a 取最大时,则 更大,此时9a =,7c =,b 没有要求.所以这个三位数最大是997.14、【答案】 139【解析】 我们设最小的三位数为ABC ,根据题目条件,有2886ABC ACB BAC BCA CAB CBA +++++=.利用位值原理把这些三位数都展开,化简得: ()2222886A B C ⨯++=.所以13A B C ++=. 由于ABC 是最小的三位数,那么A 应该越小越好,我们首先考虑A 能不能等于1.取1A =,则12B C +=,此时B 不能小于3,不然的话,C 就要大于9了.我们取B 等于3,则C 等于9.因此所有这样的6个三位数中,最小的三位数为139.15、【答案】 71【解析】 设这个两位数是ab ,根据题意()()101054a b b a +-+=,整理得6a b -=.所以a 最小是7,b 最小是1,即原来的两位数最小是71.整体分析1、【答案】(1)15,6,4;(2)100000,4,100,54;(3)1000000,10000,10,1;(4)a ,bc ,d ,ef .【解析】 (1)15,6,4;(2)100000,4,100,54;(3)1000000,10000,10,1;(4)a ,bc ,d ,ef .2、【答案】 100000,10000,10【解析】 按位值原理展开,XY 后面还有5个数字,Z 后面还有4个数字,WNM 后面还有1个数字.所以1000001000010XYZWNMQ XY Z WNM Q =⨯+⨯+⨯+,答案为100000,10000,10.3、【答案】 B【解析】 b 是两位数,放在一位数a 的左侧,这个三位数就是10b +a .4、【答案】 8013【解析】 设这个四位数是a ,则根据题意得()()5000010522122a a +-+=或()()1055000022122a a +-+=,解得3097a =或8013a =.所以原来的四位数最大是8013.5、【答案】 6916【解析】 设这个四位数是aba ,其中b 是一个两位数.根据题意得10011076a b b +=,整理得691b a =,所以6a =,91b =.即原四位数是6916.6、【答案】 (1)1000,10(2)100000,100【解析】 (1)3456734100056107=⨯+⨯+;(2)100000100abcdefg ab cde fg =⨯+⨯+.7、【答案】 84【解析】 首先满足两位数的个位数字和十位数字的和是12的,且十位数字比个位数字大的有:93、84、75,交换个位与十位数字发现只有844836-=,所以原数为84.8、【答案】 142857【解析】 设x abcde =,则1100000abcde x =+,1101abcde x =+,()3100000101x x ⨯+=+,解得42857x =,原六位数为142857.9、【答案】 85【解析】 由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1.设这个两位数为x .由题意得到101100666x x +-+=()()101100666x x +--=106661100x x -=-+9765x =85x =原来的两位数是85.。
(小学四年级数学教案)数学教案-十进制计数法-教学教案
![(小学四年级数学教案)数学教案-十进制计数法-教学教案](https://img.taocdn.com/s3/m/211d409885254b35eefdc8d376eeaeaad1f3160d.png)
数学教案-十进制计数法-教学教案教学目标1.使同学知道数的产生.2.生疏亿级的数,把握计数单位“亿〞、“十亿〞、“百亿〞、“千亿〞及“千亿〞内的数位挨次表和十进制计数法,会依据数级正确地读千亿以内的数.教学重点把握数位挨次表及多位数的读法和应用.教学难点读法应用及数中零的读法.教学步骤一、铺垫孕伏.谈话导入:同学们,我们已经学习了三年多数学,每天都要和数打交道,那么你们知道数是怎样产生的吗〔老师板书:数的产生〕二、探究新知.〔一〕教学数的产生.1.同学自学课本内容.同学答复:人们在劳动生产中有了计数的需要,比方数人数、物体个数等,这样就产生了数.老师明确:远古时代人们虽然有计数的需要,但开头不会用一、二、三、四.……这些数词数物体的个数,只是知道“同样多〞.“多〞、“少〞,因此那时人们只能借助一些其他物品来计数.2.同学观看教材插图内容.〔1〕放牧时摆小石子,每放出一只羊,就摆一个小石子,放出多少只羊就摆多少个小石子.放牧回来,再把这些小石子和羊—一对应起来,假设二者同样多,说明放牧时羊没有丢.〔2〕人手中的木棒,木棒上有好多道,这就是记录.人们出去打猎时,拿走的武器,每拿一件武器就在上面刻一道,等到人们打猎回来时,再看二者是否同样多,以此来推断武器的丢失.〔3〕结绳计数的道理也是这样.过去人们无论实行的哪种计数方式,都是要把数的实物和用来计数的实物一个一个地对应起来.〔4〕随着语言的开展,便渐渐消灭了数词,随着文字的开展人们制造了记数的符号,也就是最初的数字.不同的国家和地区符号也不同.老师提问:你知道哪些国家的数字各是怎样的〔巴比伦数字、中国数字、罗马数字、阿拉伯数字〕〔5〕人类对数的生疏渐渐增加,数认得越来越大,这样就产生了进位制,因进位制有很多种,十进制计数比拟便利,所以后来渐渐统一接受十进制.有了数的概念、数字和计数方法,又渐渐开展成较完整的计数方法,这就是我们今日要讲的“十进制计数法〞.〔板书课题:十进制计数法〕〔二〕教学十进制计数法.1.说出亿以内的数的计数单位.亿以内的数字有哪些计数单位2.提问:10个一是多少10个十是多少……10个一千万是多少3.亿以内每相邻两个单位的关系怎样4.举例说明,日常生活中比亿大的数.我国人口十二亿就比亿大.从一亿开头,还可以连续数下去,请同学们拿出算盘.让同学在算盘上先拨上一亿,然后一亿一亿地数,数到九亿,再拨上一亿老师提问:A、九亿再加一亿是多少亿位满十要怎样十亿应写在什么位置百亿、千亿呢〔老师同步板书〕B、十亿、百亿、千亿也叫计数单位.我们共学了哪些计数单位C、从刚刚一边拨珠,一边数数的过程中,谁发觉了每相邻两个计数单位之间有什么关系老师明确:A、比千亿大的计数单位,因不常用,临时不学,所以在千亿的左面用……表示〔板书:……〕B、“每相邻的两个计数单位之间的进率都是十〞的计数方法,叫做“十进制计数法〞.〔三〕生疏数位和数位挨次表.1.我们知道了什么叫十进制计数法,要把一个数写出来,就要用到数字,老师提问:我们学过哪些数字〔1、2.3、4、5、6、7、8、9.0〕老师说明:这些数字叫阿拉伯数字.老师强调:写数的时候,把计数单位按肯定的挨次排列起来,它们所占的位置叫做数位.一个数字所在的数位不同,表示的大小也不同.2.观看数位挨次表.老师提问:亿以内的数位挨次是怎样的〔强化右起第五位是万位,第九位是亿位.〕千万位百万位十万位万位千位百位十位个位3.数位分级〔同学自学〕自学题目:从右边起几个数位为一级,各是什么数级个级、万级、亿级有什么异同点〔四〕教学亿级的读法.1.下面的数该怎样读呢〔回忆读亿以内数的方法.〕老师板书:50000106000400305002.在上面三个数后各加4个0,变成例1.〔1〕同学试读、相互读、小组争辩读.〔2〕引导同学总结多位数的读法法那么.同学争辩:含有亿级、万级和个级的数,按什么挨次来读怎样读亿级、万级的数什么位置的“0〞不读什么位置的读,读几个同学总结法那么:〔1〕从高位起,一级一级地往下读;〔2〕读亿级或万级的数时,要依据个级的数的读法来读,再在后面加上“亿〞字或“万〞字;〔3〕每级末尾的0都不读,其他数位有一个0或连续有几个0都只读一个“零〞.三、稳固练习.1.填空.〔1〕从右起第9位是〔〕位.〔2〕十个一亿是〔〕亿.〔3〕10个一百亿是〔〕亿.〔4〕、、、是亿级,万级有、、、.2.推断.〔1〕两个计数单位间的进率是10.〔〕〔2〕308040000000读作三千八十亿四千万.〔〕3.读出下面每组数.〔1〕65 650000 65 0000 0000〔2〕4070 4070 0000 4070 0000 0000四、课堂小结.引导同学总结十进制计数法,正确读多位数的法那么.五、布置作业.读出下面横线上的数.1.到2000年第五次全国人口普查为止,我国总人口到达1295330000人2.1999年全国有学校生135479600人3.地球和太阳的平均距离是149500000千米六、板书设计.十进制计数法1、数的产生2、十进制计数法相邻两个计数单位间的进率都是10.数学教案-十进制计数法一文。
数学位值原理课件(四年级)奥数
![数学位值原理课件(四年级)奥数](https://img.taocdn.com/s3/m/b12def2533687e21af45a9c1.png)
知识链接
abcd =1000a+100b+10c+d 重要应用: ①计算——分位计算 ②代数化表示——分类讨论
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后。
知识链接
位值原理 ——代数化的应用
例题七(★ ★ ★ ★ ★)
数 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位 abcd abc - ab - a = 1787 ,那么满足条件的 abcd 是多少?
由于abc-abc-ab-a=1787 整理后可得889a+89b+9c+d=1787 先看a,a只有等于1或者2如果a=1, 89b+9c+d=1787-889=898b最大为9, 9c+d=898-9×89=97,9c+d最大是9×9+9=90<97,所以a=1是不成立的。如 a=2,89b+9c+d=1787-889×2=9 那么b=0,9c+d=9,如果c=0,d=9,如果c=1,d=0所以满足条件的abcd是20 或2010。
位值原理
四年级 第10课
知识链接
知识链接
知识链接
知识链接
位值原理的定义: 图一个数字,由于它在所写的数里的位置不同, 所表示的数值也不同。也就是说,每一个数字除 了有自身的一个值外,还有一个“位置值”例如 “2”,写在个位上,就表示2个一,写在百位上, 就表示2个百,这种数字和数位结合起来表示数 的原则,称为写数的位值原理
小学数学竞赛:位值原理.学生版解题技巧培优易错难
![小学数学竞赛:位值原理.学生版解题技巧培优易错难](https://img.taocdn.com/s3/m/6ddf18129ec3d5bbfc0a74aa.png)
5-7-1. 位值原理教学目标1. 利用位值原理的定义进行拆分2. 巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号 555 表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”写,在个位上,就表示2个一,写在百位上,就表示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形以六位数为例: abcdef3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程例题精讲模块一、简单的位值原理拆分例 1】一个两位数,加上它的个位数字的 9 倍,恰好等于 100。
这个两位数的各位数字的和是例 2 】学而思的李老师比张老师大 18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是?(注:老师年龄都在 20 岁以上)例 3 】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如 89的逆序数为 98.如果一个两位数等于其逆序数与 1 的平均数,这个两位数是.例 4 】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加 1,则十位数字恰等于个位数字的 5 倍,那么哥伦布发现美洲新大陆是在公元 _ 年。
小学奥数位值原理
![小学奥数位值原理](https://img.taocdn.com/s3/m/71abd8642bf90242a8956bec0975f46527d3a7be.png)
小学奥数位值原理在小学奥数学习中,位值原理是一个非常重要的概念。
它是指一个数字在一个数中所处的位置所代表的值,这个位置与值的关系是按照10的幂次来确定的。
在我们的十进制计数系统中,每个数字的位值是以10的幂次递增的,从右向左依次是个位、十位、百位、千位等。
这个概念对于小学生来说可能有些抽象,但是通过生动的例子和实际操作,他们可以很快地理解并掌握这个概念。
首先,我们可以通过一些日常生活中的例子来帮助孩子理解位值原理。
比如我们可以拿一些数字卡片,让孩子们按照位值排列,然后通过这些数字卡片进行加减乘除的运算,让他们感受到不同位值的数字在运算中所起到的作用。
另外,我们还可以通过一些有趣的游戏来帮助孩子巩固这个概念,比如让他们玩“数字拼图”游戏,通过拼图的方式来加深对位值的理解。
其次,我们可以通过一些简单的算术题来让孩子们在实际操作中掌握位值原理。
比如让他们计算一些多位数的加减法,通过这些计算,他们可以更加直观地感受到不同位值的数字在运算中的作用。
另外,我们还可以通过一些有趣的问题来激发孩子们对位值原理的兴趣,比如让他们思考一个数字中某一位上的数字变化会对整个数的大小产生怎样的影响。
最后,我们可以通过一些综合性的题目来帮助孩子们巩固位值原理的知识。
比如让他们解决一些复杂的应用题,通过这些题目,他们可以将位值原理与实际问题相结合,更好地理解和应用这个概念。
另外,我们还可以通过一些小组讨论和展示的形式来促进孩子们之间的交流和合作,让他们在交流中相互学习,相互进步。
总之,位值原理是小学奥数学习中的一个重要概念,通过生动的例子、实际操作和有趣的游戏,我们可以帮助孩子们更好地理解和掌握这个概念。
同时,我们也可以通过一些简单的算术题和综合性的题目来帮助他们巩固和应用这个知识。
希望通过我们的努力,孩子们可以在轻松愉快的氛围中学好奥数,掌握位值原理这一重要的数学概念。
小学奥数数论讲义 15-进制与位值原理强化篇-精编
![小学奥数数论讲义 15-进制与位值原理强化篇-精编](https://img.taocdn.com/s3/m/9a5e0c78c850ad02df804134.png)
今日关键1. n 进制运算2. n 进制3. 位值原理【例 1】(63121)8-(1247)8-(16034)8-(26531)8-(1744)8=( )8。
【巩固】在八进制中,1234-456-322= 。
【例 2】⑴(101)2⨯(1011)2-(11011)2=( )2;⑵(11000111)2-(10101)2÷(11)2=( )2;⑶(3021)4+(605)7=( )10。
【巩固】⑴(1101)2⨯(1111)2-(101)2= ;⑵(4023)5+(542)8=( )10。
【例 3】在几进制中有125⨯125=16324?【巩固】算式1534⨯25=43214是几进制数的乘法?【例 4】有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数。
将这两个三位数和一个四位数相加等于3600。
求原来的两位数。
进制与位值原理逢n 进1借1当n 位值原理 十进制 除n 取余法【巩固】在一个两位质数的两个数字之间,添上数字6以后,所得三位数比原数大870,那么原质数是。
【例 5】(第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是。
【巩固】(迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数。
〖答案〗【例 1】13121【巩固】234【例 2】⑴11100,⑵11000000,⑶500 【巩固】⑴10111110,⑵867【例 3】七进制【巩固】八进制【例 4】14【巩固】97【例 5】1,2,4【巩固】139。
小学奥数5-8-2 进制的应用.专项练习及答案解析
![小学奥数5-8-2 进制的应用.专项练习及答案解析](https://img.taocdn.com/s3/m/8699e2150722192e4536f6c4.png)
1. 了解进制;2. 会对进制进行相应的转换;3. 能够运用进制进行解题一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,知识点拨教学目标5-8-2.进制的应用22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++;二进制表示形式:1010222n n n n N a a a --=+++; 为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:模块一、进制在生活中的运用【例 1】 有个吝啬的老财主,总是不想付钱给长工。
小学奥数数论专题数位与进制
![小学奥数数论专题数位与进制](https://img.taocdn.com/s3/m/5841b3efa6c30c2258019e49.png)
小学奥数数论专题数位与进制1.某三位数赢和它的反序数而的差被99除,商等于___________ 与_____ 的差;2.不与乔的差被9除,商等于_________ 与 _____ 的差;3.乔与丽的和被11除,商等于________ 与 _____ 的和。
4.(美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交流,失掉一个新的两位数.假设原来的两位数和交流后的新的两位数的差是45,试求这样的两位数中最大的是多少?5.将一个四位数的数字顺序颠倒过去,失掉一个新的四位数(这个数也叫原数的反序数), 新数比原数大8802.求原来的四位数.6.假设一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为 ''巧数"。
例如,99就是一个巧数,由于9X9+(9 + 9)=99。
可以证明,一切的巧数都是两位数。
请你写出一切的巧数。
7.有3个不同的数字,用它们组成6个不同的三位数,假设这6个三位数的和是1554, 那么这3个数字区分是多少?8.有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求一切这样的6 个三位数中最小的三位数.9.用1, 9, 7三张数字卡片可以组成假定干个不同的三位数,一切这些三位数的平均值是多少?10.从1〜9九个数字中取出三个,用这三个数可组成六个不同的三位数。
假定这六个三位数之和是3330,那么这六个三位数中最小的能够是几?最人的能够是几?11.a, b, c区分是0~9中不同的数码,用a, b, c共可组成六个三位数,假设其中五个三位数之和是2234,那么另一个三位数是几?12.在两位自然数的十位与个位中间拔出0〜9中的一个数码,这个两位数就变成了三位数,有些两位数中间拔出某个数码后变成的三位数,恰恰是原来两位数的9倍。
求出一切这样的三位数。
13.—辆汽车进入高速公路时,入【I处里程碑上是一个两位数,汽车匀速行•使,一小时后看到里程碑上的数是原来两位数字交流后的数。
小学奥数之进制的计算(含详细解析)
![小学奥数之进制的计算(含详细解析)](https://img.taocdn.com/s3/m/058f24a2caaedd3383c4d3cf.png)
1. 了解进制;2. 会将十进制数转换成多进制;3. 会将多进制转换成十进制;4. 会多进制的混合计算;5. 能够判断进制.一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的进制与位值原理
知识框架
一、位值原理
当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式
(2)利用十进制的展开形式,列等式解答
(3)把整个数字整体的考虑设为x,列方程解答
二、数的进制
我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
进制间的转换:如右图所示。
八进制
十进制二进制
十六进制
例题精讲
【例 1】某三位数abc和它的反序数cba的差被99除,商等于______与______的差;
【例 2】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?
【例 3】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3
个数字分别是多少?
【例 4】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两
位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍。
求出所有这样的三位数。
【例 5】 已知1370,abcd abc ab a abcd +++=求.
【例 6】 有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的
后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数.将这两个
三位数和一个四位数相加等于3600.求原来的两位数.
【例 7】 一个六位数abcdef ,如果满足4abcdef fabcde ⨯=,则称abcdef 为“迎春数”(例如4102564⨯=
410256,则102564就是“迎春数”).请你求出所有“迎春数”的总和.
【例 8】 记四位数abcd 为X ,由它的四个数字a,b,c,d 组成的最小的四位数记为X *
,如果*999X X -=,
那么这样的四位数X 共有_______个.
【例 9】 将4个不同的数字排在一起,可以组成24个不同的四位数(432124⨯⨯⨯=).将这24个四位数
按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除
的偶数;按从小到大排列的第五个与第二十个的差在3000~4000之间.求这24个四位数中最大
的那个.
【例 10】 ① 222(101)(1011)(11011)⨯-=________;
② 2222(11000111(10101(11(-÷=))) );
③ 4710(3021)(605)()+=
; ④ 88888(63121)(1247)(16034)(26531)(1744)----=________;
⑤ 若(1030)140n =,则n =________.
【例 11】 在几进制中有413100⨯=?
【例 12】 将二进制数(11010.11)2 化为十进制数为多少?
【例 13】 现有1克,2克,4克,8克,16克的砝码各1枚,在天平上能称多少种不同重量的物体?
【例 14】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?
【例 15】 试求(2
2006-1)除以992的余数是多少?
【例 16】 已知正整数N 的八进制表示为8(12345654321)N ,那么在十进制下,N 除以7的余数与N 除以
9的余数之和是多少?
家庭作业
【作业1】一本书,已看了30页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的5/22,这本书共有多少页?
【作业2】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?
【作业3】a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?
【作业4】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数。
又经一小时后看到里程碑上的数是入口处两个数字中间多一
个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换
所得的三位数。
【作业5】某八位数形如2abcdefg,它与3的乘积形如4
abcdefg,则七位数abcdefg应是多少?【作业6】设六位数abcdef满足fabcde f abcdef
=⨯,请写出这样的六位数.
【作业7】在7进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?
【作业8】计算
2003
(31)
-除以26的余数.
【作业9】计算
2003
(21)
-除以7的余数.。